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Replicated Bisection (Phase 2)
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Figure 1: Pseudo-code for Phase 2 of the Replicated Bisection strategy. Dk represents the distance
from a query submitted in the kth round to the left end-point of its corresponding sub-interval.

Figure 2: An example of the indices J(·, X⇤). Here, � = 0.2 and ✏ = 0.1, and the target X⇤ = 0.15.
The target thus belongs to the first sub-interval in a �-uniform partition, and the second sub-interval
in an ✏-uniform partition. We have that J(�, X⇤) = 1 and J(✏, X⇤) = 2.

B Proofs

B.1 Proof of Proposition 4.1

Proof. Denote by Q̃l the query submitted in the lth sub-interval during the last round of Phase 2 of the
Replicated Bisection strategy. Note that since the positions of the queries relative to their respective
sub-interval are identical in each round, we must have that

|Q̃l � Q̃l0 | �
1

L
, 8l, l0 ⇢ {1, . . . , L}, l 6= l

0
. (B.1)

By the end of the second phase, the adversary knows that the target belongs to the sub-interval
[Q̃l � ✏, Q̃l + ✏) for some l 2 {1, . . . , L}, but not more than that. Formally, it is not difficult to show
that, almost surely, the posterior density of X⇤ is

fX⇤(x|(Q1, . . . , Qn)) =
1

2L✏
, 8x 2 [Ll=1[Q̃l � ✏, Q̃+ ✏), (B.2)

and fX⇤(x|(Q1, . . . , Qn)) = 0 everywhere else. Recall that ✏ < � and � < 1/L by assumption, we
have that

�/2 < �✏+ 1/L, (B.3)
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where the right-hand side corresponds to the distance between two adjacent intervals [Q̃l � ✏, Q̃+ ✏).
In light of Eq. (B.1), this implies that for any interval G ⇢ [0, 1) with length �,

µ
L
⇣
G \

⇣
[Ll=1[Q̃l � ✏, Q̃+ ✏)

⌘⌘
 2✏, almost surely, (B.4)

where µ
L(·) is the Lebesgue measure. Combining the above inequality with Eq. (B.2), we conclude

that, for any adversary estimator bXa, generated based on Q, we have

P
⇣
| bXa �X

⇤|  �/2
�� (Q1, . . . , Qn)

⌘
 1� L� 1

L
=

1

L
, almost surely. (B.5)

This shows that the Replicated Bisection strategy is (�, L)-private.

B.2 Proof of Lemma 5.4

Proof. Because the random seed, Y , is uniformly distributed over [0, 1), the fact thatP1/�
j=1 �

R 1
0 ⇠i,y dy  ⌫ follows directly from the learner strategy’s being (✏, ⌫)-accurate:

⌫ � P
⇣
bJ 6= J(✏, X⇤)

⌘
=

1/�X

j=1

Z 1

0
P(Ej,y)P

⇣
bJ 6= J(✏, X⇤)

�� Ej,y
⌘
dy =

1/�X

j=1

�

Z 1

0
⇠j,y dy. (B.6)

We now show Eq. (5.6). Fix j 2 {1, . . . , 1/�}, and y 2 [0, 1). We begin by making the simple
observation that, conditional on Ej,y, the subset of queries Qj together with their responses Rj is
sufficient for generating the learner’s estimator, bJ , because under this conditioning, any query that
lies outside the sub-interval M�(j) provides no additional information about the location of X⇤ than
what is already known. Furthermore, since the random seed Y is fixed to y, the ith query, Qi, is a
deterministic function of the first i� 1 responses. We conclude that the set of responses Rj alone is
sufficient for generating bJ .

For an event, E , we will denote by H(A|B, E) the conditional entropy H(A
��B) under the probability

law P(·|E):

H(A|B, E) 4
= �

X

a2A,b2B
P(A = a,B = b

�� E) log
�
P(A = a

��B = b, E)
�
, (B.7)

where A and B are the alphabets for random variables A and B, respectively. Similarly, define

H(A
�� E) 4

= �
X

a2A
P(A = a

�� E) log
�
P(A = a

�� E)
�
. (B.8)

Let V 2 {0, 1}n be the vector representation of Rj :

Vi = the ith element of Rj
, i = 1, 2, . . . , |Qj |, (B.9)

and Vi = 1 for all i = |Qj |, |Qj |+ 1, . . . , n. The conditional entropy of V given Ej,y satisfies:

H
�
V
�� Ej,y

�
=

nX

k=1

H
�
V
�� Ej,y, |Qj | = k

�
P
�
|Qj | = k

�� Ej,y
�


nX

k=1

kP
�
|Qj | = k

�� Ej,y
�

=E
�
|Qj |

�� Ej,y
�
, (B.10)

where the inequality follows from the fact that, conditional on there being k responses in Rj , we
know that only the first k bits of V can be random, and hence the entropy of V cannot exceed k,
which is the entropy of a length-k vector where each entry is an independent Bernoulli random
variable with mean 1/2. We now invoke the following lemma by Robert Fano (cf. Section 2.1 of [3]).
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Lemma B.1 (Fano’s Inequality). Let A and B be two random variables, where A takes values in
a finite set, A. Let bA be a discrete random variable taking values in A, such that bA = f(B,C),
where f is a deterministic function, and C a random variable independent from both A and B. Let
p = P( bA 6= A). We have that

H
�
A
��B

�
 h(p) + p (log |A|� 1) , (B.11)

where H(A
��B) is the conditional entropy of A given B.

We apply Fano’s inequality with the substitutions: A J(✏, X⇤), B  V , and bA bJ . Eq. (B.11)
yields

H
�
J(✏, X⇤)

��V, Ej,y
�
 h(⇠j,y) + ⇠j,y log(�/✏), (B.12)

where we have used the fact that, conditional on the event Ej,y , the index J(✏, X⇤) can take at most
�/✏ values. By the chain rule of conditional entropy, we have that

H
�
J(✏, X⇤)

��V, Ej,y
�
=H

�
J(✏, X⇤), V

�� Ej,y
�
�H

�
V
�� Ej,y

�

�H
�
J(✏, X⇤)

�� Ej,y
�
�H

�
V
�� Ej,y

�

(a)
= log(�/✏)�H

�
V
�� Ej,y

�

(b)
� log(�/✏)� E

�
|Qj |

�� Ej,y
�
, (B.13)

where step (a) follows from the fact that conditional on Ej,y , J(✏, X⇤) is uniformly distributed over
�/✏ possible values, and step (b) follows from Eq. (B.10). Combining Eqs. (B.12) and (B.13) yields

E
�
|Qj |

�� Ej,y
�
� log(�/✏)�H

�
J(✏, X⇤)

��V, Ej,y
�

� log(�/✏)� (h(⇠j,y) + ⇠j,y log(�/✏))

=(1� ⇠j,y) log(�/✏)� h(⇠j,y). (B.14)

This proves Lemma 5.4. .

B.3 Proof of Proposition 5.6

Proof. Fix n 2 N and a continuous learner strategy, � 2 �n, such that � is both ✏-accurate and (�, L)-
private. Let bX the estimator of �. It suffices to show that there exists a function f : [0, 1)!M�✏,
such that by using the same queries as �, and setting bJ = f( bX) we obtain a (�✏,��1)-accurate
and (�, L)-private discrete learner strategy. Specifically, let �D be the discrete learner strategy that
submits the same queries as �, and produces the estimator

bJ = J(�✏, bX). (B.15)

That is, bJ reports the index of the sub-interval in the �✏-uniform partition that contains the continuous
estimator, bX .

We first show that the induced discrete learner strategy is (�✏,��1)-private. The intuition is that if
the target X⇤ is sufficiently far away from the edges of the sub-interval in the (�✏)-uniform partition
to which it belongs, then both X

⇤ and bX will belong to the same sub-interval, and we will have
J(�✏, bX) = J(�✏, X⇤). To make this precise, denote by G�✏ the set of end points of the sub-intervals

in the (�✏)-uniform partition: G�✏
4
= {0,�✏, 2�✏, . . . , 1 � �✏, 1}. Let S be the set of all points in

[0, 1) whose distance to G�✏ is greater than ✏/2:

S = {x 2 [0, 1) : min
y2G�✏

|x� y| > ✏/2}. (B.16)

It is not difficult to show that the Lebesgue measure of S satisfies µL(S) = ✏/(�✏) = �
�1

, where ✏

is the length of the intersection of S with each of the (�✏)�1 sub-intervals in a (�✏)-partition. Since �
is ✏-accurate, we know that bX must be no more than ✏/2 away from X

⇤, and hence bJ = J (�✏, X⇤)
whenever X⇤

/2 S , which implies

P
⇣
bJ 6= J (�✏, X⇤)

⌘
 P (X⇤ 2 S) = µ

L(S) = �
�1

. (B.17)
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This shows that �D is (�✏,��1)-accurate.

We next show that �D is also (�, L)-private. For the sake of contradiction, suppose otherwise. Then,
there exists an estimator for the adversary, bJa, such that

P
⇣
bJa = J(�, X⇤)

⌘
> 1/L. (B.18)

We now use bJa to construct a “good” adversary estimator for the continuous version: let bXa be
the mid point of the sub-interval M�( bJa), where M�(j) is the jth sub-interval in the �-uniform
partition. If bJa = J(�, X⇤), then M�(j) contains X⇤, and since the length of M�(j) is �, we must
have

��� bXa �X
⇤
���  �/2, and from Eq. (B.18), this implies

P
⇣��� bXa �X

⇤
���  �/2

⌘
> 1/L. (B.19)

We therefore conclude that if an estimator satisfying Eq. (B.18) did exist, then the original continuous
learner strategy, �, could not have been (�, ✏)-private, which leads to a contradiction. We have thus
shown that �D is (�✏,��1)-accurate and (�, L)-private. Because �

D uses the same sequence of
queries as �, we conclude that N(✏, �, L) � N

D(�✏,��1
, �, L). This proves Proposition 5.6.
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