
The Appendix is divided into the following six sections,

A. Preliminaries and Structural Results
B. Equivalence of Optimization problem inH and L2(X , ρ)

C. Proof of the main Theorem
D. Examples of ESL
E. Experiments
F. Auxiliary Results

A Preliminaries and Structural Results

We begin this section by giving some definitions and structural theorems that are required for the
proofs. We first introduce a few additional notation. Consider two separable Hilbert spacesH1 and
H2. For an operator D : H1 → H2, we use ‖D‖Lp(H1,H2) to denote its pth schatten norm, assuming
that it is finite. We omit the p when we talk about about Hilbert-Schmidt norm i.e. p = 2.

A.1 Covariance operators C and Cm

The covariance operators in the RKHS and the random feature space are defined as follows:
Definition A.1. C : H → H is the co-variance operator of the random variables k(x, ·) with measure
ρ, defined as:

Cf :=

∫
X
k(x, ·)f(x, t)dρ(x, t)

C is compact and self-adjoint, which implies C has a spectral decomposition as follows:

C =

∞∑
i=1

λ̄iφ̄i ⊗H φ̄i

where λ̄i, φ̄i’s are the eigenvalues and eigenfunctions of C. Also, φ̄i are a unitary basis forH.
Definition A.2. Cm : F → F is the covariance operator in the random feature space, defined as

Cm := Eρ [z(x, t)⊗F z(x, t)]

Equivalently, for any β ∈ F ,Cmβ =
∫
X 〈z(x, t), β〉 z(x, t)dρ(x, t).

Cm is compact and self-adjoint which implies that Cm has a spectral decomposition as follows:

Cm =

m∑
i=1

λiφi ⊗F φi

The kernel integral operators and its approximation based on random features are defined as follows:
Definition A.3. The kernel integral operator L : L2(X , ρ)→ L2(X , ρ) is defined as follows:

Lg =

∫
X
k(x, ·)g(x)dρ(x) ∀ g ∈ L2(X , ρ)

Definition A.4. Lm : L2(X , ρ)→ L2(X , ρ) is the (approximated) kernel integral operator, defined
as:

(Lmg)(·) =

∫
X
km(x, ·)g(x)dρ(x)

We state the classical Mercer’s and Bochner’s theorems for completeness.
Theorem A.5 (Mercer’s Theorem). For every positive definition kernel k(·, ·) : X × X → R, there
exits a set Ω with measure π, and functions $(·) : X × Ω→ R such that the kernel has an integral
representation of the following form,

k(x, y) =

∫
Ω

z(x, ω)z(y, ω)dπ(ω) ∀ x, y ∈ X
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In particular, for shift-invariant kernels, we have

Theorem A.6 (Bochner’s Theorem Rudin [2017]). A continuous, real-valued, symmetric shift-
invariant kernel k : X × X → R is a positive-definite kernel if and only if there exits a non-negative
measure π(ω) such that k(x−y) =

∫
X eiω

>(x−y)dπ(ω) i.e the inverse Fourier transform of k(x−y)

For a comprehensive list of kernels with their Fourier transform see Table 1 of Xie et al. [2015].

We now define operators to lift functions and operators from and into different spaces. These are
crucially used in the analysis of the algorithm. See Figure 3 in for a schematic of the lifting operators.

A.2 Inclusions operators I, I

We first recall the definitions of Inclusion operators I, I.

Definition A.7. [Inclusion Operators I and I] The inclusion operator is defined

I : H → L2(X , ρ), (If) = f, where f ∈ H

Also, for an operator D ∈ HS(H) with spectral decomposition D =
∑
i∈I⊂R µiψi ⊗ ψi,

I : HS(H)→ HS(ρ), ID :=
∑
i∈I⊂R

µi
Iψi√

〈Cψi, ψi〉H
⊗ Iψi√

〈Cψi, ψi〉H

In Proposition A.8, we show that the adjoint of the Inclusion operator I is

I∗ : L2(X , ρ)→ H, (I∗g)(·) =

∫
k(x, ·)g(x)dρ(x).

Moreover, In Proposition A.9 we show that the covariance operator and the kernel integral operator
can be expressed in terms of I and I∗ as C = I∗I and L = II∗.

Proposition A.8. The following holds with regard to the inclusion operator,

(a). The adjoint of the Inclusion operator I is given by (I∗g)(·) =
∫
X k(x, ·)g(x)dρ(x).

(b). I and I∗ are Hilbert-Schmidt.

Proof of Proposition A.8. (a). We first show that the adjoint of the Inclusion operator I is given by
(I∗g)(·) =

∫
X k(x, ·)g(x)dρ(x). For f ∈ H and g ∈ L2(X , ρ), we have that

〈If, g〉ρ = 〈f, g〉ρ (Definition of I)

=

∫
X
f(x)g(x)dρ(x)

=

∫
X
〈k(x, ·), f〉H g(x)dρ(x) (Reproducing property)

=

∫
X
〈k(x, ·)g(x), f〉H dρ(x) (Linearity of inner product)

=

〈∫
X
k(x, ·)g(x)dρ(x), f

〉
H

(Fubini’s Theorem)

= 〈I∗g, f〉H
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(b). Let {ēi}∞i=1 be an orthonormal basis forH. We have,

‖I‖2L(H,ρ) =

∞∑
i=1

‖Iēi‖2ρ (Pythagoras Theorem)

=

∞∑
i=1

‖ēi‖2ρ (Definition 3.5)

=

∞∑
i=1

∫
X
〈k(x, ·), ēi〉2H dρ(x) (Reproducing Property)

=

∫
X

∞∑
i=1

〈k(x, ·), ēi〉2H dρ(x) (Fubini’s Theorem)

=

∫
X
k(x, x)dρ(x) ≤ τ2 <∞ (Assumption 3.1)

For the adjoint I∗, we have ‖I∗‖L(ρ,H) = ‖I‖L(H,ρ) <∞

Proposition A.9. The following properties hold,

(a). The covariance operator and the kernel integral operator satisfy C = I∗I and L = II∗

respectively.

(b). C and L are trace-class

Proof of Proposition A.9. (a). We first show that C = I∗I. For any f ∈ L2(X , ρ), we have

I∗If = I∗f (Definition A.7)

=

∫
X
k(x, ·)f(x)dρ(x) (Proposition A.8)

= Cf (Definition A.1)

We now show that L = II∗. For any g ∈ L2(X , ρ), we have

II∗g = I

(∫
X
k(x, ·)g(x)dρ(x)

)
(Proposition A.8)

=

∫
X
k(x, ·)g(x)dρ(x) (Definition A.7)

= Lg

(b). Now we show that C and L are trace-class.

‖C‖L1(H) = ‖I∗I‖L1(H) (Proposition A.9)

= ‖I‖2L2(H) <∞ (Proposition A.8)

Similarly,

‖L‖L1(ρ) = ‖II∗‖L1(ρ) (Proposition A.9)

= ‖I‖2L2(H) <∞ (Proposition A.8)

A.3 Approximation operators A and A

We first recall the definitions of approximation operators A and A.
Definition A.10. [Approximation Operators A and A] The Approximation operator A is defined as

A : F → L2(X, ρ), (Av)(·) = 〈z(·), v〉 , where v ∈ F
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For an operator D ∈ HS(F) with rank k with spectral decomposition D =
∑∞
i=1 µiψi ⊗ ψi, let

Ψ be the matrix with eigenvectors ψi as columns and Φ be the matrix with eigenvectors of Cm as
columns (see Definition 3.4). Define

R∗ = arg min
R>R=RR>=I

‖ΨR− Φ‖2F , Ψ̃ := ΨR∗

Let ψ̃i be the columns of Ψ̃, define

A : HS(F)→ HS(ρ), AD :=

k∑
i=1

µi
Aψ̃i√

〈Cmψ̃i, ψ̃i〉F
⊗ρ

Aψ̃i√
〈Cmψ̃i, ψ̃i〉F

Note that the definition of the approximation operator A requires knowledge of the co-variance matrix
Cm to find the optimal rotation matrix R∗, but this is solely for the purpose of analysis and is not
used in the algorithm in any form.

In Proposition A.11, we show that the adjoint of the Approximation Operator is

A∗ : L2(X, ρ)→ F , (A∗f)i =

∫
X
f(x)zωi

(x)dρ(x).

Moreover, in Proposition A.12 we show that that the approximate covariance operator and the
approximate kernel integral operator can be expressed in terms of the Approximation operator A as
Cm = A∗A and Lm = AA∗.
Proposition A.11. The approximation operator satisfies the following properties,

(a). The adjoint of A is (A∗f)i = 1√
m

∫
X f(x)zωi

(x)dρ(x)

(b). A and A∗ are Hilbert-Schmidt.

Proof of Proposition A.11. (a). First we show that the adjoint of A is (A∗f)i =
1√
m

∫
X f(x)zωi

(x)dρ(x). For v ∈ F , f ∈ L2(X , ρ), we have,

〈Av, f〉ρ =

∫
X

(Av)(x)f(x)dρ(x)

=

∫
X
〈z(x), v〉F f(x)dρ(x) (Definition A.10)

=

〈∫
X

z(x)f(x)dρ(x), v

〉
F

(Fubini’s Theorem)

= 〈A∗f, v〉F
(b). Let {ei} be an orthonormal basis for F .

‖A‖2L(F,ρ) =

m∑
i=1

‖Aei‖2ρ (Pythagoras Theorem)

=

m∑
i=1

‖〈z(·), ei〉F‖
2
ρ

(Definition 3.6)

=

m∑
i=1

∫
X

(〈z(x), ei〉F )2dρ(x)

≤
m∑
i=1

∫
X
‖z(x)‖2F dρ(x) < mτ2 <∞

where third last and second inequality follows from Cauchy Schwartz inequality and Assumption 3.1
respectively.
Similarly, to show A∗ is Hilbert-Schmidt, we note that ‖A∗‖L2(ρ,F) = ‖A‖2L2(F,ρ) <∞

15



In the following proposition, we show how the Covariance operator Cm and kernel Integral operator
Lm are related.

Proposition A.12. The following properties hold,

(a). Cm and Lm satisfy that Cm = A∗A,Lm = AA∗

(b). Cm and Lm are trace-class.

Proof of Proposition A.12. (a). We first show the first part of the Proposition. For any v ∈ F , we
have,

A∗Av =

∫
X
〈z(x), v〉F z(x)dρ(x) (Definition A.10 and Proposition A.11)

= Eρ [z(x)⊗F z(x)] v

= Cmv (Definition A.2)

For any g ∈ L2(X , ρ),

AA∗g =
1

m

m∑
i=1

zωi
(·)
∫
X
zωi

(x)g(x)dρ(x) (Definition A.10 and Proposition A.11)

=

∫
X

m∑
i=1

1√
m
zωi

(·) 1√
m
zωi

(x)g(x)dρ(x) (Fubini’s Theorem)

=

∫
X
〈z(x), z(·)〉F g(x)dρ(x)

=

∫
X
km(x, ·)g(x)dρ(x, t) (Definition of the approximate kernel mapping)

= Lmg (Definition A.4)

(b). Now we show that Cm and Lm are trace-class.

‖Cm‖L1(F) = ‖A∗A‖L1(F) (Proposition A.12)

= ‖A‖2L2(F) <∞ (Proposition A.11)

Similarly,

‖Lm‖L1(ρ) = ‖AA∗‖L1(ρ) (Proposition A.12)

= ‖A∗‖2L2(ρ) <∞ (Proposition A.11)

A.4 Kernel integral operator L and its approximation Lm

We first recall the definition of Kernel integral operator L and its approximation Lm.

Definition A.13. The kernel integral operator L : L2(X , ρ)→ L2(X , ρ) is defined as follows:

Lg =

∫
X
k(x, ·)g(x)dρ(x) ∀ g ∈ L2(X , ρ)

Definition A.14. Lm : L2(X , ρ)→ L2(X , ρ) is the (approximated) kernel integral operator, defined
as:

(Lmg)(·) =

∫
X
km(x, ·)g(x)dρ(x)

We now show in Proposition A.15 that spectral decomposition of the kernel integral operator L can
be given in terms of the eigenfunctions and the eigenvalues of the covariance operator C.
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Figure 3: Maps between the data domain (X ), space of square integrable functions on X (L2(X , ρ)),
the RKHS of kernel k(·, ·), and RKHS of the approximate feature map, as well as maps between
Hilbert-Schmidt operators on these spaces.

Proposition A.15. The spectral decomposition of L is:

L =

∞∑
i=1

λ̄i
Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i

where Iφ̄i√
λ̄i

are the (unit norm) eigenfunctions of L with eigenvalues λ̄i

Proof of Proposition A.15. First we show that the operators L and
∑∞
i=1 λ̄i

Iφ̄i√
λ̄i

⊗ρ Iφ̄i√
λ̄i

agree on

any function g ∈ L2(X , ρ).

∞∑
i=1

λ̄i
Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i
g =

∞∑
i=1

Iφ̄i
〈
Iφ̄i, g

〉
ρ

(Definition of outer product)

=

∞∑
i=1

φ̄i
〈
φ̄i, g

〉
ρ

(Definition A.7)

=

∞∑
i=1

φ̄i

∫
X

〈
φ̄i, k(x, ·)

〉
H g(x, t)dρ(x, t) (Reproducing property)

=

∞∑
i=1

φ̄i

〈
φ̄i,

∫
X
k(x, ·)g(x, t)dρ(x, t)

〉
H

(Fubini’s Theorem)

=

∫
X
k(x, ·)g(x, t)dρ(x, t) (Pythagoras theorem)

= Lg

where the second to last equality holds by Pythagoras theorem, since φ̄i’s are basis forH. Now we
show that Iφ̄i√

λ̄i

are eigenfunctions of L with eigenvalues λ̄i.
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L
Iφ̄i√
λ̄i

= II∗
Iφ̄i√
λ̄i

(Proposition A.9)

= IC
φ̄i√
λ̄i

(Proposition A.9)

= λ̄i
Iφ̄i√
λ̄i

(φ̄i is an eigenfunction of C)

Moreover, they have unit norms and are mutually orthogonal.

〈
Iφ̄i√
λ̄i
,

Iφ̄j√
λ̄j

〉
ρ

=
1√
λ̄iλ̄j

〈
I∗Iφ̄i, φ̄j

〉
H (Proposition A.8)

=
1√
λ̄iλ̄j

〈
Cφ̄i, φ̄j

〉
H (Proposition A.9)

=
1√
λ̄iλ̄j

λiδij = δij

Similarly, we characterize the relationship between the spectral decomposition of the approximate
kernel integral operator Lm and the approximate covariance operator Cm in Proposition A.16.

Proposition A.16. The spectral decomposition of Lm is:

Lm =

m∑
i=1

λi
Aφi√
λi
⊗ρ

Aφi√
λi

where Aφi√
λi

are the (unit norm) eigenfunctions of Lm with eigenvalues λi

Proof of Proposition A.16. First we prove that Lm and
∑m
i=1 λi

Aφi√
λi
⊗ρ Aφi√

λi
agree on any function

g in L2(X , ρ):

m∑
i=1

λi
Aφi√
λi
⊗ρ

Aφi√
λi
g =

m∑
i=1

〈Aφi, g〉ρAφi (Definition of outer product)

=

m∑
i=1

∫
X
〈z(x, t), φi〉F g(x, t)dρ(x, t) 〈z(·), φi〉F (Definition A.10)

=

∫
X

m∑
i=1

〈z(x, t), φi〉F 〈z(·), φi〉F g(x, t)dρ(x, t) (Fubini’s Theorem)

=

∫
X

m∑
i=1

1√
m
zωi(x, t)

1√
m
zωi(·)g(x, t)dρ(x, t) (Change of basis)

=

∫
X
〈z(x, t), z(·)〉F g(x, t)dρ(x, t)

=

∫
X
km(x, ·)g(x, t)dρ(x, t)

= Lmg
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The fourth equality follows from the fact that inner products are invariant under orthogonal change of
basis. Now we show that Aφi√

λi
are eigenfunctions of Lm with the corresponding eigenvalue λi

Lm
Aφi
λi

= AA∗
Aφi√
λi

(Proposition A.12)

=
ACmφi√

λi
(Proposition A.12)

= λi
Aφi√
λi

(φi is an eigenvector of Cm)

Moreover, they have unit norms and are mutually orthogonal.

〈
Aφi√
λi
,

Aφj√
λj

〉
ρ

=
1√
λiλj

〈A∗Aφi, φj〉F (Proposition A.11)

=
1√
λiλj

〈Cmφi, φj〉F (Proposition A.12)

=
1√
λiλj

λiδij = δij

which completes the proof.

The following is an important lemma which shows that the kernel integral operator and its approxi-
mation can be seen as true and empirical covariance operators in HS(ρ) associated with the random
variable zω . This allows us to use concentration of measure tools to bound the approximation error in
H(ρ).

Lemma A.17. L = Eω [zω ⊗ρ zω] ,Lm = 1
m

∑m
i=1 zωi ⊗ρ zωi

Proof of Lemma A.17. For any f, g ∈ L2(X , ρ) it holds that

〈Lf, g〉ρ =

〈∫
X
k(x, ·)f(x, t)dρ(x, t), g

〉
ρ

(Definition A.3)

=

〈∫
X

∫
Ω

zω(x, t)zω(·)f(x, t)dπ(ω)dρ(x, t), g

〉
ρ

(Theorem A.6)

=

〈∫
Ω

∫
X
zω(x, t)f(x, t)dρ(x, t)zω(·)dπ(ω), g

〉
ρ

(Fubini’s theorem)

=

〈∫
Ω

〈zω(·), f〉ρ zω(·)dπ(ω), g

〉
ρ

=

〈∫
Ω

zω(·)⊗ρ zω(·)dπ(ω)f, g

〉
ρ

(Definition of outer product)

= 〈Eω [zω ⊗ρ zω] f, g〉ρ
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Similarly, for any f, g ∈ L2(X , ρ) we have that

〈Lmf, g〉ρ =

〈∫
X
km(x, ·)f(x, t)dρ(x, t), g

〉
ρ

(Definition A.4)

=

〈∫
X
〈z(x, t), z(·)〉F f(x, t)dρ(x, t), g

〉
ρ

(Definition of km)

=

〈∫
X

1

m

m∑
i=1

zωi(x, t)zωi(·)f(x, t)dρ(x, t), g

〉
ρ

=

〈
1

m

m∑
i=1

∫
X
zωi

(x, t)f(x, t)dρ(x, t)zωi
(·), g

〉
ρ

=

〈
1

m

m∑
i=1

〈zωi
(·), f〉ρ zωi

(·), g

〉
ρ

=

〈
1

m

m∑
i=1

zωi
(·)⊗ρ zωi

(·)f, g

〉
ρ

(Definition of outer product)

= 〈Lmf, g〉ρ (Definition A.4)

which completes the proof.

The following Proposition shows the relation between the outer products in two separable Hilbert
spaces; this is useful in the proof of the main theorem.
Proposition A.18. For any Hilbert-Schmidt Operator B : H1 → H2, it holds that Bu ⊗H2

Bv =
B(u⊗H1 v)B∗, where u, v ∈ H1.

Proof of Proposition A.18. For any f ∈ H2, the following equalities hold:

(Bu⊗H2
Bv)f = Bu 〈Bv, f〉H2

(Definition of outer product)

= Bu 〈v,B∗f〉H1
(Proposition A.11)

= B(u 〈v,B∗f〉H1
)

= B(u⊗H1
v)B∗f (Definition of outer product)

Finally, we state the assumptions that we make throughout the paper.
Assumption A.19. The kernel function k is a Mercer’s kernel(see Theorem A.5) and has the following
integral representation, k(x, y) =

∫
Ω
z(x, ω)z(y, ω)dπ(ω) ∀x, y ∈ X where (H, k) is a separable

RKHS of real-valued functions on X with a bounded positive definite kernel k. We also assume that
there exists τ > 1 such that |z(x, ω)| ≤ τ for all x ∈ X , ω ∈ Ω. Furthermore, we assume that the
operator L

1
2 exists.
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B Equivalence of optimization problems inH and L2(X , ρ)

We now show that Kernel PCA in the RKHSH and L2(X , ρ) are equivalent under some assumptions
which we show are naturally satisfied in the case of Kernel PCA with random features. Ths allows us
to transfer our generalization bounds established in L2(X , ρ) toH.

The Kernel PCA problem essentially reduces to solving the following optimization problem:

max
P∈Pk

H

〈P,C〉HS(H) (OPT-1)

For any P ∈ PkHS(H), by spectral decomposition, P has an eigendecompostion given by P =∑k
i=1 ui ⊗ρ ui where ui ∈ H, i ∈ [k] are a set of orthonormal functions. We define an operator

U : Rk → H such that Ub =
∑k
i=1 biui, where b ∈ Rk.

Proposition B.1. U satisfies the following properties.

(a) U is Hilbert-Schmidt.

(b) The adjoint of U is U∗ : H → Rk such that (U∗f)i = 〈ui, f〉H where f ∈ H.

(c) P = UU∗ and U∗U = Ik

Proof. (a) First we show that the operator U is Hilbert-Schmidt. Let {ei}ki=1 be the canonical basis
of Rk.

‖U‖2L2(Rk,H) =

k∑
i=1

‖Uei‖2H (Pythagoras Theorem)

=

k∑
i=1

‖ui‖2H = k

(b) Let U∗ be the adjoint of U. We now show that (U∗f)i = 〈ui, f〉H. For any b ∈ Rk, f ∈ H,

〈U∗f,b〉 = 〈f,Ub〉H

=

〈
f,

k∑
i=1

biui

〉
H

=

k∑
i=1

〈f, ui〉H bi

= 〈d,b〉

where d ∈ Rk,di = 〈f, ui〉H
(c) For the first part, for any f ∈ H, we have,

Pf =

k∑
i=1

(ui ⊗H ui)f

=

k∑
i=1

〈ui, f〉H ui

=

k∑
i=1

(U∗f)iui

= UU∗f

Now we show that the constraint P ∈ PkH reduces to U∗U = Ik.
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For any b ∈ Rk,

U∗Ub =

k∑
i=1

biU
∗ui

=

k∑
i=1

bidi

where di ∈ Rk, (di)j = 〈uj ,ui〉H. Note that since ui’s are orthonormal functions, therefore, di = ei,
where ei’s is the canonical basis of Rk. Therefore,

U∗Ub =

k∑
i=1

biei = b

We now write the optimization problem OPT-1 in terms of U as,

max
U∗U=Ik

〈UU∗,C〉HS(H) (OPT-2)

Now consider vi ∈ L2(X , ρ), i ∈ [k] such that ui = I∗vi. Note that the existence of vi is guaranteed
from the construction of RKHS from eigenfunctions of L (for details, see [Sejdinovic and Gretton,
2012, Theorem 51]). We now define an operator V : Rk → L2(X , ρ) such that Vb =

∑k
i=1 bivi,

where b ∈ Rk. We have the following proposition about V.
Proposition B.2. V satisfies the following properties,

(a) V is Hilbert-Schmidt.

(b) The adjoint of V is V∗ : L2(X , ρ)→ H, defined as (V ∗f)i = 〈vi, f〉ρ

(c)
〈
VV∗,L2

〉
HS(ρ)

= 〈UU∗,C〉HS(H) and V∗LV = U∗U = Ik

Proof. The proofs of (a) and (b) are similar to that of Proposition B.1.
(c). We start with the first part. The objective in terms of V is,

〈P,C〉HS(H) =

〈
k∑
i=1

ui ⊗H ui,C

〉
HS(H)

=

〈
k∑
i=1

I∗vi ⊗H I∗vi,C

〉
HS(H)

(ui = I∗vi)

=

〈
k∑
i=1

I(vi ⊗ρ vi)I
∗,C

〉
HS(H)

(Proposition A.18)

=

〈
k∑
i=1

vi ⊗ρ vi, ICI∗

〉
HS(ρ)

(Definition of adjoint)

=

〈
k∑
i=1

vi ⊗ρ vi, II
∗II∗

〉
HS(ρ)

(Proposition A.9)

=

〈
k∑
i=1

vi ⊗ρ vi,L
2

〉
HS(ρ)

(Proposition A.9)

=
〈
VV∗,L2

〉
HS(ρ)
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For the second part, for any b ∈ Rk, we have,

U∗Ub =

k∑
i=1

biU
∗ui

=

k∑
i=1

biU
∗I∗vi (ui = I∗vi)

=

k∑
i=1

bidi

where di ∈ Rk, (di)j = 〈uj , I∗vi〉H = 〈I∗vj , I∗vi〉H = 〈vj , II∗vi〉ρ = 〈vj ,Lvi〉ρ, where the third
equality follows from the property of adjoints, and the last equality because L = II∗.
Since U∗Ub = b, so di = ei. Therefore, we get 〈vj ,Lvi〉 = δij

Let us now look at the jth element of V∗LVb,

(V∗LVb)j = (V∗L

k∑
i=1

bivi)j (Definition of V)

=

k∑
i=1

(biV
∗Lvi)j

=

k∑
i=1

bi 〈vj ,Lvi〉ρ

=

k∑
i=1

biδij = bj

We can now restate the optimization problem in terms of V.
max

V∗LV=Ik

〈
VV∗,L2

〉
HS(ρ)

(OPT-3)

Now, let wi = L1/2vi. Note that wi is well-defined since we assume that L1/2 exists (See Assumption
3.1). Define W : Rk → L2(X , ρ), such that Wb =

∑k
i=1 biwi.

Proposition B.3. W satisfies the following properties,

(a) W is Hilbert-Schmidt.

(b) The adjoint of W is W∗ : L2(X , ρ)→ Rk (W∗f)i = 〈wi, f〉ρ.

(c) W = L1/2V,
〈
VV∗,L2

〉
HS(ρ)

= 〈WW∗,L〉HS(ρ) and W∗W = V∗LV = Ik

Proof. The proofs of (a) and (b) are similar to that of Proposition B.1.
(c) For the first part, for any b ∈ Rk, we have

Wb =

k∑
i=1

biwi

=

k∑
i=1

biL
1/2vi

= L1/2
k∑
i=1

bivi

= L1/2Vb
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Note that since L is self-ajoint, L1/2 is self-adjoint too. The objective in terms of W is〈
VV∗,L2

〉
HS(ρ)

=
〈

L1/2VV∗L1/2,L
〉
HS(ρ)

(Definition of adjoint)

= 〈WW∗,L〉HS(ρ)

Equivalently, we can restate the constraint in terms of W as,

V∗LV = V∗L1/2L1/2V

= (L1/2V)∗(L1/2V)

= W∗W = Ik

We now restate the optimization problem in terms of W.

max
W∗W=Ik

〈WW∗,L〉HS(ρ) (OPT-4)

We now state this equivalence of objective in the following Lemma.

Lemma B.4 (Equivalence of Objective).

〈P,C〉HS(H) = 〈WW∗,L〉HS(ρ)

where the relation between P and W is presented via Propositions B.1,B.2 and B.3.

Proof. One direction of implication simply simply follows from the construction in Propositions
B.1, B.2 and B.3. In particular, from Propositions B.1, B.2 and B.3, we conclude that OPT-1 =⇒
OPT-2 =⇒ OPT-3 =⇒ OPT-4. It is easy to see that OPT-3 =⇒ OPT-2 =⇒ OPT-1 where the
first implication simply follows from the construction of ui’s and the second from Proposition B.1.
However, showing that OPT-4 =⇒ OPT-3 is conditioned on wi’s lying in the range of L1/2 because
otherwise there might not exist vi’s such that wi = L1/2vi. In Lemma B.5, we show that when using
random features, with the approximation operator defined in Definition 3.6, the functions obtained
via random feature approximation lies in the range of L1/2 with probability 1 on the support of π.
This establishes the equivalence claimed.

We now formally show that vectors from F lifted to L2(X , ρ) via the approximation operator A lie in
the range of L1/2 almost surely with respect to measure π. The proof of the following lemma closely
follows [Rudi and Rosasco, 2017, Lemma 2].

Lemma B.5. For every v ∈ F , Av ∈ L2(X , ρ) lies in the range of L1/2 almost surely on the support
of π.

Proof. Let Π ∈ HS(ρ) denote the projection operator projecting to the range of L1/2. Then
(Iρ−Π)L1/2f = 0 ∀ f ∈ L2(X , ρ) as (Iρ−Π) is the projection to the orthogonal complement to the
range of L1/2. From this, we have, Tr

(
(Iρ −Π)L1/2L1/2(Iρ −Π)

)
= Tr ((Iρ −Π)L(Iρ −Π)) = 0.

Tr ((Iρ −Π)L(Iρ −Π)) = Tr
(

(Iρ −Π)

∫
Ω

zω ⊗ρ zωdπ(ω)(Iρ −Π)

)
=

∫
Ω

Tr ((Iρ −Π)(zω ⊗ρ zω)(Iρ −Π)) dπ(ω)

=

∫
Ω

Tr ((Iρ −Π)zω ⊗ρ (Iρ −Π)zω) dπ(ω)

=

∫
Ω

‖(Iρ −Π)zω‖2ρ dπ(ω) = 0

From the above equation, we see that ‖(Iρ −Π)zω‖ρ = 0 almost surely on the support of π. This
implies that (Iρ −Π)zω = 0 a.s. on the support of π.
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Now we show that all functions of interest i.e. anything lifted from F to L2(X , ρ) lie in the range of
L1/2. Let v ∈ F , f ∈ L2(X , ρ).

〈(Iρ −Π)f,Av〉ρ = 〈A∗(Iρ −Π)f, v〉F

=

m∑
i=1

((Iρ −Π)zωif)vi = 0

This is because ωi’s are drawn from π, and we already argued that (Iρ−Π)zω = 0 a.s. on the support
of π. Since this holds for any v ∈ F and f ∈ L2(X , ρ), this implies that Av lies in the range of L1/2

for all v ∈ F .

Moreover, note that since Lm = ACm (See Proposition A.16), the eigenfunctions of Lm are the lifted
eigenvectors of Cm from F to L2(X , ρ). This equivalence entails that any candidate solution of
OPT-2 has an equivalent candidate solution for OPT-4, and they would both have the same objective.

As already hinted, the solution of Kernel PCA with random features might not lie in the constraint
set of rank k projection operators over L2(X , ρ). By the equivalence of the optimization problems
OPT-1 and OPT-4, we violate the constraint inH as well. We, however, remarked that we counter
this problem by showing a fast O(1/

√
n) speed of convergence to the constraint set in L2(X , ρ).

A natural question to ask is does the speed of convergence to the constraint set preserved too? We
answer affirmatively as shown below.

We now use this equivalence to give a reduction from a candidate solution OPT-4 to OPT-2. Let
P̃ =

∑k
i=1 p̃i ⊗ρ p̃i be the output of some algorithm for Kernel PCA with random features, lifted

through the approximation operator A. We have show in Theorem C.1 that APkCm
= PkLm

is a
rank k projection over L2(X , ρ). Let PLm

=
∑k
i=1 q̃i ⊗ q̃i. Since p̃i and q̃i lie in the range of

L1/2, ∀ i ∈ [k] (See Lemma B.5), there exists pi’s and qi’s such that p̃i = L1/2pi and q̃i = L1/2qi,
i ∈ [k]. Define P :=

∑k
i=1 I∗pi ⊗H I∗pi, and Q :=

∑k
i=1 I∗qi ⊗H I∗qi.

First we show that Q is a projection operator in HS(H).

〈I∗qi, I∗qj〉H = 〈qi, II∗qj〉ρ (Definition of adjoints)

= 〈qi,Lqj〉ρ (Proposition A.9)

=
〈

L1/2qi,L
1/2qj

〉
ρ

(Definition of adjoints)

= 〈q̃i, q̃j〉ρ = δij

Now, let us look at the rate of convergence P to PkHS(H).

Lemma B.6 (Equivalence of convergence to the constraint set).

d(P̄,PkHS(H)) ≤
∥∥∥P̃− ACm

∥∥∥
HS(ρ)
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Proof.

d(P̄,PkHS(H)) ≤ ‖P−Q‖HS(H)

=

∥∥∥∥∥
k∑
i=1

I∗pi ⊗H I∗pi − I∗qi ⊗H I∗qi

∥∥∥∥∥
HS(H)

=

∥∥∥∥∥I(

k∑
i=1

pi ⊗ρ pi − qi ⊗ρ qi)I
∗

∥∥∥∥∥
HS(H)

(Proposition A.18)

=

∥∥∥∥∥L(

k∑
i=1

pi ⊗ρ pi − qi ⊗ρ qi)

∥∥∥∥∥
HS(ρ)

=

∥∥∥∥∥L1/2(

k∑
i=1

pi ⊗ρ pi − qi ⊗ρ qi)L
1/2

∥∥∥∥∥
HS(ρ)

(Cyclic property)

=

∥∥∥∥∥
k∑
i=1

L1/2pi ⊗ρ L1/2pi − L1/2qi ⊗ρ L1/2qi

∥∥∥∥∥
HS(ρ)

(Proposition A.18)

=

∥∥∥∥∥
k∑
i=1

p̃i ⊗ρ p̃i − q̃i ⊗ρ q̃i

∥∥∥∥∥
HS(ρ)

=
∥∥∥P̃− ACm

∥∥∥
HS(ρ)

In Lemma C.5, we will bound
∥∥∥P̃− ACm

∥∥∥
HS(ρ)

which implies the bound given in the main theorem

4.2.

We now combine the above relations into a definition to lift operators from HS(F) to HS(H) and
then discuss that the operator is well-defined.

Definition B.7 (Operator L). Let P̃ ∈ HS(F) and AP̃ =
∑k
i=1 p̃i ⊗ρ p̃i be P̃ lifted to L2(X , ρ).

Consider the equivalence relation pi ∼ pj if L1/2pi = L1/2pj . Let [pi] be the equivalence class such
that L1/2pi = p̃i. The operator L : HS(F)→ HS(H) is defined as,

LP̂ =

k∑
i=1

I∗pi ⊗H I∗pi

Here I∗ is the restriction of the operator I∗ to the quotient space L2(X , ρ)/ ∼.

We now discuss that the operator L is indeed a well defined operator. We guarantee by Lemma
B.5 that there is at least one element in [pi] such that p̃i = L1/2pi. It remains to argue that all the
elements in the equivalence class [pi] are being mapped to the same element inH through I∗. Let pi
and pj be two elements of [pi]. Since L1/2pi = L1/2pj , therefore L1/2(pi − pj) = 0. This implies
that pj = pi + Ker(L1/2). Note that any ri ∈ Ker(L1/2) will be mapped by I∗ to 0, i.e. I∗ri = 0. It
follows from linearity of I∗ that I∗p̃j = I∗pi. Thus this maps an equivalence class to a single element
inH.
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C Proof of the main Theorem

From we have already established the problems in HS(ρ) and HS(H), we focus on error decompo-
sition and bounding the corresponding error terms in L2(X , ρ). Solving KPCA by using a kernel
approximation, one needs to consider two different sources of error. First, the error coming from
approximating the true kernel operator by random features. Second, the statistical error due to
estimating the covariance operator using iid samples from the unknown distribution. Thus, we
distinguish between and base our proof around these two sources of error, namely approximation
error and estimation error. In particular we decompose our objective as:〈

IPkC, IC
〉
HS(ρ)

−
〈
AP̂, IC

〉
HS(ρ)

= 〈IPkC, IC〉HS(ρ) − 〈APkCm
, IC〉HS(ρ)︸ ︷︷ ︸

εa: Approximation Error

+ 〈APkCm
, IC〉HS(ρ) − 〈AP̂, IC〉HS(ρ)︸ ︷︷ ︸

εe: Estimation Error

.

The first term in the decomposition is interpreted as approximation error because it essentially
captures the error incurred by approximating the kernel function with random features. The second
term in the decomposition is interpreted as estimation error as it is the error incurred in the original
statistical estimation problem. In what follows, we give a bound on each of the error terms and
provide a detailed analysis. Throughout this section, we use the following Lemma that shows the
relation between different projection operators.
Lemma C.1. IPkC and APkL are rank k projection operators in L2(X , ρ). Furthermore, it holds that
IPkC = PkL and APkCm

= PkLm
.

Proof of Lemma C.1. We have

IPkC =

k∑
i=1

Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i

= PkL

where the second inequality follows from Lemma A.9. Similarly,

APkCm
=

k∑
i=1

Aφi√
λi
⊗ρ

Aφi√
λi

= PkLm

where the second inequality follows from Lemma A.12. and APkC

C.1 Approximation Error

The main idea behind controlling the approximation error is to use the local Rademacher complexity
of the kernel class Massart [2000], Bartlett et al. [2002]. More precisely, we use the following result
in [Blanchard et al., 2007], which allows us to get rates depending both on the number of features
used and the decay of the spectrum of the operator C2.
Theorem C.2 (Blanchard et al. [2007]). Assume ‖ζ‖2 ≤M almost surely, and let (λi) denote the

ordered eigenvalues of C := E[ζζ>], and further assume that (λi) are distinct. LetBk :=

√
E[〈ζ,ζ′〉4]

λk−λk+1
,

where ζ ′ is and iid copy of ζ. Then for all δ, with overwhelming probability of at least 1 − e−δ it
holds that

〈P k
Ĉ⊥
,C〉 − 〈P kC⊥ ,C〉 ≤ 24κ(Bk, k, n) +

11δ(M +Bk)

n
where κ is defined as follows:

κ(Bk, k, n) = inf
h≥0

Bkhn +

√
k

n

∑
j>h

λi(C′)


Lemma C.3 (Approximation Error). With probability at least 1− δ

2 , we have

〈PkL⊥m ,L〉 − 〈P
k
L⊥ ,L〉 ≤ 24κ(Bk, k,m) +

11 log (δ/2) τ2 + 7Bk
m
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Proof. We first note that AP kCm
=
∑k
i=1

Aφi√
λi
⊗ Aφi√

λi
(see definition of the approximation operator

in A.10). The following holds for the approximation error:

εa =
〈
IP kC, IC〉HS(ρ) − 〈AP kCm

, IC
〉
HS(ρ)

(5)

=

〈
k∑
i=1

Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i
,
∑
i∈I⊂R

λ̄i

(
Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i

)〉
HS(ρ)

(definition A.7)

−

〈
k∑
i=1

Aφi√
λi
⊗ρ

Aφi√
λi
,
∑
i∈I⊂R

λ̄i

(
Iφ̄i√
λ̄i
⊗ρ

Iφ̄i√
λ̄i

)〉
HS(ρ)

(definition A.7, A.10)

= 〈P kL ,L〉HS(ρ) − 〈P kLm
,L〉HS(ρ) (Lemma A.15 and Lemma C.1)

= 〈P kL⊥m ,L〉HS(ρ) − 〈P kL⊥ ,L〉HS(ρ) (properties of the orthogonal subspace)

We have already showed that L and Lm in the right hand side of the equation (5) are true and empirical
covariance operators respectively (see Lemma A.17). As required by Theorem C.2, we need to show
that norm of the random variables zω are bounded. We have

‖zω‖2 = 〈zω, zω〉ρ

=

∫
X
zω(x, t)2dρ(x, t)

≤ τ2

where the last inequality follows Assumption 3.1.

Invoking Theorem C.2, we have with probability at least 1− δ,

〈P kL⊥m ,L〉 − 〈P
k
L⊥ ,L〉 ≤ 24κ(Bk, k,m) +

11 log (δ) τ2 + 7Bk
m

where κ(Bk, k,m) = infh≥0

{
Bkh
m +

√
k
∑

j>h λj(C′2)

m

}
.

Lemma C.4 (Approximation Error - Good decay). When the spectrum of operator C′2 has an
exponential decay, i.e. λj(C′2) = αj for some α < 1, then with probability at least 1− δ, we have

〈PkL⊥m ,L〉 − 〈P
k
L⊥ ,L〉 ≤

24Bk log (m)

log (1/α)m
+
k + (1− α)(11 log (δ) τ2 + 7Bk)

(1− α)m

Proof. When λi(C′2) have an exponential decay, i.e λj(C′2) = αj for some α < 1, we have∑
j>h

λj(C
′
2) =

αh+1

1− α

Set h = d− logα(m)e − 1, we get ∑
j>h

λj(C
′
2) ≤ 1

(1− α)m

Now,

κ(Bk, k,m) = inf
h≥0

Bkhm +

√
k
∑
j>h λj(C

′
2)

m


≤ −Bk logαm

m
+

k

(1− α)m

=
Bk log (m)

log (1/α)m
+

k

(1− α)m
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where the last equality follows from the identity logb a =
logd(a)

logd(b)

So essentially, κ(Bk, k,m) = O
(

log(m)
m

)
. Therefore, we get

εa =
〈
IP kC, IC

〉
HS(ρ)

−
〈
AP kCm

, IC
〉
HS(ρ)

≤ 24Bk log (m)

log (1/α)m
+

k

(1− α)m
+

11 log (δ) τ2 + 7Bk
m

=
24Bk log (m)

log (1/α)m
+
k + (1− α)(11 log (δ) τ2 + 7Bk)

(1− α)m

which completes the proof.

C.2 Estimation Error

We first remind the reader that AP kCm
is a projection operator inL2(X , ρ) (See Lemma C.1). However,

the problem we face is that AP̂ might not be a projection operator in L2(X , ρ). This is because the
lifting is accomplished by lifting a particular set of eigenvectors of P̂A through A, and we remark that
A doesn’t necessarily preserve norms and angles between elements. To get around this predicament,
we show that lifted operator converges to a projection operator, i.e the lifted set of eigenvectors
go to an orthogonal set of functions in L2(X , ρ). Moreover, from Lemma B.6, we have that this
convergence in HS(ρ) is equivalent to convergence in HS(H).

Lemma C.5. When the number of samples n ≥ 2λ2
1qA(1/δ,log(m),log(n))2

λ2
k(
√

2−1)
, with probability at least

1− δ
2 , we have

d(ACm,PkHS(ρ)) ≤
∥∥∥AP kCm

− AP̂A

∥∥∥
HS(ρ)

≤
∥∥∥AP kCm

− AP̂A

∥∥∥
L1(ρ)

≤ λ1

(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2
qA(1/δ, log (m) , log (n))

n

Proof of Lemma C.5. Since ACm is a rank k projection operator in HS(ρ) (from Lemma C.1), the
first inequality follows trivially. The second inequality is just from the property of norms that schatten
norms ‖D‖Lp(ρ) decreases with increasing p. We focus on proving the third inequality below.

Let P̂A = Φ̃Φ̃> be an eigendecomposition of the output P̂A. Let

R∗ = arg min
R>R=RR>=I

∥∥∥Φ̃R− Φk

∥∥∥2

F

where Φk is the matrix corresponding top top k eigenvectors of Cm. Define Φ̂ := Φ̃R∗. This means
that we rotate the eigenvectors of our output to a basis such that it is closest to the truth (in element-
wise metric sense). An important point on why we can do this is that this rotation (or any other
rotation for that matter) doesn’t change the output, i.e. Φ̂Φ̂> = Φ̃R∗R∗>Φ̃> = Φ̃Φ̃> = P̂A. We
now lifting the output by lifting this rotated set of eigenvectors. We have, AP̂ =

∑k
i=1

Aφ̂i√
λ̂i

⊗ρ Aφ̂i√
λ̂i

,

where λ̂i :=
〈
φ̂i,Cmφ̂i

〉
F

.
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∥∥∥AP kCm
− AP̂A

∥∥∥
L1(ρ)

=

∥∥∥∥∥∥
k∑
i=1

Aφi√
λi
⊗ Aφi√

λi
−

k∑
i=1

Aφ̂i√
λ̂i

⊗ Aφ̂i√
λ̂i

∥∥∥∥∥∥
L1(ρ)

=

∥∥∥∥∥∥A

k∑
i=1

 φi√
λi
⊗ φi√

λi
− φ̂i√

λ̂i

⊗ φ̂i√
λ̂i

A∗

∥∥∥∥∥∥
L1(ρ)

≤ ‖A‖

∥∥∥∥∥
k∑
i=1

(
1

λi
φi ⊗ φi −

1

λ̂i
φ̂i ⊗ φ̂i

)
A∗

∥∥∥∥∥
L1(F,ρ)

≤ ‖A‖ ‖A∗‖

∥∥∥∥∥
k∑
i=1

(
1

λi
φi ⊗ φi −

1

λ̂i
φ̂i ⊗ φ̂i

)∥∥∥∥∥
L1(F)

≤ λ1

∥∥∥∥∥
k∑
i=1

(
1

λi
φi ⊗ φi −

1

λ̂i
φ̂i ⊗ φ̂i

)∥∥∥∥∥
L1(F)

Where third and fourth inequalities follows from the fact that for trace-class operators ‖AB‖L1 ≤
‖A‖2 ‖B‖L1 . See [Reed and Simon, 1972, Exercise 28, Page 218].

Adding and subtracting 1
λi
φ̂i ⊗ φ̂i inside the summation to get

≤ λ1

∥∥∥∥∥
k∑
i=1

1

λi
φi ⊗ φi −

1

λi
φ̂i ⊗ φ̂i +

1

λi
φ̂i ⊗ φ̂i −

1

λ̂i
φ̂i ⊗ φ̂i

∥∥∥∥∥
L1(F)

≤ λ1

∥∥∥∥∥
k∑
i=1

(
1

λi

(
φi ⊗ φi − φ̂i ⊗ φ̂i

)
+

(
1

λi
− 1

λ̂i

)
φ̂i ⊗ φ̂i

)∥∥∥∥∥
L1(F)

≤ λ1

k∑
i=1

1

λi

∥∥∥φi ⊗ φi − φ̂i ⊗ φ̂i∥∥∥
L1(F)

+

∣∣∣∣ 1

λi
− 1

λ̂i

∣∣∣∣
≤ λ1

k∑
i=1

1

λi

∥∥∥φi ⊗ φi − φ̂i ⊗ φ̂i∥∥∥
L1(F)

+

∣∣∣∣∣λi − λ̂iλiλ̂i

∣∣∣∣∣
≤ λ1

k∑
i=1

2

λi

∥∥∥φi − φ̂i∥∥∥
2

+
4λ1

λ2
i

∥∥∥φi − φ̂i∥∥∥
2

≤ λ1

k∑
i=1

(
2λi + 4λ1

λ2
i

)∥∥∥φi − φ̂i∥∥∥
2

≤ λ1

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2 ∥∥∥Φk − Φ̂
∥∥∥
F

≤ λ1

2(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2 ∥∥∥PkCm
− P̂

∥∥∥2

F

≤ λ1

(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2
qA(1/δ, log (m) , log (n))

n

The second to last inequality follows from Lemma C.6 and Lemma C.7.

Lemma C.6. ‖φi ⊗ φi − φ̂i ⊗ φ̂i‖L1(F) ≤ 2‖φi − φ̂i‖2 ∀ i ∈ [k]
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Proof.

‖φi ⊗ φi − φ̂i ⊗ φ̂i‖L1(F) = ‖φi ⊗ φi − φ̂i ⊗ φi + φ̂i ⊗ φi − φ̂i ⊗ φ̂i‖L1(F)

≤ ‖(φi − φ̂i)⊗ φi‖L1(F) + ‖φ̂i ⊗ (φi − φ̂i)‖L1(F)

= 2‖φi − φ̂i‖2

Lemma C.7. When the number of samples n ≥ 2qA(1/δ,log(m),log(n))2λ2
1

λ2
i (
√

2−1)
, with probability at least

1− δ, ∀ i ∈ [k] we have, ∣∣∣∣∣λi − λ̂iλiλ̂i

∣∣∣∣∣ ≤ 4λ1

λ2
i

∥∥∥φi − φ̂i∥∥∥
2

where CA is a constant specific to the algorithm A.

The numerator is bounded as follows

Proof.

|λi − λ̂i| = |φ>i Cmφi − φ̂>i Cmφ̂i|

= |φ>i Cmφi − φ>i Cmφ̂i + φ>i Cmφ̂i − φ̂>i Cmφ̂i|

= |φ>i Cm(φi − φ̂i) + (φi − φ̂i)>Cmφ̂i|

≤ ‖Cmφi‖2‖φi − φ̂i‖2 + ‖φi − φ̂i‖2‖Cmφ̂i‖2
= (λi + λ̂i)‖φi − φ̂i‖2
≤ (λi + λ1)‖φi − φ̂i‖2
≤ 2λ1‖φi − φ̂i‖

where the second inequality holds since λ̂i < λ1 by definition of λ̂i, and the last inequality follows
because λ̂i ≤ λ1.
The denominator is lower bounded similarly as

λiλ̂i ≥ λi(λi − 2λ1‖φi − φ̂i‖)

≥ λ2
i

2

where the first inequality follows from the bound on the numerator and the last inequal-

ity follows when 2λ1

∥∥∥φi − φ̂i∥∥∥ ≤ λi

2 . From Lemma C.10, we know that
∥∥∥φi − φ̂i∥∥∥2

2
≤

1
2(
√

2−1)

(
qA(1/δ, log (m) , log (n))

n

)
with probability at least 1 − δ. Combining, we get, with

probability at least 1− δ,∥∥∥φi − φ̂i∥∥∥
2
≤

√
1

2(
√

2− 1)

(
qA(1/δ, log (m) , log (n))

n

)
≤ λi

4λ1

The above holds when the number of samples n ≥ 2λ2
1qA(1/δ,log(m),log(n))2

λ2
i (
√

2−1)
. Combining, we get∣∣∣∣∣λi − λ̂iλiλ̂i

∣∣∣∣∣ ≤ 4λ1

λ2
i

∥∥∥φi − φ̂i∥∥∥
2

with probability at least 1− δ and when n ≥ 2λ2
1qA(1/δ, log (m) , log (n))2

λ2
i (
√

2− 1)
.
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Note that in particular since Oja’s algorithm has a warm-up phase, the lower bound on the denominator
Lemma C.8. For rank k orthogonal matrices U ∈ Rm×k and V ∈ Rm×k, i.e. U>U = V>V = Ik,
the following holds, ∥∥∥U−VR̂

∥∥∥2

F
≤ 1

2(
√

2− 1)

∥∥UU> −VV>
∥∥2

F
,

where
R̂ = arg min

R>R=RR>=Ik

‖U−VR‖2F

Proof. Proof in [Ge et al., 2017, Lemma 6].

Since Φk and Φ̂ are rank k orthogonal matrices, from Lemma C.8, we have∥∥∥Φk − Φ̂
∥∥∥2

F
≤ 1

2(
√

2− 1)

∥∥∥PkCm
− P̂

∥∥∥2

F

Lemma C.9. For any efficient subspace learner A, we have
∥∥∥PkCm

− P̂
∥∥∥2

F
≤ 2qA(1/δ,log(m),log(n))

n

with probability at least 1− δ
2 .

Proof. ∥∥∥PkCm
− P̂A

∥∥∥2

F
=
∥∥PkCm

∥∥2

F
+
∥∥∥P̂
∥∥∥2

F
− 2

〈
P̂,PkCm

〉
= 2

(
k −

〈
P̂,PkCm

〉)
= 2

(〈
I− PkCm

, P̂
〉)

= 2
∥∥∥(Φ⊥k )> Φ̂

∥∥∥2

F

≤ 2qA(1/δ, log (m) , log (n))

n

where the last inequality follows from the definition of efficient subspace learner.

Lemma C.10. With probability at least 1− δ,∥∥∥φi − φ̂i∥∥∥
2
≤ 1

2(
√

2− 1)

(
qA(1/δ, log (m) , log (n))

n

)
where qA(1/δ, log (m) , log (n)) is specific to the algorithm A.

Proof. ∥∥∥φi − φ̂i∥∥∥2

2
≤

k∑
i=1

∥∥∥φi − φ̂i∥∥∥2

2

=
∥∥∥Φk − Φ̂

∥∥∥2

F

≤ 1

2(
√

2− 1)

∥∥∥PkCm
− P̂A

∥∥∥2

F

≤ 1

2(
√

2− 1)

(
qA(1/δ, log (m) , log (n))

n

)

where the second inequality holds from Lemma C.8 and the definition of P̂, and the last inequality
holds from Lemma C.9
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Lemma C.11 (Estimation Error). When the number of samples n ≥ 2λ2
1qA(1/δ, log (m) , log (n))2

λ2
k(
√

2− 1)
,

then with probability at least 1− δ, we have

εe ≤
λ2

1

(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2
qA(1/δ, log (m) , log (n))2

n

Proof.

εe = 〈AP kCm
, IC〉HS(ρ) − 〈AP̂A, IC〉HS(ρ)

=
〈
AP kCm

− AP̂A, IC
〉
HS(ρ)

≤
∥∥∥AP kCm

− AP̂A

∥∥∥
L1(ρ)

‖IC‖2

≤ λ1

∥∥∥AP kCm
− AP̂A

∥∥∥
L1(ρ)

≤ λ2
1

(
√

2− 1)

√√√√ k∑
i=1

(
2λi + 4λ1

λ2
i

)2
qA(1/δ, log (m) , log (n))

n

The last inequality follows from Lemma C.5.

We now invoke the approximation and the estimation error bounds i.e. Lemma C.3 and Lemma
C.11 with failure probabilities δ/2 each. We then apply a union bound over them and get that with
probability at least 1− δ,

〈IPkC, IC〉ρ − 〈AP̂A, IC〉ρ ≤
cBk√
n

+
c′(k + log (δ/2) + 7Bk)√

n log (n)
+

√
qA(2/δ, log (m) , log (n))

n
,

This concludes the proof of the main theorem.

Also note that since d(AP̂A,PHS(ρ)) decays as O(1/
√
n), we can bound the suboptimality of AP̂A

projected onto the set of projection operators PkHS(ρ). It is now easy to give a bound on the objective

with respect to the projection P̃A ∈ PHS(ρ) of AP̂A onto the set of projection operators:

Corollary C.12. Let P̃A be the projection of AP̂A onto the set PHS(ρ). Under the same conditions
as in theorem 4.2, we have

〈IPkC, IC〉ρ − 〈P̃A, IC〉ρ ≤ 24κ(Bk, k,m) +
log (δ/2) + 7Bk

m
+ 2

√
qA(2/δ, log (m) , log (n))

n

Proof.

〈IPkC, IC〉ρ − 〈P̃A, IC〉ρ = 〈IPkC, IC〉ρ − 〈AP̂A, IC〉ρ + 〈AP̂A − P̃A, IC〉

≤ 24κ(Bk, k,m) +
log (δ/2) + 7Bk

m
+

√
qA(2/δ, log (m) , log (n))

n

+ d
(
AP̂A,PHS(ρ)

)
‖IC‖HS(ρ)

≤ 24κ(Bk, k,m) +
log (δ/2) + 7Bk

m
+ 2

√
qA(2/δ, log (m) , log (n))

n
,

where the second to last inequality follows from Cauchy-Schwartz in HS(ρ).

We now give the proof of Corollary 4.3.
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Proof of Corollary 4.3.

〈IPkC, IC〉ρ − 〈AP̂A, IC〉ρ = 〈IPkC, IC〉HS(ρ) − 〈APkCm
, IC〉HS(ρ)

+ 〈APkCm
, IC〉HS(ρ) − 〈AP̂, IC〉HS(ρ)

≤ 24Bk log (m)

log (1/α)m
+
k + (1− α)(11 log (δ/2)M + 7Bk)

(1− α)m

+ λ1

√
qA(2/δ, log (m) , log (n))

n
,

with probability at least 1− δ. The last inequality follows from Lemma C.4 and Lemma C.11 with a
union bound over them.
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D Examples of ESL

In this section, we instantiate our framework with two popular learning algorithms, Empirical Risk
Minimization (ERM) and Oja’s Algorithm, and show that they satisfy the requirements of ESL.

D.1 Empirical Risk Minimizer

A natural candidate for an efficient subspace learner is the Empirical Risk Minimizer, which we call
as AERM . We first show that AERM satisfies the sufficient condition of Definition 4.1 and then
show that AERM is an efficient subspace learner. We then discuss its computational aspects. Let
{xi}ni=1 be n data samples and {z(x)}ni=1 be the corresponding representations in F . The empirical
covariance matrix in F is defined as

Ĉm =
1

n

n∑
i=1

z(xi)z(xi)
>

The algorithmAERM computes the top k eigenvectors of Ĉm, and returns a rank k orthogonal matrix
say Φ̂. Let the corresponding projection matrix be P̂ERM . We first state the bound on covariance
matrices Cm and Ĉm.

Lemma D.1 (Covariance Estimation). With probability at least 1− δ,

∥∥∥Ĉm − Cm

∥∥∥
2
≤ κ

3n
log

(
δ

2m

)
+

√
κ

3n
log

(
δ

2m

)2

+ log

(
δ

2m

)
κλ1

n

Proof.

∥∥∥Ĉm − Cm

∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

z(xi)z(xi)
> − Cm

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

(
z(xi)z(xi)

> − Cm
)∥∥∥∥∥

2

=

∥∥∥∥∥
n∑
i=1

Ξi

∥∥∥∥∥
2

where Ξi = 1
n

(
z(xi)z(xi)

> − Cm
)
. Ξi’s are 0 mean random matrices, i.e. E [Ξi] = 0 ∀ i ∈ [n].

Note that ‖z(x)‖22 =
∫
X zω(x)2dρ(x) ≤ τ2, since zω(x) ≤ τ ∀ ω ∈ Ω, x ∈ X by Assumption 3.1.

We have,

‖Ξi‖2 ≤
1

n

(∥∥z(xi)z(xi)
>∥∥

2
+ ‖Cm‖2

)
=

1

n

(
Tr
(
z(xi)z(xi)

>)+
∥∥Ex

[
z(x)z(x)>

]∥∥
2

)
≤ 1

n

(
‖z(xi)‖2 + Ex

[∥∥z(x)z(x)>
∥∥]

2

)
≤ 1

n

(
‖z(xi)‖2 + Ex

[
‖z(x)‖22

])
≤ 2τ2

n
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so that L(Ξ) := maxi{‖Ξi‖2} ≤ 2τ2

n . where in the second inequality, we apply Jensen’s inequality.
Define v(Ξ) :=

∥∥∑n
i=1 E

[
ΞiΞ

>
i

]∥∥
2
. We have,

v(Ξ) =

∥∥∥∥∥
n∑
i=1

E
[
ΞiΞ

>
i

]∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

E
[

1

n2

(
z(xi)z(xi)

> − Cm
) (

z(xi)z(xi)
> − Cm

)>]∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥
n∑
i=1

E
[
‖z(xi)‖2 z(xi)

>z(xi)− z(xi)
>z(xi)Cm − Cmz(xi)

>z(xi) + C2
m

]∥∥∥∥∥
2

≤ 1

n2

∥∥∥∥∥
n∑
i=1

E
[
τ2z(xi)

>z(xi)− z(xi)
>z(xi)Cm − Cmz(xi)

>z(xi) + C2
m

]∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥
n∑
i=1

τ2Cm − C2
m − C2

m + C2
m

∥∥∥∥∥
2

=
1

n

∥∥τ2Cm − C2
m

∥∥
2

≤ τ2

n
‖Cm‖2

≤ τ2λ1

n

where the second last inequality holds because Cm is a positive semi-definite matrix. From matrix
Bernstein concentration (Lemma F.2, restated from [Tropp et al., 2015]), we have, with probability at
least 1− δ

∥∥∥Ĉm − Cm

∥∥∥
2

=

∥∥∥∥∥
m∑
1

Ξi

∥∥∥∥∥
2

≤ L(Ξ)

6
log

(
δ

2m

)
+

√
L(Ξ)2

12
log

(
δ

2m

)2

+ log

(
δ

2m

)
v(Ξ)

≤ τ2

3n
log

(
δ

2m

)
+

√
τ2

3n
log

(
δ

2m

)2

+ log

(
δ

2m

)
τ2λ1

n

In the following lemma, we show that AERM is an efficient subspace learner.

Lemma D.2. AERM is an effcient subspace learner.

Proof. We invoke Theorem F.1 with the sub-multiplicative norm being the spectral norm. With
A = Cm,B = Ĉm,U = Φ̂,V = Φ⊥k . Let ε =

∥∥∥Cm − Ĉm

∥∥∥
2
. .From Weyl’s inequality, we have

λk(Ĉm) ≥ λk − ε = λk+1 + gap−ε ≥ λk+1, if ε < gap. Therefore, setting µ = λk+1, and
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α = gap = λk − λk+1, then with probability 1− δ, we get∥∥∥(Φ⊥k )>Φ̂
∥∥∥2

F
≤ k

∥∥∥(Φ⊥k )>Φ̂
∥∥∥2

2
≤ kε

α2

≤ k

α2

 τ

3n
log

(
δ

2m

)
+

√
τ

3n
log

(
δ

2m

)2

+ log

(
δ

2m

)
τλ1

n

2

≤ k

α2

(
τ

3n
log

(
δ

2m

)
+

√
2λ1τ

n
log

(
δ

2m

))2

≤ k

α2

(
λ1τ

2

n
log

(
δ

2m

)2
)

Setting qERM (1/δ, log (m) , log (n)) =
λ1τ

2

α2
log

(
δ

2m

)2

=
kλ1τ

2

(λk − λk+1)2
log

(
δ

2m

)2

, we get,

∥∥∥(Φ⊥k )>Φ̂
∥∥∥2

F
≤ qERM (1/δ, log (m) , log (n))

n

Space and Computational Complexity of ERM: ERM requires computing and storing the em-
pirical covariance matrix Ĉm, which takes O(m2) memory. A rank k SVD on Ĉm, generally, takes
O(m2k) computations. We note that there are methods to scale this up but it is out of the scope of
this work.

D.2 Oja’s Algorithm

Having shown that ERM achieves optimal statistical rates, we now discuss a (relatively) more efficient
algorithm in terms of space and computational complexity. We leverage the recent analysis of the
classical Oja’s algorithm and show how the algorithmic parameters affect the main result. We first
restate the theorem statement from the analysis of Oja in Allen-Zhu and Li [2016a].

Theorem D.3. Let gap := λk − λk+1 ∈
(
0, 1

k

]
and Λ :=

∑k
i=1 λi ∈ (0, 1], for every ε, δ ∈ (0, 1)

define learning rates

T0 = Θ

(
4kΛ

gap2 δ2

)
, T1 = Θ

(
Λ

gap2

)
, ηt =


Θ
(

1
gapTo

)
1 ≤ t ≤ T0

Θ
(

1
gap2 T1

)
T0 < t ≤ T0 + T1

Θ
(

1
gap(t−T0)

)
t > T0 + T1

Let Z be the column orthonormal matrix consisting of all eigenvectors of Cm with values no more
than λk+1. Then the output QT of the algorithm satisfies with at least 1− δ

2 ,

for every T = T0 + T1 + Θ

(
T1

ε

)
, it satisfies

∥∥Z>QT

∥∥2

F
≤ ε

The above theorem gives guarantees of the form required by the definition of efficient subspace
learner. Therefore, implicitly, Oja is an efficient subspace learner. This is formally stated in the
following lemma.

Lemma D.4. Aoja is an Efficient Subspace Learner.
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Proof. From Theorem D.3, we have∥∥Z>Qn

∥∥2

F
≤ ε

= Θ̃

(
T1

n− T0 − T1

)
≤ Θ̃

(
2Λ

gap2 n

)
(for large n)

Setting qoja(1/δ, log (m) , log (n)) = Θ̃
(

Λ
gap2

)
, we get,

∥∥Z>Qn

∥∥2

F
≤ qoja(1/δ, log (m) , log (n))

n

Moreover the requirement of an initial constant number of samples as stated in Theorem 4.2 also
appears in Theorem D.3 as warm-up phase. Therefore, the requirement of initial samples can be
absorbed in the warm-up phase of Oja.

Space and Computational Complexity of Oja’s Algorithm: Oja’s algorithm takesO(mk) mem-
ory. The per iteration computational cost is O(mk). Therefore, for an ε-suboptimal solution, the total
computational cost is O

(
mk
ε2

)
.
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E Experiments

We now need some lemmas which gives us analytical forms which would be used to calculate the
objective with respect to empirical measure in the experiments.

Let P̂A be the output of an efficient subspace learner A. Let P̂A = Φ̃Φ̃> be its eigendecomposition.
We define Φ̂ = Φ̃R∗, where let

R∗ = arg min
R>R=RR>=I

∥∥∥Φ̃R− Φk

∥∥∥2

F

The following gives gives an explit form for R∗.

Lemma E.1. For any orthogonal matrix Φ̃ ∈ Rm×k and Φ ∈ Rm×k, the solution of the optimization
problem

arg min
R>R=RR>=I

∥∥∥Φ̃R− Φ
∥∥∥2

F

is R∗ = Φ̃>Φ

Proof.

arg min
R>R=RR>=I

∥∥∥Φ̃R− Φk

∥∥∥2

F
= arg min

R>R=RR>=I

−Tr
(

R>Φ̃>Φk

)

max
R>R=RR>=I

Tr
(

R>Φ̃>Φk

)
≤ ‖R‖F

∥∥∥Φ̃>Φk

∥∥∥
F

= k

Note that Tr
(

R∗Φ̃>Φk

)
= k. So, the maximum is achieved at R = R∗ = Φ̃>Φk.

We have Φ̂ = Φ̃R∗. We now use this and apply Lemma E.2 to evaluate the objective.

Lemma E.2. For a projection matrix P = UU> =
∑k
i=1 ui ⊗F ui, 〈AP, IC〉ρ = 1

nTr
(
V>KV

)
,

where V = Φ>US−
1
2 and S = diag (λ1, λ2, . . . , λk) , λi = 〈Cmui, ui〉F

Proof of Lemma E.2.

〈AP, IC〉HS(ρ) =

〈
k∑
i=1

Aui√
λi
⊗ρ

Aui√
λi
,

n∑
j=1

φ̄j ⊗ρ φ̄j

〉
HS(ρ)

=

k,n∑
i,j=1

1

λi

〈
Aui, φ̄j

〉2
ρ

=

k,n∑
i,j=1

1

λi

〈
ui,A

∗φ̄j
〉2
F

where the second equality follows from bi-linearity of inner products, third from the definition of
adjoints. 〈

ui,A
∗φ̄j
〉
F =

m∑
l=1

(ui)l
(
A∗φ̄j

)
l

=

m∑
l=1

(ui)l
1

n

n∑
q=1

φ̄j(xq)z(xq)l =
1

n
u>i ΦΦ̄j

where Φ̄j ∈ Rn and
(
Φ̄j
)
q

= φ̄j(xq).
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Note that

λ̄j =
〈

¯Cφj , φ̄j
〉
H =

〈
I∗Iφ̄j , φ̄j

〉
H

=
〈
Iφ̄j , Iφ̄j

〉
ρ

=
〈
φ̄j , φ̄j

〉
ρ

=
1

n

n∑
q=1

φ̄j(xq)
2 =

1

n

∥∥Φ̄j
∥∥2

2

where the third equality follows from the property of adjoints.
Moreover,

(
V∗j
)>

KV∗j = λ̄j . Therefore Φ̄j
>

Φ̄j = nλ̄j = n
(
V∗j
)>

KV∗j .
So we have Φ̄j =

√
nK1/2V∗j . Hence,

〈AP, IC〉HS(ρ) =

k,n∑
i,j=1

1

λi

(
1

n
u>i Φ
√
nK1/2V∗j

)2

=
1

n

k,n∑
i,j=1

1

λi

(
u>i ΦK1/2V∗j

)2

=
1

n

k,n∑
i,j=1

(
1√
λi
u>i ΦK1/2V∗j

)2

=
1

n

k,n∑
i,j=1

(
V>i K1/2V∗j

)2

where V = Φ>US−
1
2 . Therefore, we have,

〈AP, IC〉HS(ρ) =
1

n

k,n∑
i,j=1

Tr
(

V>i K1/2V∗j

)2

=
1

n

k,n∑
i,j=1

Tr
(

V>i K1/2V∗j (V
∗
j )
>K1/2Vi

)

=
1

n

k∑
i=1

Tr

V>i K1/2
n∑
j=1

V∗j (V
∗
j )
>K1/2Vi


=

1

n

k∑
i=1

Tr
(

V>i K1/2V∗(V∗)>K1/2Vi

)
=

1

n

k∑
i=1

Tr
(
V>i KVi

)
=

1

n
Tr
(
VTKV

)
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F Auxillary Results

Here we state some Auxillary results used in the proofs.
Theorem F.1 (Generalized Gap free Wedin Theorem). For ε > 0, let A and B be two PSD matrices.
For every µ > 0, α > 0, let U be column orthonormal matrix consisting of eigenvectors of A with
eigenvalue ≤ µ, let V be column orthonormal matrix consisting of eigenvectors of B with eigenvalue
≥ µ+ α , then we have ∥∥U>V

∥∥ ≤ ‖A−B‖
α

where the norm ‖·‖ is any sub-multiplicative norm.

Proof. The above theorem is stated in [Allen-Zhu and Li, 2016b, Lemma B.3] in the sense of spectral
norm. For the sake of completeness, we present the proof and show that it can easily be generalized
to any sub-multiplicative norm.

Let the SVD of A and B be A = UΣU>+ U′Σ′U>,B = VΣ̃V>+ V′Σ̃′V′>, where Σ is a diagonal
matrix which contains all eigenvalues of A which are ≤ µ. Similarly, Σ̃ contains all eigenvalues
≥ µ+ α. Let E := A− B.

ΣU> = U>A = U>(B + E)

where the first equality follows because U is orthogonal to U′. Multiply by V on the right on both
sides, we get,

ΣU>V = U>BV + U>EV = U>VΣ̃ + U>EV

where the second equality follows because V is orthogonal to V′. Multiplying by Σ̃−1 on the right
on both sides, we get,

ΣU>VΣ̃−1 = U>V + U>EVΣ̃−1

Taking any sub-multiplicative norm on the left hand side, we obtain an upper bound on it as follows,∥∥∥ΣU>VΣ̃−1
∥∥∥ ≤ ‖Σ‖2 ∥∥∥Σ̃−1

∥∥∥
2

∥∥U>V
∥∥

≤ µ

µ+ α

∥∥U>V
∥∥

where the first inequality follows from the property of sub-multiplicative norms, and the second from
the definition of Σ and Σ̃.
Similarly, taking any sub-multiplicative norm on the right hand side, we get a lower bound on it as
follows, ∥∥∥U>V + U>EVΣ̃−1

∥∥∥ ≥ ∥∥U>V
∥∥− ∥∥∥U>EVΣ̃−1

∥∥∥
≥
∥∥U>V

∥∥− ∥∥U>∥∥
2
‖E‖ ‖V‖2

∥∥∥Σ̃−1
∥∥∥

2

≥
∥∥U>V

∥∥− ‖E‖
µ+ α

where the first inequality follows from (reverse) triangle inequality, the second from property of
sub-multiplicative norms and third because U and V are orthonormal matrices and by definition of Σ̃.
Combining both the bounds, we get,∥∥U>V

∥∥(1− µ

µ+ α

)
≤ ‖E‖
µ+ α

=⇒
∥∥U>V

∥∥ ≤ ‖E‖
α
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Theorem F.2 (Matrix Bernstein [Tropp et al., 2015]). Let S1,S2, . . .Sn be n i.i.d d1 × d2 random
matrices such that ESi = 0, ‖Si‖ ≤ L ∀i ∈ [n]. Let Z =

∑n
i=1 Si. Let v(Z) denote the matrix

variance statistic of the sum defined as,

v(Z) = max{EZZ>,EZ>Z}

Then, with probability at least 1− δ, we have,

P {‖Z‖ ≥ t} ≤ (d1 + d2) exp

(
−t2/2

v(Z) + Lt/3

)
∀t ≥ 0

Theorem F.3 (Local Rademacher Complexity [Bartlett et al., 2002]). Let X be a measurable space.
Let P be a probability distribution on X and let x1, x2 . . . xn be i.i.d. samples drawn from P . Let Pn
denote the empirical measure. Let F be a class of functions on X ranging from [−1, 1] and assume
that there exists some constant B such that for every f ∈ F ,P2f ≤ BPf . Let ψ be a sub-root
function and let r∗ be the fixed point of ψ. If ψ satisfies

ψ(r) ≥ BEX,σ
[
Rn{f ∈ star(F)|Pf2 ≤ r}

]
where star(F) = {λf |f ∈ F , λ ∈ [0, 1]} is the star shaped hull of F and RnF = supf ∈
F 1
n

∑n
i=1 σif(xi) is the empirical Rademacher complexity of F given data points {xi}ni=1; then for

every K > 0 and x > 0, with probability at least 1− e−δ

∀ f ∈ F ,Pf ≤ K

K − 1
Pnf +

6K

B
r∗ +

δ(11 + 5BK)

n
(6)

Also, with probability at least 1− e−δ

∀f ∈ F ,Pnf ≤
K

K + 1
Pf +

6K

B
r∗ +

δ(11 + 5BK)

n
(7)

Furthermore, if ψ̂n is a data-dependent sub-root function with fixed point r̂∗ such that

ψ∗(r) > 2(10 ∨B)Eσ
[
Rn{f ∈ star(F)|Pnf2 ≤ 2r}

]
+

2(10 ∨B + 11)δ

n

then with probability at least 1 − 2eδ, it holds that r̂∗ ≥ r∗; as a consequence, equations 6 and 7
holds with r∗ replaced by r̂∗
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