Evolved Policy Gradients

Rein Houthooft*, Richard Y. Chen*, Phillip Isola*T>, Bradly C. Stadie*t, Filip Wolski*,
Jonathan Ho*!, Pieter Abbeel
OpenAlI*, UC Berkeley!, MIT*

Abstract

We propose a metalearning approach for learning gradient-based reinforcement
learning (RL) algorithms. The idea is to evolve a differentiable loss function,
such that an agent, which optimizes its policy to minimize this loss, will achieve
high rewards. The loss is parametrized via temporal convolutions over the agent’s
experience. Because this loss is highly flexible in its ability to take into account
the agent’s history, it enables fast task learning. Empirical results show that
our evolved policy gradient algorithm (EPG) achieves faster learning on several
randomized environments compared to an off-the-shelf policy gradient method.
We also demonstrate that EPG’s learned loss can generalize to out-of-distribution
test time tasks, and exhibits qualitatively different behavior from other popular
metalearning algorithms.

1 Introduction

Most current reinforcement learning (RL) agents approach each new task de novo. Initially, they have
no notion of what actions to try out, nor which outcomes are desirable. Instead, they rely entirely
on external reward signals to guide their initial behavior. Coming from such a blank slate, it is no
surprise that RL agents take far longer than humans to learn simple skills [12].

Our aim in this paper is to devise agents that have a prior
notion of what constitutes making progress on a novel task.
Rather than encoding this knowledge explicitly through a Params | urdae | Objective
learned behavioral policy, we encode it implicitly through DE—

a learned loss function. The end goal is agents that can use < >
this loss function to learn quickly on a novel task. This N

approach can be seen as a form of metalearning, in which - SGD Policy

we learn a learning algorithm. Rather than mining rules 7

that generalize across data points, as in traditional ma-
chine learning, metalearning concerns itself with devising . . .
algorithms that generalize across tasks, by infusing prior Figure 1: High-level overview of our
knowledge of the task distribution [7]. approach.

ES

Our method consists of two optimization loops. In the

inner loop, an agent learns to solve a task, sampled from a particular distribution over a family of
tasks. The agent learns to solve this task by minimizing a loss function provided by the outer loop. In
the outer loop, the parameters of the loss function are adjusted so as to maximize the final returns
achieved after inner loop learning. Figure 1 provides a high-level overview of this approach.

Although the inner loop can be optimized with stochastic gradient descent (SGD), optimizing the

outer loop presents substantial difficulty. Each evaluation of the outer objective requires training a
complete inner-loop agent, and this objective cannot be written as an explicit function of the loss

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

parameters we are optimizing over. Due to the lack of easily exploitable structure in this optimization
problem, we turn to evolution strategies (ES) [20, 27, 9, 21] as a blackbox optimizer. The evolved
loss L can be viewed as a surrogate loss [24, 25] whose gradient is used to update the policy, which
is similar in spirit to policy gradients, lending the name “evolved policy gradients".

The learned loss offers several advantages compared to current RL methods. Since RL methods
optimize for short-term returns instead of accounting for the complete learning process, they may
get stuck in local minima and fail to explore the full search space. Prior works add auxiliary reward
terms that emphasize exploration [3, 10, 17, 32, 2, 18] and entropy loss terms [16, 23, 8, 14]. Using
ES to evolve the loss function allows us to optimize the true objective, namely the final trained
policy performance, rather than short-term returns, with the learned loss incentivizing the necessary
exploration to achieve this. Our method also improves on standard RL algorithms by allowing the
loss function to be adaptive to the environment and agent history, leading to faster learning and the
potential for learning without external rewards.

There has been a flurry of recent work on metalearning policies, e.g., [5, 33, 6, 13], and it is worth
asking why metalearn the loss as opposed to directly metalearning the policy? Our motivation is that
we expect loss functions to be the kind of object that may generalize very well across substantially
different tasks. This is certainly true of hand-engineered loss functions: a well-designed RL loss
function, such as that in [26], can be very generically applicable, finding use in problems ranging
from playing Atari games to controlling robots [26]. In Section 4.3, we find evidence that a loss
learned by EPG can train an agent to solve a task outside the distribution of tasks on which EPG was
trained. This generalization behavior differs qualitatively from MAML [6] and RL2 [5], methods that
directly metalearn policies.

Our contributions include the following: 1) Formulating a metalearning approach that learns a
differentiable loss function for RL agents, called EPG; 2) Optimizing the parameters of this loss
function via ES, overcoming the challenge that final returns are not explicit functions of the loss
parameters; 3) Designing a loss architecture that takes into account agent history via temporal
convolutions; 4) Demonstrating that EPG produces a learned loss that can train agents faster than an
off-the-shelf policy gradient method; 5) Showing that EPG’s learned loss can generalize to out-of-
distribution test time tasks, exhibiting qualitatively different behavior from other popular metalearning
algorithms. An implementation of EPG is available at http://github.com/openai/EPG.

2 Notation and Background

We model reinforcement learning [30] as a Markov decision process (MDP), defined as the tuple
M = (S,A,T,R,po,7), where S and A are the state and action space. The transition dynamic
T:S8 x AxS — R, determines the distribution of the next state s;;1 given the current state s;
and the action a;. R : § X A — R is the reward function and y € (0, 1) is a discount factor. p
is the distribution of the initial state sg. An agent’s policy 7 : S — A generates an action after
observing a state. An episode 7 ~ M with horizon H is a sequence (So, ao,70, .-, SH, GQH,TH)
of state, action, and reward at each timestep ¢. The discounted episodic return of 7 is defined as
R, = Zi o ¥'r¢, which depends on the initial state distribution py, the agent’s policy 7, and the
transition distribution 7. The expected episodic return given agent’s policy 7 is E,[R,]. The optimal
policy 7* maximizes the expected episodic return 7* = arg max E,. a¢ ~[R-]. In high-dimensional
reinforcement learning settings, the policy 7 is often parametrized using a deep neural network 7y
with parameters 8. The goal is to solve for 8* that attains the highest expected episodic return

0" = argmaxE . rq x, [R-]. (1)
0

This objective can be optimized via policy gradient methods [34, 31] by stepping in the direction of
E[R,V log 7(7)]. This gradient can be transformed into a surrogate loss function [24, 25]

Ly, =E[R;logn(r)] =E

H
R, Z log W(atst)‘|))

t=0
such that the gradient of L, equals the policy gradient. This loss function is oftent transformed
through variance reduction techniques including actor-critic algorithms [11]. However, this procedure

http://github.com/openai/EPG

remains limited since it relies on a particular form of discounting returns, and taking a fixed gradient
step with respect to the policy. Our approach instead learns a loss. Thus, it may be able to discover
more effective surrogates for making fast progress toward the ultimate objective of maximizing final
returns.

3 Methodology

We aim to learn a loss function L that outperforms the usual policy gradient surrogate loss [24]. The
learned loss function consists of temporal convolutions over the agent’s recent history. In addition to
internalizing environment rewards, this loss could, in principle, have several other positive effects. For
example, by examining the agent’s history, the loss could incentivize desirable extended behaviors,
such as exploration. Further, the loss could perform a form of system identification, inferring
environment parameters and adapting how it guides the agent as a function of these parameters (e.g.,
by adjusting the effective learning rate of the agent). The loss function parameters ¢ are evolved
through ES and the loss trains an agent’s policy 7g in an on-policy fashion via stochastic gradient
descent.

3.1 Metalearning Objective

We assume access to a distribution p(M) over MDPs. Given a sampled MDP M, the inner loop
optimization problem is to minimize the loss Lg with respect to the agent’s policy mg:

0" = argminE; v, xy [Lp(mo, 7)) 3)
]

Note that this is similar to the usual RL objectives (Egs. (1) (2)), except that we are optimizing a
learned loss L rather than directly optimizing the expected episodic return E o, [R-] or other
surrogate losses. The outer loop objective is to learn Lg such that an agent’s policy mg~ trained with
the loss function achieves high expected returns in the MDP distribution:

¢ = arg o Epep(M) Er o [Br]- “)

3.2 Algorithm

The final episodic return R, of a trained policy mg~ cannot be represented as an explicit function
of the loss function Lg. Thus we cannot use gradient-based methods to directly solve Eq. (4). Our
approach, summarized in Algorithm 1, relies on evolution strategies (ES) to optimize the loss function
in the outer loop.

As described by Salimans et al. [21], ES computes the gradient of a function F'(¢) according to
VeEeno,nF (¢ + ce) = %ESNN(O,I)F((;b + oé€)e. Similar formulations also appear in prior
works including [29, 28, 15]. In our case, F'(¢) = E yqopr) Ermr,rg. [Rr] (EqQ. (4)). Note that the
dependence on ¢ comes through 8* (Eq. (3)).

Step by step, the algorithm works as follows. At the start of each epoch in the outer loop, for W
inner-loop workers, we generate V' standard multivariate normal vectors €, € A(0,I) with the same
dimension as the loss function parameter ¢, assigned to V' sets of W/V workers. As such, for the
w-th worker, the outer loop assigns the [wV/W]-th perturbed loss function L, = Lg4,e, Where v =
[wV /W with perturbed parameters ¢ + o€, and o as the standard deviation.

Given a loss function L, w € {1, ..., W}, from the outer loop, each inner-loop worker w samples
a random MDP from the task distribution, M., ~ p(M). The worker then trains a policy mg in M.,
over U steps of experience. Whenever a termination signal is reached, the environment resets with
state so sampled from the initial state distribution py(M,,). Every M steps the policy is updated
through SGD on the loss function L,,, using minibatches sampled from the steps t — M, ..., ¢:

0« 0 —6in- VoLy (T, T—n1,...t)- &)

Algorithm 1: Evolved Policy Gradients (EPG)

1 [Outer Loop] for epoche =1,..., F do
Sample €, ~ N (0,1) and calculate the loss parameter ¢ + o€, forv =1,...,V
Each worker w = 1, ..., W gets assigned noise vector [wV/W] as €,
for each worker w = 1,..., W do
Sample MDP M., ~ p(M)
Initialize buffer with N zero tuples
Initialize policy parameter 8 randomly
[Inner Loop] for stept =1,...,U do
Sample initial state s; ~ pg if M, needs to be reset
Sample action a; ~ mg(+|s¢)
Take action a; in M,, and receive 74, s;+1, and termination flag d;
Add tuple (s, at, 1, dt) to buffer
if £ mod M = 0 then
With loss parameter ¢ + o€, calculate losses L; for steps i =t — M, ...t
using buffer tuplesi — N, ... ¢
Sample minibatches mb from last M steps shuffled, compute Ly, =

and update the policy parameter 8 and memory parameter (Eq. (5))

o NN N R W N

—
W N =D

-
wn

jEmb Lj’

16 | In M., using trained policy g, sample several trajectories and compute mean return 2,

17 | Update the loss parameter ¢ (Eq. (6))

—
o

Output: Loss L that trains 7 from scratch according to inner loop scheme, on MDPs ~ p(M)

At the end of the inner-loop training, each worker returns the final return R,,' to the outer loop.
The outer-loop aggregates the final returns { R,, }'_; from all workers and updates the loss function
parameter ¢ as follows:

b Gt ou oo D Flotoee, ©)

where F(¢ + o€,) = R<'”’1)*W/VV+V1/;W+R’“W/V. As a result, each perturbed loss function L, is
evaluated on W/V randomly sampled MDPs from the task distribution using the final returns. This
achieves variance reduction by preventing the outer-loop ES update from promoting loss functions that
are assigned to MDPs that consistently generate higher returns. Note that the actual implementation
calculates each loss function’s relative rank for the ES update. Algorithm 1 outputs a learned loss

function L after E epochs of ES updates.

At test time, we evaluate the learned loss function L produced by Algorithm 1 on a test MDP M
by training a policy from scratch. The test-time training schedule is the same as the inner loop of
Algorithm 1 (it is described in full in the supplementary materials).

3.3 Architecture

The agent is parametrized using an MLP policy with observation space S and action space .A. The
loss has a memory unit to assist learning in the inner loop. This memory unit is a single-layer neural
network to which an invariable input vector of ones is fed. As such, it is essentially a layer of bias
terms. Since this network has a constant input vector, we can view its weights as a very simple form
of memory to which the loss can write via emitting the right gradient signals. An experience buffer
stores the agent’s N most recent experience steps, in the form of a list of tuples (s¢, as, r¢, dy), with
d, the trajectory termination flag. Since this buffer is limited in the number of steps it stores, the
memory unit might allow the loss function to store information over a longer period of time.

The loss function L consists of temporal convolutional layers which generate a context vector
feontext>» and dense layers, which output the loss. The architecture is depicted in Figure 2.

"More specifically, the average return over 3 sampled trajectories using the final policy for worker .

L, within batch of M samples
with a sliding buffer of N samples

evolved
dense layers

loss/function

4

extra data, e.g., done,
timestep, memory,...

evolved
temporal
convolutions

Figure 2: Architecture of a loss computed for
timestep ¢ within a batch of M sequential samples
(from ¢t — M to t), using temporal convolutions
over a buffer of size N (from ¢ — NN to t), with
M < N: dense net on the bottom is the policy
m(s), taking as input the observations (orange),
while outputting action probabilities (green). The
green block on the top represents the loss output.
Gray blocks are evolved, yellow blocks are updated
through SGD.

At step t, the dense layers output the loss L, by
taking a batch of M sequential samples

{Si, a;, di, mem, feontexts 7TG(' ‘Si)}g:th» (7
where M < N and we augment each tran-
sition with the memory output mem, a con-
text vector fionext generated from the loss’s
temporal convolutional layers, and the pol-
icy distribution 7g(-|s;). In continuous action
space, mg is a Gaussian policy, i.e., mg(+|s;) =
N (5 1(si5600),2), with uu(s;;09) the MLP out-
put and ¥ a learnable parameter vector. The pol-
icy parameter vector is defined as 6 = [0y, X].

To generate the context vector, we first augment
each transition in the buffer with the output of
the memory unit mem and the policy distribu-
tion mg(+|s;) to obtain a set

{Si7a'iadi7mem7 770(‘31)}2;:13_]\[(8)
We stack these items sequentially into a matrix
and the temporal convolutional layers take it
as input and output the context vector feontext-
The memory unit’s parameters are updated via
gradient descent at each inner-loop update (Eq.

5).

Note that both the temporal convolution layers
and the dense layers do not observe the envi-
ronment rewards directly. However, in cases
where the reward cannot be fully inferred from
the environment, such as the DirectionalHopper
environment we will examine in Section 4.1, we
add rewards r; to the set of inputs in Egs. (7)
and (8). In fact, any information that can be
obtained from the environment could be added

as an input to the loss function, e.g., exploration signals, the current timestep number, etc, and we
leave further such extensions as future work.

To bootstrap the learning process, we add to L¢ a guidance policy gradient signal L, (in practice,
we use the surrogate loss from PPO [26]), making the total loss

Ly =(1—0a)Lg + aLy,. 9)

We anneal o from 1 to 0 over a finite number of outer-loop epochs. As such, learning is first derived
mostly from the well-structured L, while over time L4 takes over and drives learning completely
after o has been annealed to 0.

4 Experiments

We apply our method to several randomized continuous control MuJoCo environments [1, 19, 4],
namely RandomHopper and RandomWalker (with randomized gravity, friction, body mass, and
link thickness), RandomReacher (with randomized link lengths), DirectionalHopper and Direction-
alHalfCheetah (with randomized forward/backward reward function), GoalAnt (reward function
based on the randomized target location), and Fetch (randomized target location). We describe these
environments in detail in the supplementary materials. These environments are chosen because they
require the agent to identify a randomly sampled environment at test time via exploratory behavior.
Examples of the randomized Hopper environments are shown in Figure 9. The plots in this section
show the mean value of 20 test-time training curves as a solid line, while the shaded area represents
the interquartile range. The dotted lines plot 5 randomly sampled curves.

— EPG
— PPO

1250

1000

750

return

500

250

4000 6000 8000

steps
Figure 3: RandomHopper test-
time training over 128 (pol-
icy updates) x64 (update fre-
quency) = 8196 timesteps:
PPO vs no-reward EPG

0 2000

— EPG
15001 — PPO

1000

return

500 +

—500 1

20000 30000

steps
Figure 4: RandomWalker test-
time training over 256 (pol-
icy updates) x 128 (update fre-
quency) = 32768 timesteps:
PPO vs no-reward EPG

0 10000

40000 60000

Figure 5: RandomReacher test-
time training over 512 (pol-
icy updates) x128 (update fre-
quency) = 65536 timesteps: PG
vs no-reward EPG.

0 20000

4.1 Performance

We compare metatest-time learning performance, using the EPG loss function, against an off-the-shelf
policy gradient method, PPO [26]. Figures 3, 4, 5, and 6 show learning curves for these two methods
on the RandomHopper, RandomWalker, RandomReacher, and Fetch environments respectively at
test time. The plots show the episodic return w.r.t. the number of environment steps taken so far. In
all experiments, EPG agents learn more quickly and obtain higher returns compared to PPO agents.

In these experiments, the PPO agent learns by observing reward
signals whereas the EPG agent does not observe rewards (note that
at test time, « in Eq. (9) equals 0). Observing rewards is not needed
in EPG at metatest time, since any piece of information the agent
encounters forms an input to the EPG loss function. As long as the
agent can identify which task to solve within the distribution, it does
not matter whether this identification is done through observations
or rewards. This setting demonstrates the potential to use EPG when
rewards are only available at metatraining time, for example, if a
system were trained in simulation but deployed in the real world
where reward signals are hard to measure.

6000 EPG
— PPO
4000

2000

return

—2000

0 5000 10000

steps

15000

1 — epc
— PPO.

Figures 7, 8, and 6 show experiments in which a signaling flag is
required to identify the environment. Generally, this is done through
a reward function or an observation flag, which is why EPG takes
the reward as input in the case where the state space is partially-

0 2000 4000 6000 8000

steps

Figure 6: GoalAnt (top) and
Fetch (bottom) environment
learning over 512 and 256
(policy updates) x32 (update
frequency): PPO vs EPG (no
reward for Fetch)

observed. Similarly to the previous experiments, EPG significantly
outperforms PPO on the task distribution it is metatrained on. Specif-
ically, in Figure 8, we compare EPG with both MAML (data from
[6]) and RL? [5], finding that all three methods obtain similarly high
performance after 8000 timesteps of experience. When comparing
EPG to RL? (a method that learns a recurrent policy that does not
reset the internal state upon trajectory resets), we see that RL? solves
the DirectionalHalfCheetah task almost instantly through system
identification. By learning both the algorithm and the policy initial-
ization simultaneously, it is able to significantly outperform both

MAML and EPG. However, this comes at the cost of generalization power, as we will discuss in

Section 4.3.

4.2 Learning exploratory behavior

Without additional exploratory incentives, PG methods lead to suboptimal policies. To understand
whether EPG is able to train agents that explore, we test our method and PPO on the DirectionalHopper
and GoalAnt environments. In DirectionalHopper, each sampled Hopper environment either rewards
the agent for forward or backward hopping. Note that without observing the reward, the agent cannot

PG 600 MAML 600

1500{ — PPO
400 400
— EPG . .

1000 g O B AT e 200{ ';'ig MAML
E 2 o 2 —
g 500 e L e

-200 hizes st

— PG

-400{ — PPO —200 1

— RL2
-600 -400

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
steps steps steps

=500

— EPG — EPG 0051 — EpPG

- PPO 020{ — PPO PO
0.05 0.044

0.06

0.04 0.15 0.03 1
< 0.03 < <
0.02

0.01

0.00

6 Sb 1(I)0 15‘0 260 2éO (I] Sb 160 1_":0 ZlI)O 2_';0 ll) Sb 160 150 260 250
update update update

Figure 7: DirectionalHopper environment: each Hopper environ- Figure 8: DirectionalHalfChee-
ment randomly decides whether to reward forward (left) or back- tah environment from Finn et
ward (right) hopping. In the right plot, we can see exploratory al. [6] (Fig. 5). Blue dots show
behavior, indicated by the negative spikes in the reward curve, 0, 1, and 2 gradient steps of
where the agent first tries out walking forwards before realizing MAML after metalearning a
that backwards gives higher rewards. policy initialization.

2%

Figure 9: Example of learning to hop backward from a Figure 10: Sampled trajectories at test-
random policy in a DirectionalHopper environment. Left to time training on two GoalAnt environ-
right: sampled trajectories as learning progresses. ments: various directions are explored.

infer whether the Hopper environment desires forward or backward hopping. Thus we augment the
environment reward to the input batches of the loss function in this setting.

Figure 7 shows learning curves of both PPO agents and agents trained with the learned loss in the
DirectionalHopper environment. The learning curves give indication that the learned loss is able
to train agents that exhibit exploratory behavior. We see that in most instances, PPO agents stagnate
in learning, while agents trained with our learned loss manage to explore both forward and backward
hopping and eventually hop in the correct direction. Figure 7 (right) demonstrates the qualitative
behavior of our agent during learning and Figure 9 visualizes the exploratory behavior. We see
that the hopper first explores one hopping direction before learning to hop backwards. The Goal Ant
environment randomizes the location of the goal. Figure 10 demonstrates the exploratory behavior
of a learning ant trained by EPG. The ant first explores in various directions, including the opposite
direction of the target location. However, it quickly figures out in which quadrant to explore, before
it fully learns the correct direction to walk in.

4.3 Generalization to out-of-distribution tasks

We evaluate generalization to out-of-distribution task learning on the GoalAnt environment. During
metatraining, goals are randomly sampled on the positive x-axis (ant walking to the right) and at test
time, we sample goals from the negative x-axis (ant walking to the left). Achieving generalization
to the left side is not trivial, since it may be easy for a metalearner to overfit to the task metatraining
distribution. Figure 11 (a) illustrates this generalization task. We compare the performance of EPG
against MAML [6] and RL2 [5]. Since PPO is not metatrained, there is no difference between both
directions. Therefore, the performance of PPO is the same as shown in Figure 6.

6000
6000 EPG EPG

— RL2 2000] — RL2
@ 4000 MAML 2000
v
2 P 2000 0

return
return

f
[) RE— > b -2000{ __——— "~ MAMLIO
I N o 1
‘) ~4000
~2000 mamL§
~6000
0 2000 4000 6000 8000 0 2K 4K 6K 8K 80K

steps steps

(a) Task illustration . o o o
(b) Metatrained direction (c) Generalization direction

Figure 11: Generalization in GoalAnt: the ant has only been metatrained to reach targets on the
positive x-axis (its right side). Can it generalize to targets on the negative x-axis (its left side)?

First, we evaluate all metalearning methods’ performance when the test-time task is sampled from
the training-time task distribution. Figure 11 (b) shows the test-time training curve of both RL? and
EPG when the test-time goals are sampled from the positive x-axis. As expected, RL? solves this
task extremely fast, since it couples both the learning algorithm and the policy. EPG performs very
well on this task as well, learning an effective policy from scratch (random initialization) in 8192
steps, with final performance matching that of RL2. MAML achieves approximately the same final
performance after taking a single SGD step (based on 8000 sampled steps).

Next, we look at the generalization setting with test-time goals sampled from the negative x-axis in
Figure 11 (c). RL? seems to have completely overfit to the task distribution, it has not succeeded in
learning a general learning algorithm. Note that, although the RL? agent still walks in the wrong
direction, it does so at a lower speed, indicating that it notices a deviation from the expected reward
signal. When looking at MAML, we see that MAML has also overfit to the metatraining distribution,
resulting in a walking speed in the wrong direction similar to the non-generalization setting. The
plot also depicts the result of performing 10 gradient updates from the MAML initialization, denoted
MAMLIO0 (note that each gradient update uses a batch of 8000 steps). With multiple gradient steps,
MAML does make progress toward improving the returns (unlike RL? and consistent with [7]), but
still learns at a far slower rate than EPG. MAML can achieve this because it uses a standard PG
learning algorithm to make progress beyond its initialization, and therefore enjoys the generalization
property of generic PG methods.

In contrast, EPG evolves a loss function that trains agents to quickly reach goals sampled from
negative x-axis, never seen during metatraining. This demonstrates rudimentary generalization
properties, as may be expected from learning a loss function that is decoupled from the policy.
Figure 10 shows trajectories sampled during the EPG learning process for this exact setup.

5 Discussion

We have demonstrated that EPG can learn a loss that is specialized to the task distribution it is
metatrained on, resulting in faster test time learning on novel tasks sampled from this distribution. In
a sense, this loss function internalizes an agent’s notion of what it means to make progress on a task.
In some cases, this eliminates the need for external, environmental rewards at metatest time, resulting
in agents that learn entirely from intrinsic motivation [22].

Although EPG is trained to specialize to a task distribution, it also exhibits generalization properties
that go beyond current metalearning methods such as RL? and MAML. Improving the generalization
ability of EPG, as well other other metalearning algorithms, will be an important component of future
work. Right now, we can train an EPG loss to be effective for one small family of tasks at a time,
e.g., getting an ant to walk left and right. However, the EPG loss for this family of tasks is unlikely
to be at all effective on a wildly different kind of task, like playing Space Invaders. In contrast,
standard RL losses do have this level of generality — the same loss function can be used to learn a
huge variety of skills. EPG gains on performance by losing on generality. There may be a long road
ahead toward metalearning methods that both outperform standard RL methods and have the same
level of generality.

References

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAl Gym. arXiv preprint arXiv:1606.01540, 2016.

[2] Richard Y Chen, John Schulman, Pieter Abbeel, and Szymon Sidor. UCB exploration via
Q-ensembles. arXiv preprint arXiv:1706.01502, 2017.

[3] Richard Dearden, Nir Friedman, and David Andre. Model based bayesian exploration. In
Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 150-159.
Morgan Kaufmann Publishers Inc., 1999.

[4] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference on Machine
Learning, pages 1329-1338, 2016.

[5] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779,
2016.

[6] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[7] Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and
gradient descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622,
2017.

[8] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning
with deep energy-based policies. arXiv preprint arXiv:1702.08165, 2017.

[9] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary computation, 9(2):159-195, 2001.

[10] J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings
of the 26th Annual International Conference on Machine Learning, pages 513-520. ACM,
20009.

[11] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, pages 1008-1014, 2000.

[12] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40, 2017.

[13] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. Meta-learning with temporal
convolutions. arXiv preprint arXiv:1707.03141, 2017.

[14] Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap
between value and policy based reinforcement learning. In Advances in Neural Information
Processing Systems, pages 2772-2782, 2017.

[15] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527-566, 2017.

[16] Brendan O’Donoghue, Remi Munos, Koray Kavukcuoglu, and Volodymyr Mnih. Pgq: Combin-
ing policy gradient and g-learning. arXiv preprint arXiv:1611.01626, 2016.

[17] Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based
exploration with neural density models. arXiv preprint arXiv:1703.01310, 2017.

[18] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML),
volume 2017, 2017.

[19] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[20] I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. 1973.

[21] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. Evolution strategies as a scalable
alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[22] Juergen Schmidhuber. Exploring the predictable. In Advances in evolutionary computing, pages
579-612. Springer, 2003.

[23] John Schulman, Pieter Abbeel, and Xi Chen. Equivalence between policy gradients and soft
g-learning. arXiv preprint arXiv:1704.06440, 2017.

[24] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. In Advances in Neural Information Processing Systems,
pages 3528-3536, 2015.

[25] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889-1897,
2015.

[26] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[27] Hans-Paul Schwefel. Numerische Optimierung von Computer-Modellen mittels der Evolu-
tionsstrategie: mit einer vergleichenden Einfiihrung in die Hill-Climbing-und Zufallsstrategie.
Birkhéuser, 1977.

[28] Frank Sehnke, Christian Osendorfer, Thomas Riickstiel3, Alex Graves, Jan Peters, and Jiirgen
Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551-559, 2010.

[29] James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEFE transactions on automatic control, 37(3):332-341, 1992.

[30] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

[31] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057-1063, 2000.

[32] Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John Schulman,
Filip De Turck, and Pieter Abbeel. #Exploration: A study of count-based exploration for deep
reinforcement learning. Advances in Neural Information Processing Systems (NIPS), 2017.

[33] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

[34] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Reinforcement Learning, pages 5-32. Springer, 1992.

10

