
Improving Neural Program Synthesis with Inferred
Execution Traces

Richard Shin∗

UC Berkeley
ricshin@cs.berkeley.edu

Illia Polosukhin
NEAR Protocol

illia@nearprotocol.com

Dawn Song
UC Berkeley

dawnsong@cs.berkeley.edu

Abstract

The task of program synthesis, or automatically generating programs that are
consistent with a provided specification, remains a challenging task in artificial
intelligence. As in other fields of AI, deep learning-based end-to-end approaches
have made great advances in program synthesis. However, compared to other
fields such as computer vision, program synthesis provides greater opportunities
to explicitly exploit structured information such as execution traces. While execu-
tion traces can provide highly detailed guidance for a program synthesis method,
they are more difficult to obtain than more basic forms of specification such as
input/output pairs. Therefore, we use the insight that we can split the process into
two parts: infer traces from input/output examples, then infer programs from traces.
Our application of this idea leads to state-of-the-art results in program synthesis in
the Karel domain, improving accuracy to 81.3% from the 77.12% of prior work.

1 Introduction

The task of program synthesis is to automatically generate a computer program that satisfies some
specification. It is a problem that has been studied since the earliest days of artificial intelli-
gence [Waldinger and Lee, 1969, Manna and Waldinger, 1975]. With the renewed popularity
of neural networks for machine learning in recent years, neural approaches to program synthesis have
correspondingly attracted greater attention from the research community. One set of approaches,
referred as neural program induction by Devlin et al. [2017b], involves learning parameters for
a neural network architecture with a design inspired by existing computational structures such as
stacks [Grefenstette et al., 2015, Joulin and Mikolov, 2015], random-access and associative mem-
ory [Kurach et al., 2016, Graves et al., 2016], and GPUs [Kaiser and Sutskever, 2015].

A different set of approaches, neural program synthesis, instead learn to generate explicit discrete
programs in a domain-specific language from a specification that consists of as few as 5 input/output
example pairs. Several recent papers have proposed neural network-based approaches to program
synthesis from input/output examples [Parisotto et al., 2017, Devlin et al., 2017b, Bunel et al., 2018].
These methods use an end-to-end encoder-decoder approach, where a neural network learns to
generate a program from an encoding of a program specification (a set of input/output examples)
from a large synthetic training dataset.

End-to-end approaches like these have been particularly successful in perceptual domains like
computer vision where designing intermediate representations is a big challenge. In contrast, within
program synthesis, there exists a great deal of structure and auxiliary information the model could
learn to exploit in addition to the typically used input/output examples. An example is program
execution traces, which have also been used to great effect by prior work [Reed and de Freitas, 2016,
Wang et al., 2018].

∗Work partially performed at NEAR.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Given that an execution trace can be a strict superset of an input/output example, intuition suggests
that program synthesis from execution traces should be easier than synthesis from I/O examples.
Since we can replay an execution trace with the interpreter to obtain detailed information about the
program state at each step, a trace-based synthesis model can rely upon the interpreter to handle
the semantics of the DSL’s operations, and focus more on how to infer control flow constructs by
reconciling different paths taken in different inputs. However, execution traces are difficult to obtain
as they are much more challenging for the end user to specify, so it is hard to reap their benefits.

In this work, we use the insight that if encoder-decoder neural networks can synthesize programs
from input/output examples, they should also be able to infer execution traces. Thus, we can split the
problem into two steps: use input/output examples to infer execution traces, and then use execution
traces to infer the program. Our empirical results show that this modification leads to state-of-the-art
results on the Karel [Pattis, 1981] program synthesis task, improving upon Bunel et al. [2018] from
77.12% to 81.3% accuracy.

Our analysis shows greater accuracy on programs of varying lengths and complexities, demonstrating
the general utility of the approach. This is despite the fact that we only use straightforward maximum
likelihood training, which is easier to tune than reinforcement learning methods of prior work.
Nevertheless, as our method is largely orthogonal to prior techniques like reinforcement learning,
our research suggests useful future directions for further improving the accuracy of neural program
synthesis.

2 Related work

Program synthesis from examples. There have been several practical applications of program-
ming by example based on search techniques and carefully crafted heuristics, such as Gulwani [2011].
More recent work has started to apply deep learning for program synthesis from examples such
as RobustFill [Devlin et al., 2017b], DeepCoder [Balog et al., 2016], Neuro-Symbolic Program
Synthesis [Parisotto et al., 2017], and Deep API Programmer [Bhupatiraju et al., 2017]. Gaunt et al.
[2016] provides a comparison of various program synthesis from examples approaches on different
benchmarks, showing limitations of existing gradient descent models. Bunel et al. [2018], which also
uses the domain of synthesizing Karel programs from examples, learns to predict the correct program
with a deep learning model by leveraging the syntax constraints of the program language and training
via reinforcement learning to generate more consistent programs.

Program induction. Another line of recent work aims to teach neural networks the functional
behavior of programs, by augmenting the neural architecture with additional computational modules
such as Neural Turing Machines [Graves et al., 2014a], Neural GPUs [Kaiser and Sutskever, 2015],
and stack-augmented RNNs [Joulin and Mikolov, 2015]. However, these approaches require a large
dataset of input-output pairs to learn a single program, and can have trouble generalizing to unseen
inputs. An alternative approach involves training neural networks to reproduce execution traces, like
in Neural Program-Interpreters [Reed and De Freitas, 2015]. Even though this approach generalizes
better, it still requires training a separate model per task. Devlin et al. [2017a] overcomes this
weakness by using a meta-learning approach, where the model can induce a program from observing
a new task at test time to induce program and produce answer on unseen inputs. Nevertheless, the
learned program is induced latently within the weights and activations of a neural network, which
limits our ability to interpret which program has been learned and may limit the complexity of
programs that the model can represent and execute. Indeed, Bunel et al. [2018], which synthesizes
explicit Karel programs, obtained more accurate results compared to Devlin et al. [2017a] which uses
an induced latent representation of Karel programs.

Leveraging interpreters for inverse graphics. In recent years, there has been work on learning
semantics of interpreters for inverse graphics with neural networks: learning how to control a drawing
engine to reproduce a given picture, or in other words, recovering its underlying structure. In Ellis
et al. [2017], the authors first infer the execution trace of a drawing program and leverages a generic
program search algorithm on the trace. Ganin et al. [2018] instead simultaneously uses techniques
from reinforcement learning and adversarial training to teach an agent how to generate a program
which renders the desired image. These methods provide evidence that having explicit prediction of

2

traces or steps aids in learning the semantics of an interpreter, which is an important component of
program synthesis.

3 Background

Prog p := def main():s
Stmt s := while(b) : s | repeat(r) : s | s1; s2

| a | if(b) : s | if(b) : s1else : s2
Cond b := markersPresent() | leftIsClear()

| rightIsClear() | frontIsClear() | not(b)

Action a := move() | turnLeft() | turnRight()
| pickMarker() | putMarker()

Cste r := 0 | 1 | · · · | 19

Figure 1: The syntax of the Karel DSL as used in this paper. Figure from Devlin et al. [2017a].

Problem domain. Karel is an educational programming language (Pattis [1981]), used for example
in Stanford CS introductory classes and the Hour of Code initiative. It features an agent inside a grid
world, where certain cells can contain markers or walls (but not both); the agent cannot enter cells
where there is a wall. The agent can take the following actions: moving forward (move), turning left
or right (turnLeft, turnRight), and modifying the world state by removing or adding markers to
the current location (pickMarker, putMarker).

Karel programs, which are imperative, can contain branching statements (if, ifElse), while loops
which execute as long as a condition is true, and repeat loops which execute for a fixed number
of repetitions. The following conditions are available: whether the cell at the agent’s location
contains markers (markersPresent), and whether there are any walls nearby (frontIsClear,
leftIsClear, rightIsClear).

Devlin et al. [2017a] introduced the use of the Karel domain for program induction, where a neural
network learns to represent a program; in this work, we tackle Karel program synthesis. The goal in
this domain is to learn how to generate a program in the Karel DSL given a small set of input and
output grids. Formally, we are given a set of n input-output world pairs {(I1, O1), · · · , (In, On)},
with some hidden program π which satisfies the property that executing π in I1 results in O1, I2
results in O2, and so on. Our task is to recover π̂ by observing the n input/output pairs, such that π̂ is
semantically equivalent to π; in other words, π̂ should have the same effect as π on any input world,
but they do not need to be textually equivalent. However, note that the problem is under-specified:
with n input-output pairs, it is not possible to disambiguate among all possible π, so the model needs
to pick the most promising among the possibilities.

Our work is based on Bunel et al. [2018], which applied a neural encoder-decoder approach to
Karel program synthesis, similar to the work of Devlin et al. [2017b] and Parisotto et al. [2017]
which was for a string-editing domain. Bunel et al. [2018] used both supervised learning with a
randomly-generated synthetic dataset to train their model, as well as a reinforcement learning-based
approach to further improve the model’s program synthesis accuracy. As part of their work, they have
developed a deep learning architecture for Karel program synthesis which we use as the basis for our
approach.

4 Approach

4.1 Motivation

Past work in program synthesis, program induction, program repair, and other areas of machine
learning have explored the benefits of learning using execution traces.

3

Convolutions → FC

<s> turnRight turnRight move

</s>turnRight turnRight move

Conv → FC Conv → FC Conv → FC

Input/output pair
Intermediate states

Figure 2: Architecture of I/O→ TRACE model.

For example, in program induction, the Neural Programmer-Interpreter [Reed and de Freitas, 2016]
receives execution traces as supervision, and can learn complex tasks more quickly and accurately;
given recursive traces, it can exhibit perfect generalization [Cai et al., 2017]. Other program induction
models such as the Neural Turing Machine [Graves et al., 2014b] and Neural GPU [Kaiser and
Sutskever, 2016] have the harder task of learning directly from input/output examples, and thus need
a very large amount of training data and careful hyper-parameter tuning. In program repair, Wang
et al. [2018] improve upon baseline methods by learning models that use execution traces. Ellis
et al. [2017] and Ganin et al. [2018] generate execution traces for the purposes of inverse graphics.
Even for generative modeling of images, learning to generate the picture incrementally and additively
(similar to execution traces in our setting) has been able to improve performance [Gregor et al., 2015].

We hypothesize that any program synthesis model must be able to internally reason about the
semantics of the DSL and in particular the atomic operations. For example, in the Flash Fill system
[Gulwani, 2011], this knowledge is explicitly specified by the system’s creators. In contrast, neural
program synthesis methods need to learn both the semantics of the DSL and how to synthesize
programs in the DSL entirely from the training data.

Even beyond the past work using traces and our hypothesis above, our intuition as programmers
suggests that it should be easier to synthesize a Karel program given not only the input/output
examples, but also the list of steps taken by the correct program to transform the input into the output.
However, it is impractical to expect an end user specifying the desired program to also provide the
correct execution trace for the program, since devising the trace is almost as much work as writing
the actual program itself.

However, if neural networks can learn to synthesize programs from input/output examples as shown
by Bunel et al. [2018] and others, it follows that they should also be able to synthesize the execution
trace from input/output examples. Indeed, we can expect this to be an easier problem given that the
execution trace does not contain any control flow constructs. Furthermore, as the model iteratively
generates the execution trace, we can evaluate the partial trace with the Karel interpreter and provide
its internal state to the model to help guide the model’s next output.

Once we have a model that can recover the correct execution trace from the input/output examples
for a desired program, it becomes possible to train and use a program synthesis model that takes both
input/output examples and corresponding execution traces as the program specification. By including
information extracted from the Karel interpreter as we run the execution trace about the current state
of the world at each point in the trace, the program synthesis model has less need to internally reason
about the program’s semantics as some of that work is effectively offloaded to the Karel interpreter.

In the subsequent sections, we detail how we built two models to split the Karel program synthesis
problem (“I/O→ CODE”) into two parts: I/O→ TRACE, then TRACE→ CODE.

4

turnRight turnRight Input 2 Output 2move

turnRight turnRight Input 1 Output 1

<s> repeat 2 { turnRight

Convolutions → FC

Execution trace
embedding

: attention

x5 x5 x5 x5 x5
Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

Maxpool 》
FC 》 Softmax

repeat 2 { turnRight

...

...

}

move

Figure 3: Architecture of TRACE→ CODE model. We follow the architecture in Bunel et al. [2018],
but add an execution trace input.

4.2 Predicting execution traces from input/output pairs

In this work, an execution trace refers to an ordered set of actions: (action1, ..., actionT). In
the case of Karel, actions are move, turn{Right, Left}, {put, pick}Marker. For a given
original training example (π, {(I1, O1), ..., (IN , ON)}), we can generate N training examples
(I1, O1, (action1, · · · , actionT)1), . . . , (IN , ON , (action1, · · · , actionT)N) for trace prediction by
running π on these I/O pairs and recording the actions taken by the program. Thus, if the original
training data contained K examples where each example contained N I/O pairs, then we obtain a I/O
pair to trace dataset of K ·N examples suitable for supervised learning.

Figure 2 shows the deep learning model architecture we used for this task. To encode the input/output
examples, we use a convolutional neural network with a final fully-connected layer, taken from Bunel
et al. [2018]. To generate the sequence of actions, we use a two-layer LSTM decoder. At each step of
the decoder, it receives as input the concatenation of the following: 1) an embedding of the action
taken in the previous step, 2) the input/output pair embedding, and 3) an embedding of the current
state of the grid after executing all of the past actions. In theory, the LSTM can learn to keep track of
the current state of the grid internally, rendering the third input unnecessary; however, as we will see
in Section 5.4, explicitly using the Karel interpreter to track the current grid state helps the model
better understand how the grid is changing after each action and maintain more context.

4.3 Synthesizing programs from input/output examples and execution traces

To create a model which uses both a set of input/output examples and execution traces for generating
the desired program, we started with the architecture from Bunel et al. [2018] and extend it to also
take the execution trace as an input. Specifically, we add a bidirectional LSTM to the architecture
which is responsible for producing an embedding of the execution trace for each step in the trace.

Given an execution trace (action1,n, ..., actionT,n) and an initial state state1,n := In for the
nth input/output example, we can use the Karel interpreter to replay the actions to obtain
state2,n, · · · , stateT+1,n. For Karel, each state contains the full grid world and the objects within it:
the location of the agent, its orientation, the current number of markers in each cell, and the locations
of walls (which cannot be manipulated by the agent and therefore do not change through the course
of execution). Given the mismatch in lengths, and also given that the actions semantically occur
in between the states, we interleave the two to create an input of length T + (T + 1) = 2T + 1:
(state1,n, action1,n, state2,n, · · · , actionT,n, stateT+1,n).

5

To provide this input to the bidirectional LSTM, we embed statet,n and actiont,n in the follow-
ing way. For each state, we evaluate the four conditionals (markersPresent, frontIsClear,
leftIsClear, rightIsClear) that can influence the program’s flow of execution, embed each
boolean value and concatenate them. For each action, we look up the corresponding embedding from
a table. Both sets of embeddings are randomly initialized and learned. We will denote the 2T + 1
outputs for the nth trace from the bidirectional trace LSTM as T1,n, · · · , T2T+1,n.

We also tried a variant where the input consists of T + 1 elements. First, we append appending
a final </s> to the list of actions: actionT+1,n = </s>, to make the lengths match. We then
embed each statet,n and actiont,n, and then concatenate the embeddings together. In addition to
the conditional values, we also tried providing an embedding of the grid itself to the LSTM, using a
similar convolutional neural net as used to encode each grid in the I/O→ TRACE model. However,
we found that both variants were inferior compared to the method described in the previous paragraph.

Following Bunel et al. [2018], we also encode each input/output example using a convolutional neural
network with a final fully-connected layer. We generate the program one token at a time with a
decoder LSTM. As in Bunel et al. [2018] and Devlin et al. [2017b], we run a separate LSTM for each
input/output pair; the LSTMs have separate states but shared weights. At decoding step i, the LSTM
for the nth input/output example receives the concatenation of following:

• an embedding of the token generated in step i− 1, or of <s> at step 0 (the start of decoding)
• the I/O pair embedding for (Ik, Ok),
• the context vector ci−1,n for step i − 1: a weighted sum of T1,n, · · · , T2T+1,n, computed

using a multiplicative attention mechanism based on oi−1,n, the LSTM’s output at step i− 1.
Note that c0,n = 0.

We obtain the decoder LSTM output oi,n for each of the N input/output pairs, compute the context
vector ci,n as described above, and concatenate them to obtain õi,n = Concat(oi,n, ci,n). To compute
the logits over the ith program token, we compute W ·MaxPool(õi,1, · · · , õi,N), where W ∈ Rv×d,
and v is the size of the output vocabulary. See Figure 3 for a visual depiction of the overall architecture.

To train this model, we tried two different sources of supervision. Recall that each entry in the
provided training data consists of a program π and 5 input/output pairs {(I1, O1), ..., (I5, O5)}).
First, we can execute π on I1, . . . , I5 to obtain the execution trace on each input; we refer to this
trace as the gold trace. However, we will not have access to the gold trace when we wish to actually
use this model for program synthesis from input/output examples.

Second, we can use the I/O→ TRACE model from Section 4.2 to infer a valid trace for the given
I/O pair; we refer to this trace as the inferred trace. Unfortunately, this model does not always
succeed at recovering a correct trace for the I/O pair, in which case we substitute a trace containing
a single UNK action and two grid states, the input grid and the output grid. Furthermore, the trace
may deviate from the actions taken by the true program even if the final state is identical, as certain
actions can be permuted without any effect on the output (such as turnLeft and pickMarker), and
certain sequences of actions (such as turnLeft then turnRight) are no-ops. Nevertheless, we will
only have access to the inferred trace at inference time, so it is useful to match the training and test
distributions more closely.

5 Experiments

5.1 Training dataset and procedure

To train and test our models, we used the same dataset as Bunel et al. [2018], from https://bit.
ly/karel-dataset. The training dataset consists of 1,116,854 entries, and the test dataset contains
2,500 entries. Each entry in the dataset contains a Karel program and 6 input/output pairs which
satisfy that program. For training the I/O→ TRACE model, we used all 6 input/output pairs within
each entry for a total of 6,701,124 training traces. For training the TRACE→ CODE model (and our
reimplementation of the I/O→ CODE model from Bunel et al. [2018]), we randomly sample 5 out
of the 6 input/output examples (and corresponding traces) each time we sample an entry from the
training data. In general, we endeavored to follow the training regime from the prior work as closely
as possible, although we discovered that SGD with gradient clipping worked better for training the
models than Adam. For all of the evaluations of TRACE→ CODE we used beam search with size 50.

6

https://bit.ly/karel-dataset
https://bit.ly/karel-dataset

Table 1: Comparison of our best model with previous work from Bunel et al. [2018]. “Gen.” stands
for generalization accuracy.

Top-1 Top-50
Exact Match Gen. Guided Search Gen.

MLE [Bunel et al., 2018] 39.94% 71.91% − 86.37%
RL_beam_div_opt [Bunel et al., 2018] 32.17% 77.12% − 85.38%

I/O→ CODE, MLE 40.1% 73.5% 84.6% 85.8%
I/O→ TRACE→ CODE, MLE 42.8% 81.3% 88.8% 90.8%

5.2 Performance metrics

When evaluating the model, we use beam search both to get outputs that have higher log likelihood
than what can be obtained with greedy decoding, and also to obtain multiple candidate sequences. As
such, we use multiple criteria to report the performance of the models.

First, for purposes of comparison, we have the same metrics as used by the prior work: Top-K Exact
Match, which measures how often one of the top K output programs of the model textually matches
the original program exactly; and Top-K Generalization, which denotes the fraction of test instances
for which one of the top K output programs will have the correct behavior across the 5 input/output
examples used to specify the program to the model, as well as the held-out 6th input/output example.

As an alternative to these metrics, we suggest to use what we call Top-K Model-Guided Search
Accuracy. In this metric, we consider the top K program outputs in order, from most likely to least
likely. We test each candidate program on the 5 input/output examples that specify the program, and
see if it works correctly on those 5. We return the first such program (the top-ranked one) as the
solution, and then test it on the held-out 6th program to report the accuracy. The motivation for this
approach is two-fold. First, we already have the 5 I/O examples to specify the program for the model
to produce, and so we might as well use them to filter any unsatisfactory outputs of the model, to reap
the benefits of having a precisely checkable specification for the correct answer. Second, this metric
is more comparable to other methods in the literature that use a search-based method for program
synthesis, either with handwritten heuristics or with machine learning models (such as [Balog et al.,
2016]); indeed, such methods will often try thousands or millions of candidate programs, rather than
the comparatively small K = 50 which we used for our experiments.

5.3 Evaluation of I/O→ TRACE→ CODE

In Table 1, we compare our best I/O→ TRACE→ CODE model (created by gluing together I/O→
TRACE and TRACE→ CODE) against the previous work of Bunel et al. [2018]. We reimplemented
their MLE model (labeled as I/O→ CODE), obtaining slightly better results compared to theirs.

We note that we did not implement the RL_beam_div_opt training method of Bunel et al. [2018],
and so our results are all based on MLE training. Nevertheless, our I/O→ TRACE→ CODE method
outperforms all others on all metrics, including the best result in Bunel et al. [2018]. We anticipate
that using reinforcement learning methods (such as RL_beam_div_opt) can improve our method’s
accuracy even further.

We also analyzed how models performed on various slices of the test data in Table 2: programs with
no control flow (only actions); programs with conditionals (if or ifElse) but not loops (repeat or
while); programs with loops but no conditionals; and programs containing at least one control flow
element. We also partitioned the data depending on the length of the gold program into three buckets.

We can observe that I/O → TRACE → CODE improves upon I/O → CODE within every slice of
the data. The magnitude of the improvement is most significant on long programs, which provides
supporting evidence for our hypothesis in that the I/O→ CODE model would need to internally keep
track of the Karel state but have trouble doing so.

7

Table 2: Comparing performance on different slices of data

Slice % of dataset I/O→ CODE I/O→ TRACE→ CODE ∆%

No control flow 26.4% 100.0% 100.0% +0.0%
Only Conditions 15.6% 87.4% 91.0% +3.6%
Only Loops 29.9% 91.3% 94.3% +3.0%
With all control flow 73.6% 79.0% 84.8% +5.8%

Program length 0-15 44.8% 99.5% 99.5% +0.0%
Program length 15-30 40.7% 80.8% 86.9% +6.1%
Program length 30+ 14.5% 48.6% 61.0% +12.4%

Table 3: Evaluation of I/O→ TRACE models.

Top-1 Top-10
Exact Match Correct Exact Match Correct

No grids 58.7% 92.5% 59.3% 95.9%
LGRL 57.6% 94.8% 58.0% 97.4%
PRESNET 57.8% 95.2% 58.2% 98.0%

5.4 Evaluating I/O→ TRACE and TRACE→ CODE separately

For the first part of our approach (I/O → TRACE), in Table 3 we show results of predicting the 5
execution traces from the 5 input/output examples used to specify a Karel program synthesis task.
In this table, we consider a result to be correct if all 5 predicted traces transform the corresponding
input states to the output states when executed in the Karel interpreter. As discussed in Section 4.2,
there exists many possible execution traces which transform a given input state to the output state;
therefore, the exact match accuracy is much lower than the correctness metric.

The LGRL model uses the same architecture for convolutional encoder as in Bunel et al. [2018].
We also augmented it with residual connections between layers, results for which are reported as
PRESNET model. Furthermore, to confirm that the interpreter’s current state helps the I/O→ TRACE
model produce correct traces, we have trained a variant (“No grids”) which omits the inputs of the
grid state.

For the second part (TRACE→ CODE), Table 4 compares a model trained on gold traces against one
trained on inferred traces from the best I/O→ TRACE model. Due to the distributional differences
between the gold and inferred traces, the model trained on gold traces does poorly on inferred traces.

We also tried an evaluation using the gold execution traces from the test set. As discussed earlier in
Section 4.3, the gold execution traces would not normally be available at test time, so this evaluation
serves as a hypothetical comparison against our main result.

6 Discussion and Future Work

From our results, we consider confirmed our hypothesis that it is beneficial to use traces for explicitly
training a model that learns the semantics of interpreter, separately from the task of synthesizing the
code for the correct program.

Interestingly, the predicted trace and gold trace fail to match exactly in half of the cases even though
the predicted trace is correct. Indeed, the TRACE → CODE model trained on gold traces doesn’t
perform as well on inferred traces. That said, when we evaluated TRACE→ CODE on gold traces
at validation time, it outperformed the model trained on inferred traces. Since I/O → TRACE
independently predicts traces for each I/O pair, we hypothesize that they lack consistency with
each other compared to the gold traces. Thus, for future work we suggest to investigate inferring
the execution trace for a given I/O pair, conditioned on already generated execution traces for the
same underlying program but on different I/O pairs. We also noticed that the TRACE → CODE

8

Table 4: Evaluation of TRACE→ CODE models.

Train traces Test traces Exact Match Correct Guided Search
Gold Inferred 39.2% 76.5% 81.8%
Inferred Inferred 42.8% 81.3% 88.8%

Gold Gold 54.0% 86.4% 92.4%

model trained on predicted traces performed much worse when evaluated on gold traces compared to
predicted traces. This phenomenon suggests that training a TRACE→ CODE model with multiple
options of traces sampled from I/O → TRACE and from gold traces may improve the model’s
resilience and further improve the accuracy.

We also leave for future work exploring usage of reinforcement learning objectives (similar to Bunel
et al. [2018]) for the training of these models. We see two possible ways of applying these objectives:
training I/O→ TRACE and TRACE→ CODE models separately with the reward of passing unseen
tests; and training I/O → TRACE and TRACE → CODE models jointly end-to-end, where traces
are decoded into symbolic form and reinforcement learning allows propagation of learning signals
between the two parts.

Acknowledgements

This material is in part based upon work supported by Berkeley Deep Drive, the National Science
Foundation under Grant No. TWC-1409915, and the Defence Advanced Research Projects Agency
under Grant No. FA8750-17-2-0091. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
above organizations.

References
Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.

Deepcoder: Learning to write programs. CoRR, abs/1611.01989, 2016. URL http://arxiv.
org/abs/1611.01989.

Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Pushmeet Kohli. Deep api pro-
grammer: Learning to program with apis. CoRR, abs/1704.04327, 2017.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=H1Xw62kRZ.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. In International Conference on Learning Representations, 2017. URL http:
//arxiv.org/abs/1511.06279.

Jacob Devlin, Rudy R Bunel, Rishabh Singh, Matthew Hausknecht, and Pushmeet Kohli. Neural
program meta-induction. In Advances in Neural Information Processing Systems, pages 2077–2085,
2017a.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International Conference
on Machine Learning, pages 990–998, 2017b.

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Joshua B. Tenenbaum. Learning to
infer graphics programs from hand-drawn images. CoRR, abs/1707.09627, 2017. URL http:
//arxiv.org/abs/1707.09627.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, S. M. Ali Eslami, and Oriol Vinyals. Synthesizing
programs for images using reinforced adversarial learning. CoRR, abs/1804.01118, 2018. URL
http://arxiv.org/abs/1804.01118.

9

http://arxiv.org/abs/1611.01989
http://arxiv.org/abs/1611.01989
https://openreview.net/forum?id=H1Xw62kRZ
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1707.09627
http://arxiv.org/abs/1804.01118

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction.
arXiv preprint arXiv:1608.04428, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014a.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014b.
URL http://arxiv.org/abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Advances in Neural Information Processing Systems, pages
1828–1836, 2015.

Karol Gregor, Ivo Danihelka, Alex Graves, and Daan Wierstra. DRAW: A recurrent neural network for
image generation. CoRR, abs/1502.04623, 2015. URL http://arxiv.org/abs/1502.04623.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0490-
0. doi: 10.1145/1926385.1926423. URL http://doi.acm.org/10.1145/1926385.1926423.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In NIPS, 2015.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Lukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. In International Conference on
Learning Representations, 2016. URL http://arxiv.org/abs/1511.08228.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random access machines. ICLR,
2016. URL http://arxiv.org/abs/1511.06392.

Zohar Manna and Richard Waldinger. Knowledge and reasoning in program synthesis. In Proceedings
of the 4th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’75, pages
288–295, San Francisco, CA, USA, 1975. Morgan Kaufmann Publishers Inc. URL http://dl.
acm.org/citation.cfm?id=1624626.1624670.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Representa-
tions, 2017.

Richard E Pattis. Karel the robot: a gentle introduction to the art of programming. John Wiley &
Sons, Inc., 1981.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In International Conference on
Learning Representations, 2016. URL http://arxiv.org/abs/1511.06279.

Richard J. Waldinger and Richard C. T. Lee. Prow: A step toward automatic program writing.
In Proceedings of the 1st International Joint Conference on Artificial Intelligence, IJCAI’69,
pages 241–252, San Francisco, CA, USA, 1969. Morgan Kaufmann Publishers Inc. URL http:
//dl.acm.org/citation.cfm?id=1624562.1624586.

Ke Wang, Zhendong Su, and Rishabh Singh. Dynamic neural program embeddings for program repair.
International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=BJuWrGW0Z.

10

http://arxiv.org/abs/1410.5401
http://arxiv.org/abs/1502.04623
http://doi.acm.org/10.1145/1926385.1926423
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.06392
http://dl.acm.org/citation.cfm?id=1624626.1624670
http://dl.acm.org/citation.cfm?id=1624626.1624670
http://arxiv.org/abs/1511.06279
http://dl.acm.org/citation.cfm?id=1624562.1624586
http://dl.acm.org/citation.cfm?id=1624562.1624586
https://openreview.net/forum?id=BJuWrGW0Z
https://openreview.net/forum?id=BJuWrGW0Z

