
Simple random search of static linear policies is
competitive for reinforcement learning

Horia Mania
hmania@berkeley.edu

Aurelia Guy
lia@berkeley.edu

Benjamin Recht
brecht@berkeley.edu

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Abstract

Model-free reinforcement learning aims to offer off-the-shelf solutions for con-
trolling dynamical systems without requiring models of the system dynamics. We
introduce a model-free random search algorithm for training static, linear policies
for continuous control problems. Common evaluation methodology shows that our
method matches state-of-the-art sample efficiency on the benchmark MuJoCo loco-
motion tasks. Nonetheless, more rigorous evaluation reveals that the assessment
of performance on these benchmarks is optimistic. We evaluate the performance
of our method over hundreds of random seeds and many different hyperparameter
configurations for each benchmark task. This extensive evaluation is possible
because of the small computational footprint of our method. Our simulations
highlight a high variability in performance in these benchmark tasks, indicating
that commonly used estimations of sample efficiency do not adequately evaluate
the performance of RL algorithms. Our results stress the need for new baselines,
benchmarks and evaluation methodology for RL algorithms.

1 Introduction

Model-free reinforcement learning (RL) aims to offer off-the-shelf solutions for controlling dynamical
systems without requiring models of the system dynamics. Such methods have successfully produced
RL agents that surpass human players in video games and games such as Go [16, 28]. Although
these results are impressive, model-free methods have not yet been successfully deployed to control
physical systems, outside of research demos. There are several factors prohibiting the adoption of
model-free RL methods for controlling physical systems: the methods require too much data to
achieve reasonable performance, the ever-increasing assortment of RL methods makes it difficult to
choose what is the best method for a specific task, and many candidate algorithms are difficult to
implement and deploy [11].

Unfortunately, the current trend in RL research has put these impediments at odds with each other.
In the quest to find methods that are sample efficient (i.e. methods that need little data) the general
trend has been to develop increasingly complicated methods. This increasing complexity has led to a
reproducibility crisis. Recent studies demonstrate that many RL methods are not robust to changes in
hyperparameters, random seeds, or even different implementations of the same algorithm [11, 12].
Algorithms with such fragilities cannot be integrated into mission critical control systems without
significant simplification and robustification.

Furthermore, it is common practice to evaluate and compare new RL methods by applying them to
video games or simulated continuous control problems and measure their performance over a small
number of independent trials (i.e., fewer than ten random seeds) [8–10, 14, 17, 19, 21–27, 31, 32].
The most popular continuous control benchmarks are the MuJoCo locomotion tasks [3, 29], with
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the Humanoid model being considered “one of the most challenging continuous control problems
solvable by state-of-the-art RL techniques [23].” In principle, one can use video games and simulated
control problems for beta testing new ideas, but simple baselines should be established and thoroughly
evaluated before moving towards more complex solutions.

To this end, we aim to determine the simplest model-free RL method that can solve standard
benchmarks. Recently, two different directions have been proposed for simplifying RL. Salimans
et al. [23] introduced a derivative-free policy optimization method, called Evolution Strategies. The
authors showed that, for several RL tasks, their method can easily be parallelized to train policies
faster than other methods. While the method of Salimans et al. [23] is simpler than previously
proposed methods, it employs several complicated algorithmic elements, which we discuss at the end
of Section 3. As a second simplification to model-free RL, Rajeswaran et al. [22] have shown that
linear policies can be trained via natural policy gradients to obtain competitive performance on the
MuJoCo locomotion tasks, showing that complicated neural network policies are not needed to solve
these continuous control problems. In this work, we combine ideas from the work of Salimans et al.
[23] and Rajeswaran et al. [22] to obtain the simplest model-free RL method yet, a derivative-free
optimization algorithm for training static, linear policies. We demonstrate that a simple random
search method can match or exceed state-of-the-art sample efficiency on the MuJoCo locomotion
tasks, included in the OpenAI Gym.

Henderson et al. [11] and Islam et al. [12] pointed out that standard evaluation methodology does not
accurately capture the performance of RL methods by showing that existing RL algorithms exhibit
high sensitivity to both the choice of random seed and the choice of hyperparameters. We show
similar limitations of common evaluation methodology through a different lens. We exhibit a simple
derivative free optimization algorithm which matches or surpasses the performance of more complex
methods when using the same evaluation methodology. However, a more thorough evaluation of
ARS reveals worse performance. Moreover, our method uses static linear policies and a simple local
exploration scheme, which might be limiting for more difficult RL tasks. Therefore, better evaluation
schemes are needed for determining the benefits of more complex RL methods. Our contributions are
as follows:

• In Section 3, for applications to continuous control, we augment a basic random search
method with three simple features. First, we scale each update step by the standard deviation
of the rewards collected for computing that update step. Second, we normalize the system’s
states by online estimates of their mean and standard deviation. Third, we discard from
the computation of the update steps the directions that yield the least improvement of the
reward. We refer to this method as Augmented Random Search (ARS).

• In Section 4, we evaluate the performance of ARS on the benchmark MuJoCo locomotion
tasks, included in the OpenAI Gym. Our method learns static, linear policies that achieve
high rewards on all MuJoCo tasks. No neural networks are used, and yet state-of-the-art
average rewards are achieved. For example, for Humanoid-v1 ARS finds linear policies
which achieve average rewards of over 11500, the highest value reported in the literature.
To put ARS on equal footing with competing methods, we evaluate its sample complexity
over three random seeds and compare it to results reported in the literature [9, 22, 23, 26].
ARS matches or exceeds state-of-the-art sample efficiency on the locomotion tasks when
using standard evaluation methodology.

• For a more thorough evaluation, we measured the performance of ARS over a hundred
random seeds and also evaluated its sensitivity to hyperparameter choices. Though ARS
successfully trains policies for the MuJoCo tasks a large fraction of the time when hyper-
parameters and random seeds are varied, ARS exhibits large variance. We measure the
frequency with which ARS finds policies that yield suboptimal locomotion gaits.

2 Problem setup

Problems in reinforcement learning require finding policies for controlling dynamical systems that
maximize an average reward. Such problems can be abstractly formulated as

max
✓2Rd

E⇠ [r(⇡✓, ⇠)] , (1)
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where ✓ parametrizes a policy ⇡✓ : Rn ! Rp. The random variable ⇠ encodes the randomness of the
environment, i.e., random initial states and stochastic transitions. The value r(⇡✓, ⇠) is the reward
achieved by the policy ⇡✓ on one trajectory generated from the system. In general one could use
stochastic policies ⇡✓, but our proposed method uses deterministic policies.

Basic random search. Note that the problem formulation (1) aims to optimize reward by directly
optimizing over the policy parameters ✓. We consider methods which explore in the parameter
space rather than the action space. This choice renders RL training equivalent to derivative-free
optimization with noisy function evaluations. One of the simplest and oldest optimization methods
for derivative-free optimization is random search [15].

A primitive form of random search, which we call basic random search (BRS), simply computes a
finite difference approximation along the random direction and then takes a step along this direction
without using a line search. Our method ARS, described in Section 3, is based on this simple strategy.
For updating the parameters ✓ of a policy ⇡✓, BRS and ARS exploit update directions of the form:

r(⇡✓+⌫�, ⇠1)� r(⇡✓�⌫�, ⇠2)

⌫
, (2)

for two i.i.d. random variables ⇠1 and ⇠2, ⌫ a positive real number, and � a zero mean Gaussian
vector. It is known that such an update increment is an unbiased estimator of the gradient with
respect to ✓ of E�E⇠ [r(⇡✓+⌫�, ⇠)], a smoothed version of the objective (1) which is close to the
original objective when ⌫ is small [20]. When the function evaluations are noisy, minibatches
can be used to reduce the variance in this gradient estimate. Evolution Strategies is a version of
this algorithm with several complicated algorithmic enhancements [23]. Another version of this
algorithm is called Bandit Gradient Descent by Flaxman et al. [6]. The convergence of random search
methods for derivative free optimization has been understood for several types of convex optimization
[1, 2, 13, 20]. Jamieson et al. [13] offer an information theoretic lower bound for derivative free
convex optimization and show that a coordinate based random search method achieves the lower
bound with nearly optimal dependence on the dimension.

The rewards r(⇡✓+⌫�, ⇠1) and r(⇡✓�⌫�, ⇠2) in Eq. (2) are obtained by collecting two trajectories
from the dynamical system of interest, according to the policies ⇡✓+⌫� and ⇡✓�⌫� , respectively. The
random variables ⇠1, ⇠2, and � are mutually independent, and independent from previous trajectories.
One trajectory is called an episode or a rollout. The goal of RL algorithms is to approximately solve
problem (1) by using as few rollouts from the dynamical system as possible.

3 Our proposed algorithm

We now introduce the Augmented Random Search (ARS) method, which relies on three augmenta-
tions of BRS that build on successful heuristics employed in deep reinforcement learning. Throughout
the rest of the paper we use M to denote the parameters of policies because our method uses linear
policies, and hence M is a p⇥ n matrix. The different versions of ARS are detailed in Algorithm 1.

The first version, ARS V1, is obtained from BRS by scaling the update steps by the standard deviation
�R of the rewards collected at each iteration; see Line 7 of Algorithm 1. As shown in Section 4,
ARS V1 can train linear policies, which achieve the reward thresholds previously proposed in the
literature, for five MuJoCo benchmarks. However, ARS V1 requires a larger number of episodes, and
it cannot train policies for the Humanoid-v1 task. To address these issues in Algorithm 1 we also
propose ARS V2. This version of ARS trains policies which are linear maps of states normalized
by a mean and standard deviation computed online. Finally, to further enhance the performance of
ARS, we introduce a third algorithmic enhancement, shown in Algorithm 1 as ARS V1-t and ARS
V2-t. These versions of ARS can drop perturbation directions that yield the least improvement of the
reward. Now, we motivate and offer intuition for each of these algorithmic elements.

Scaling by the standard deviation �R. As the training of policies progresses, random search in the
parameter space of policies can lead to large variations in the rewards observed across iterations. As
a result, it is difficult to choose a fixed step-size ↵ which does not allow harmful variations in the size
of the update steps. Salimans et al. [23] address this issue by transforming the rewards into rankings
and then using the adaptive optimization algorithm Adam for computing the update step. Both of
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Algorithm 1 Augmented Random Search (ARS): four versions V1, V1-t, V2 and V2-t
1: Hyperparameters: step-size ↵, number of directions sampled per iteration N , standard deviation

of the exploration noise ⌫, number of top-performing directions to use b (b < N is allowed only
for V1-t and V2-t)

2: Initialize: M0 = 0 2 Rp⇥n, µ0 = 0 2 Rn, and ⌃0 = In 2 Rn⇥n, j = 0.
3: while ending condition not satisfied do
4: Sample �1, �2, . . . , �N in Rp⇥n with i.i.d. standard normal entries.
5: Collect 2N rollouts of horizon H and their corresponding rewards using the 2N policies

V1:
⇢
⇡j,k,+(x) = (Mj + ⌫�k)x
⇡j,k,�(x) = (Mj � ⌫�k)x

V2:

(
⇡j,k,+(x) = (Mj + ⌫�k) diag (⌃j)

�1/2 (x� µj)
⇡j,k,�(x) = (Mj � ⌫�k) diag(⌃j)�

1/2(x� µj)

for k 2 {1, 2, . . . , N}.
6: V1-t, V2-t: Sort the directions �k by max{r(⇡j,k,+), r(⇡j,k,�)}, denote by �(k) the k-th

largest direction, and by ⇡j,(k),+ and ⇡j,(k),� the corresponding policies.
7: Make the update step:

Mj+1 = Mj + ↵
b�R

bX

k=1

⇥
r(⇡j,(k),+)� r(⇡j,(k),�)

⇤
�(k),

where �R is the standard deviation of the 2b rewards used in the update step.
8: V2: Set µj+1, ⌃j+1 to be the mean and covariance of the 2NH(j + 1) states encountered

from the start of training.1
9: j  j + 1

10: end while
.

these techniques change the direction of the updates, obfuscating the behavior of the algorithm and
making it difficult to ascertain the objective Evolution Strategies is actually optimizing. Instead, to
address the large variations of the differences r(⇡M+⌫�)� r(⇡M�⌫�), we scale the update steps by
the standard deviation �R of the 2N rewards collected at each iteration (see Line 7 of Algorithm 1).

While training a policy for Humanoid-v1, we observed that the standard deviations �R have an
increasing trend; see Figure 2 in Appendix A.2. This behavior occurs because perturbations of the
policy weights at high rewards can cause Humanoid-v1 to fall early, yielding large variations in the
rewards collected. Without scaling the update steps by �R, eventually random search would take
update steps which are a thousand times larger than in the beginning of training. Therefore, �R

adapts the step sizes according to the local sensitivity of the rewards to perturbations of the policy
parameters. The same training performance could probably be obtained by tuning a step size schedule.
However, one of our goals was to minimize the amount of tuning required.

Normalization of the states. The normalization of states used by ARS V2 is akin to data whitening
for regression tasks. Intuitively, it ensures that policies put equal weight on the different components
of the states. To see why this might help, suppose that a state coordinate only takes values in the
range [90, 100] while another state component takes values in the range [�1, 1]. Then, small changes
in the control gain with respect to the first state coordinate would lead to larger changes in the actions
than the same sized changes with respect to the second state component. Hence, state normalization
allows different state components to have equal influence during training.

Previous work has also implemented such state normalization for fitting a neural network model for
several MuJoCo environments [19]. A similar normalization is used by ES as part of the virtual batch

1Of course, we implement this in an efficient way that does not require the storage of all the states. Also, we
only keep track of the diagonal of ⌃j+1. Finally, to ensure that the ratio 0/0 is treated as 0, if a diagonal entry
of ⌃j is smaller than 10�8 we make it equal to +1.
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normalization of the neural network policies [23]. In the case of ARS, the state normalization can be
seen as a form of non-isotropic exploration in the parameter space of linear policies.

The main empirical motivation for ARS V2 comes from the Humanoid-v1 task. We were not able to
train a linear policy for this task without the normalization of the states described in Algorithm 1.
Moreover, ARS V2 performs better than ARS V1 on other MuJoCo tasks as well, as shown in
Section 4. However, the usefulness of state normalization is likely to be problem specific.

Using top performing directions. To further improve the performance of ARS on the MuJoCo
locomotion tasks, we propose ARS V1-t and V2-t. In the update steps used by ARS V1 and V2
each perturbation direction �k is weighted by the difference of the rewards r(⇡j,k,+) and r(⇡j,k,�).
If r(⇡j,k,+) > r(⇡j,k,�), ARS pushes the policy weights Mj in the direction of �k. If r(⇡j,k,+) <
r(⇡j,k,�), ARS pushes the policy weights Mj in the direction of ��k. However, since r(⇡j,k,+)
and r(⇡j,k,�) are noisy evaluations of the performance of the policies parametrized by Mj + ⌫�k

and Mj � ⌫�k, ARS V1 and V2 might push the weights Mj in the direction �k even when ��k is
better, or vice versa. Moreover, there can be perturbation directions �k such that updating the policy
weights Mj in either the direction �k or ��k would lead to sub-optimal performance. To address
these issues, ARS V1-t and V2-t order decreasingly the perturbation directions �k, according to
max{r(⇡j,k,+), r(⇡j,k,�)}, and then use only the top b directions for updating the policy weights;
see Line 7 of Algorithm 1.

This algorithmic enhancement intuitively improves the performance of ARS because it ensures
that the update steps are an average over directions that obtained high rewards. However, without
theoretical investigation we cannot be certain of the effect of using this algorithmic enhancement, i.e.,
choosing b < N . When b = N versions V1-t and V2-t are equivalent to V1 and V2. Therefore, it is
certain that after tuning ARS V1-t and V2-t, they will not perform any worse than ARS V1 and V2.

Comparison to Salimans et al. [23]. ARS simplifies Evolution Strategies in several ways. First,
ES feeds the gradient estimate into the Adam algorithm. Second, instead of using the actual reward
values r(✓ ± �✏i), ES transforms the rewards into rankings and uses the ranks to compute update
steps. The rankings are used to make training more robust. Instead, our method scales the update
steps by the standard deviation of the rewards. Third, ES bins the action space of the Swimmer-v1
and Hopper-v1 to encourage exploration. Our method surpasses ES without such binning. Fourth, ES
relies on policies parametrized by neural networks with virtual batch normalization, while we show
that ARS achieves state-of-the-art performance with linear policies.

4 Empirical results on the MuJoCo locomotion tasks

Implementation details. We implemented a parallel version of Algorithm 1 using the Python
library Ray [18]. To avoid the computational bottleneck of communicating perturbations �, we
created a shared noise table which stores independent standard normal entries. Then, instead of
communicating perturbations �, the workers communicate indices in the shared noise table. This
approach has been used in the implementation of Evolution Strategies by Moritz et al. [18] and is
similar to the approach proposed by Salimans et al. [23]. Our code sets the random seeds for the
random generators of all the workers and for all copies of the OpenAI Gym environments held by
the workers. All these random seeds are distinct and are a function of a single integer to which we
refer as the random seed. Furthermore, we made sure that the states and rewards produced during the
evaluation rollouts were not used in any form during training.

We evaluate the performance of ARS on the MuJoCo locomotion tasks included in the OpenAI Gym-
v0.9.3 [3, 29]. The OpenAI Gym provides benchmark reward functions for the different MuJoCo
locomotion tasks. We used these default reward functions for evaluating the performance of the
linear policies trained with ARS. The reported rewards obtained by a policy were averaged over
100 independent rollouts. For the Hopper-v1, Walker2d-v1, Ant-v1, and Humanoid-v1 tasks the
default reward functions include a survival bonus, which rewards RL agents with a constant reward at
each timestep, as long as a termination condition (i.e., falling over) has not been reached. During
training, we removed these survival bonuses, a choice we motivate in Appendix A.1. We also defer to
Appendix A.3 the sensitivity analysis of ARS to the choice of hyperparameters.
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Three random seeds evaluation: We compare the different versions of ARS to the following
methods: Trust Region Policy Optimization (TRPO), Deep Deterministic Policy Gradient (DDPG),
Natural Gradients (NG), Evolution Strategies (ES), Proximal Policy Optimization (PPO), Soft
Actor Critic (SAC), Soft Q-Learning (SQL), A2C, and the Cross Entropy Method (CEM). For the
performance of these methods we used values reported by Rajeswaran et al. [22], Salimans et al. [23],
Schulman et al. [26], and Haarnoja et al. [9]. In light of well-documented reproducibility issues of
reinforcement learning methods [11, 12], reporting the values listed in papers rather than rerunning
these algorithms casts prior work in the most favorable light possible.

Rajeswaran et al. [22] and Schulman et al. [26] evaluated the performance of RL algorithms on three
random seeds, while Salimans et al. [23] and Haarnoja et al. [9] used six and five random seeds
respectively. To put all methods on equal footing, for the evaluation of ARS, we sampled three
random seeds uniformly from the interval [0, 1000) and fixed them. For each of the six OpenAI Gym
MuJoCo locomotion tasks we chose a grid of hyperparameters2, shown in Appendix A.6, and for
each set of hyperparameters we ran ARS V1, V2, V1-t, and V2-t three times, once for each of the
three fixed random seeds.

Table 1 shows the average number of episodes required by ARS, NG, and TRPO to reach a prescribed
reward threshold, using the values reported by Rajeswaran et al. [22] for NG and TRPO. For each
version of ARS and each MuJoCo task we chose the hyperparameters which minimize the average
number of episodes required to reach the reward threshold. The corresponding training curves of
ARS are shown in Figure 3 of Appendix A.2. For all MuJoCo tasks, except Humanoid-v1, we used
the same reward thresholds as Rajeswaran et al. [22]. Our choice to increase the reward threshold for
Humanoid-v1 is motivated by the presence of the survival bonuses, as discussed in Appendix A.1.

Average # episodes to reach reward threshold
Task Threshold ARS NG-lin NG-rbf TRPO-nn

V1 V1-t V2 V2-t
Swimmer-v1 325 100 100 427 427 1450 1550 N/A 3

Hopper-v1 3120 89493 51840 3013 1973 13920 8640 10000
HalfCheetah-v1 3430 10240 8106 2720 1707 11250 6000 4250

Walker2d-v1 4390 392000 166133 89600 24000 36840 25680 14250
Ant-v1 3580 101066 58133 60533 20800 39240 30000 73500

Humanoid-v1 6000 N/A N/A 142600 142600 ⇡130000 ⇡130000 UNK4

Table 1: A comparison of ARS, NG, and TRPO on the MuJoCo locomotion tasks. For each task we
show the average number of episodes required to achieve a prescribed reward threshold, averaged
over three random seeds. We estimated the number of episodes required by NG to reach a reward of
6000 for Humanoid-v1 based on the learning curves presented by Rajeswaran et al. [22].

Table 1 shows that ARS V1 can train policies for all tasks except Humanoid-v1, which is successfully
solved by ARS V2. Secondly, we note that ARS V2 reaches the prescribed thresholds for Swimmer-
v1, Hopper-v1, and HalfCheetah-v1 faster than NG or TRPO, and matches the performance of NG
on the Humanoid-v1. On Walker2d-v1 and Ant-v1, ARS V2 is outperformed by NG. Nonetheless,
ARS V2-t surpasses the performance of NG on these two tasks. Although TRPO hits the reward
threshold for Walker2d-v1 faster than ARS, our method either matches or surpasses TRPO in the
metrics reported by Haarnoja et al. [9] and Schulman et al. [26].

Precise comparisons to more RL methods are provided in Appendix A.2. Here we offer a summary.
Salimans et al. [23] reported the average number of episodes required by ES to reach a prescribed
reward threshold, on four of the locomotion tasks. ARS surpassed ES on all of those tasks. Haarnoja
et al. [9] reported the maximum reward achieved by SAC, DDPG, SQL, and TRPO after a prescribed
number of timesteps, on four of the locomotion tasks. With the exception of SAC on HalfCheetah-v1
and Ant-v1, ARS outperformed competing methods. Schulman et al. [26] reported the maximum
reward achieved by PPO, A2C, CEM, and TRPO after a prescribed number of timesteps, on four of

2Recall that ARS V1 and V2 take in only three hyperparameters: the step-size ↵, the number of perturbation
directions N , and scale of the perturbations ⌫. ARS V1-t and V2-t take in an additional hyperparameter, the
number of top directions used b (b  N ).

3N/A means that the method did not reach the reward threshold.
4UNK stands for unknown.
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the locomotion tasks. With the exception of PPO on Walker2d-v1, ARS matched or surpassed the
performance of competing methods.

A hundred seeds evaluation: For a more thorough evaluation of ARS, we sampled 100 distinct
random seeds uniformly at random from the interval [0, 10000). Then, using the hyperparameters
selected for Table 1, we ran ARS for each of the six MuJoCo locomotion tasks and the 100 random
seeds. The results are shown in Figure 1. Such a thorough evaluation was feasible because ARS
has a small computational footprint. As discussed in Appendix A.3, ARS is at least 15 times more
computationally efficient on the MuJoCo benchmarks than competing methods.

Figure 1 shows that 70% of the time ARS trains policies for all the MuJoCo locomotion tasks, with
the exception of Walker2d-v1 for which it succeeds only 20% of the time. Moreover, ARS succeeds
at training policies a large fraction of the time while using a competitive number of episodes.

Average reward evaluated over 100 random seeds, shown by percentile
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Figure 1: An evaluation of ARS over 100 random seeds on the MuJoCo locomotion tasks. The
dotted lines represent median rewards and the shaded regions represent percentiles. For Swimmer-v1
we used ARS V1. For Hopper-v1, Walker2d-v1, and Ant-v1 we used ARS V2-t. For HalfCheetah-v1
and Humanoid-v1 we used ARS V2.

There are two types of random seeds represented in Figure 1 that cause ARS to not reach high rewards.
There are random seeds on which ARS eventually finds high reward policies when sufficiently many
iterations of ARS are performed, and there are random seeds which lead ARS to discover locally
optimal behaviors. For the Humanoid model, ARS found numerous distinct gaits, including ones
during which the Humanoid hops only on one leg, walks backwards, or moves in a swirling motion.
Such gaits were found by ARS on the random seeds which cause slower training. While multiple
gaits for Humanoid models have been previously observed [10], our evaluation better emphasizes
their prevalence. The presence of local optima is inherent to non-convex optimization, and our results
show that RL algorithms should be evaluated on many random seeds for determining the frequency
with which local optima are found. Finally, we remark that ARS is the least sensitive to the choice of
random seed used when applied to HalfCheetah-v1, a task which is often used for the evaluation of
sensitivity of algorithms to the choice of random seeds.

Linear policies are sufficiently expressive for MuJoCo: We discussed how linear policies can
produce diverse gaits for the MuJoCo models, showing that they are sufficiently expressive to capture
diverse behaviors. Table 2 shows that linear policies can also achieve high rewards on all the MuJoCo
locomotion tasks. In particular, for Humanoid-v1 and Walker2d-v1, ARS found policies that achieve
significantly higher rewards than any other results we encountered in the literature. These results
show that linear policies are perfectly adequate for the MuJoCo locomotion tasks, reducing the need
for more expressive and more computationally expensive policies.
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Maximum reward achieved
Task ARS Task ARS Task ARS

Swimmer-v1 365 HalfCheetah-v1 6722 Ant 5146
Hopper-v1 3909 Walker 11389 Humanoid 11600

Table 2: Maximum average reward achieved by ARS, where we took the maximum over all sets of
hyperparameters considered and the three fixed random seeds.

5 Discussion

With a few algorithmic augmentations, basic random search of static, linear policies achieves state-
of-the-art sample efficiency on the MuJoCo locomotion tasks. Surprisingly, no special nonlinear
controllers are needed to match the performance recorded in the RL literature. Moreover, since
our algorithm and policies are simple, we were able to perform extensive sensitivity analysis. This
analysis brings us to an uncomfortable conclusion that the current evaluation methods adopted in the
deep RL community are insufficient to evaluate whether proposed methods are actually solving the
studied problems.

The choice of benchmark tasks and the small number of random seeds do not represent the only issues
of current evaluation methodology. Though many RL researchers are concerned about minimizing
sample complexity, it does not make sense to optimize the running time of an algorithm on a single
problem instance. The running time of an algorithm is only a meaningful notion if either (a) evaluated
on a family of problem instances, or (b) when clearly restricting the class of algorithms.

Common RL practice, however, does not follow either (a) or (b). Instead, researchers run an algorithm
A on a task T with a given hyperparameter configuration, and plot a “learning curve” showing the
algorithm reaches a target reward after collecting X samples. Then the “sample complexity" of the
method is reported as the number of samples required to reach a target reward threshold, with the
given hyperparameter configuration. However, any number of hyperparameter configurations can
be tried. Any number of algorithmic enhancements can be added or discarded and then tested in
simulation. For a fair measurement of sample complexity, should we not count the number of rollouts
used for all tested hyperparameters?

Through optimal hyperparameter tuning one can artificially improve the perceived sample efficiency
of a method. Indeed, this is what we see in our work. By adding a third algorithmic enhancement to
basic random search (i.e., enhancing ARS V2 to V2-t), we are able to improve the sample efficiency of
an already highly performing method. Considering that most of the prior work in RL uses algorithms
with far more tunable parameters and neural nets whose architectures themselves are hyperparameters,
the significance of the reported sample complexities for those methods is not clear. This issue is
important because a meaningful sample complexity of an algorithm should inform us on the number
of samples required to solve a new, previously unseen task.

In light of these issues and of our empirical results, we make several suggestions for future work:

• Simple baselines should be established before moving forward to more complex benchmarks
and methods. We propose the Linear Quadratic Regulator as a reasonable testbed for RL
algorithms. LQR is well-understood when the model is known, problem instances can be
easily generated with a variety of different levels of difficulty, and little overhead is required
for replication; see Appendix A.4 for more details.

• When games and physics simulators are used for evaluation, separate problem instances
should be used for tuning and evaluating RL methods. Moreover, large numbers of random
seeds should be used for statistically significant evaluations.

• Rather than trying to develop general purpose algorithms, it might be better to focus on
specific problems of interest and find targeted solutions.

• More emphasis should be put on the development of model-based methods. For many
problems, such methods have been observed to require fewer samples than model-free
methods. Moreover, the physics of the systems should inform the parametric classes of
models used for different problems. Model-based methods incur many computational
challenges themselves, and it is quite possible that tools from deep RL, such as improved
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tree search, can provide new paths forward for tasks that require the navigation of complex
and uncertain environments.
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