
Appendix

The appendix is organized as follows. In Section A, we give additionaal background on the literature
for sparse linear regression. In Section B, we give calculations for quantities from Section 3.1 in
the main text, where we set up our main linear model. In Section C, we give complete proofs for
Theorems 3.1 and 3.2. Finally, we provide additional details for our experiments in Section D.

A Additional background on SLR

Efficient methods The `0 estimator, which minimizes the reconstruction error ky � Xb�k22 over all
k-sparse regression vectors, achieves prediction error bound of form ([7], [35]): 1/nkX�⇤ � Xb�k22 .
(�2

k log d)/n but takes exponential time O(nk) to compute. Various efficient methods have been
proposed to circumvent this computational intractability: basis pursuit, Lasso[38], and the Dantzig
selector [10] are some of initial approaches. Greedy pursuit methods such as OMP [30], IHT[6],
CoSaMP[32], and FoBa[46] among others offer more computationally efficient alternatives.14 These
algorithms achieve the same prediction error guarantee as `0 up to a constant, but under the assumption
that X satisfies certain properties, such as restricted eigenvalue ([5]), compatibility ([39]), restricted
isometry property ([11]), (in)coherence ([8]), among others. In this work, we focus on the restricted
eigenvalue (see Definition 2.1 for a formal definition). We remark that restricted eigenvalue is among
the weakest, and is only slightly stronger than the compatibility condition. Moreover, [47] give
complexity-theoretic evidence for the necessity of dependence on the RE constant for certain worst
case instances of the design matrix. See [40] for implications between various conditions. Without
such conditions on X, the best known guarantees provably obtain only a 1/

p
n decay rather than a

1/n decay in prediction error as number of samples increase; [48] give some evidence that this gap
may be unavoidable.

Optimal estimators The SLR estimators we consider are efficiently computable. Another line of
work considers arbitrary estimators that are not necessarily efficiently computable. These include BIC
[7], Exponential Screening [36], and Q-aggregation [12]. Such estimators achieve strong guarantees
regarding minimax optimality in the form of oracle inequalities on MSE.

Restricted Eigenvalue The restricted eigenvalue (RE) lower bounds the quadratic form defined by X
in all (approximately) sparse directions. RE is related to more general notions such as the restricted

strong convexity [33], which roughly says that loss function is not too “flat” near the point of interest;
this allows us to convert convergence in loss value to convergence in parameter value. In general
when d > n, we cannot guarantee this for all directions, but it suffices to consider the set C(S) of
“mostly” sparse directions.

We remark that the above condition is very natural and likely unavoidable. [47] indicate that the
dependence of the above prediction error guarantee on RE cannot be removed, under a standard
conjecture in complexity theory. [34, 37] show that RE holds with high probability for correlated
Gaussian designs (though it remains NP-hard to verify it [2]).

A recent line of work [14, 19] studies the algorithmic hardness of SLR when X has Gaussian design.

B Deferred calculations from Section 3.1

B.1 Linear minimum mean-square-error estimation

Given random variables Y and X (this can be a vector more generally), what is the best prediction
for Y conditioned on knowing X = x? What is considered “best” can vary, but here we consider the
mean squared error. That is, we want to come up with ŷ(x) s.t.

E[(Y � ŷ)2]

is minimized.

14Note that some of these algorithms were presented for compressed sensing; nonetheless, their guarantees
can be converted appropriately.
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It is not hard to show that ŷ is just the conditional expectation of Y conditioned on X . The minimum
mean-square-error estimate can be a highly nontrivial function of X .

The linear minimum mean-square-error (LMMSE) estimate instead restricts the attention to estimators
of the form Ŷ = AX + b. Notice here that A and b are fixed and are not functions of X .

One can show that the LMMSE estimator is given by: A = (⌃XX)�1)⌃XY , where ⌃· is the
appropriately indexed covariance matrix, and b is chosen in the obvious way to make our estimator
unbiased.

B.2 Calculations for the linear model

To recap our setup, we input the design matrix X = X�i and the response variable y = Xi as inputs
to an SLR black-box. Our goal is to express y as a linear function of X plus some independent noise
w. Without loss of generality let i = 1, and for our discussion below assume S = {1, ..., k}. For
illustration, at times we will simplify our calculation further for the uniform case where ui =

1p
k

for
1  i  k and ui = 0 for i > k.

For the moment, just consider one row of X, corresponding to one particular sample X of the original
SPCA distribution. Since X is jointly Gaussian, we can express (the expectation of) y = X1 as a
linear function of the other coordinates:

E[X1|X2:d = x2:d] = ⌃1,2:d(⌃2:d)
�1x2:d

Hence we can write
X1 = ⌃1,2:d(⌃2:d)

�1X2:d + w

where w ⇠ N (0,�2) for some � to be determined and w ? Xi for i = 2, .., d.

By directly computing the variance of the above expression for X1, we deduce an expression for the
noise level:

�2 = ⌃11 � ⌃1,2:d(⌃2:d)
�1⌃2:d,1

Note that �2 is just ⌃11 under H0. We proceed to compute �2 under H1, when ⌃ = Id + ✓uu>.
To compute (⌃2:d)�1, we use (a special case of) the Sherman-Morrison formula: (I + wv>)�1 =

I � wv
>

1+v>w
.

⌃�1
2:d =

�
Id�1 + ✓u�1u

>
�1

��1
= Id�1 �

✓

1 + (1� u2
1)✓

u�1u
>
�1

where u�1 2 Rd�1 is u restricted to coordinates 2, ..., d.

⌃1,2:d(⌃2:d)
�1⌃2:d,1 =

✓
✓u1

1 + (1� u2
1)

◆2

u>
�1(I + ✓u�1u

>
�1)u�1

=
✓2u2

1(1� u2
1)

1 + (1� u2
1)✓

(specializing to uniform case again)

=
✓2

k

✓
1� 1

k

◆
1

1 + k�1
k
✓
⇡ ✓2

k(1 + ✓)

Finally, substituting into the expression for �2

�2 = 1 + ✓u2
1 �

✓2u2
1(1� u2

1)

1 + (1� u2
1)✓

= 1 +
✓u2

1

1 + (1� u2
1)✓

 2 if ✓  1
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We remark that the noise level of column 1 has been reduced by roughly ⌧ := ✓
2

k(1+✓) by regressing
on correlated columns.

In summary, under H1 (and if 1 2 S) we can write
y = X�⇤ + w

where
�⇤ = (⌃2:d)

�1⌃2:d,1

= (I � ✓

1 + (1� u1)2✓
u�1u

>
�1)✓u1u�1

= ✓u1

✓
1� ✓

1 + (1� u2
1)✓

(1� u2
1)

◆
u�1

=
✓u1

1 + (1� u2
1)✓

u�1

(technically, the definition of �⇤ on the RHS is a k � 1 dimensional vector, but we augment it with
zeros to make it d � 1 dimensional) and w ⇠ N (0,�2) where �2 = 1 + ✓u

2
1

1+(1�u
2
1)✓

. Note that in
the uniform case, �⇤ ! 1

k�11k�1 as ✓ ! 1 where 1k�1 is uniform 1 on first k � 1 coordinates, as
expected.

B.3 Properties of the design matrix X

Restricted eigenvalue (RE) Here we check that X defined as in Section 3.1 has constant restricted
eigenvalue constant. This allows us to apply Condition 2.2 for the SLR black-box with good guarantee
on prediction error.

The rows of X are drawn from N (0, Id�1⇥d�1 + ✓u�1u>
�1) where u�1 is u restricted to coordinates

2, ..., d wlog.15

Let ⌃ = Id�1⇥d�1 + ✓u�1u>
�1. We can show that ⌃1/2 satisfies RE with � = 1 by bounding ⌃’s

minimum eigenvalue. First, we compute the eigenvalues of ✓u�1u>
�1. ✓u�1u>

�1 has a nullspace of
dimension d� 2, so eigenvalue 0 has multiplicity d� 2. u�1 is a trivial eigenvector with eigenvalue
✓u>

�1u�1 = ✓ k�1
k

. Therefore, ⌃ has eigenvalues 1 and 1 + ✓ k�1
k

.

Now we can extend this to the sample matrix X by applying Corollary 1 of [34] (also see Example
3 therein), and conclude that as soon as n & maxj ⌃jj

�2 k log d = C(1 + ✓

k
)k log d = ⌦(k log p) the

matrix X satisfies RE with �(X) = 1/8.

We remark that the following small technical condition also appears in known bounds on prediction
error:

Column normalization This is a condition on the scale of X relative to the noise in SLR, which is
always �2.

kX✓k22
n

 k✓k22
for all ✓ 2 B0(2k)

We can always rescale X (and hence X) to satisfy this, which would also rescale the noise level � in
our linear model since the noise is derived from coming X from the SPCA generative model, rather
than added independently as in the usual SLR setup.

Hence, since all scale dependent quantities are scaled by the same amount when we scale the
original data X, wlog we may continue to use the same X and � in our analysis. As the column
normalization condition does not affect us, we drop it from Condition 2.2 of our black-box assumption.

15We assume here that 1 2 S as in the previous section
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C Proofs of main Theorems

In this section we analyze the distribution of Qi under both H0 and H1 on our way to proving
Theorems 3.1 and 3.2. Note that though the dimension and the sparsity of our SLR instances are d� 1
and k � 1 (since we remove one column from the SPCA data matrix X to obtain the design matrix
X), for ease of exposition we just use d, k in their place since it does not affect the analysis in any
meaningful way.

First, we review a useful tail bound on �2 random variables.
Lemma C.1 (Concentration on upper and lower tails of the �2 distribution ([28], Lemma 1)). Let Z
be the �2

random variable with k degrees of freedom. Then,

Pr(Z � k � 2
p
kt+ 2t)  exp(�t)

Pr(Z �X � 2
p
kt)  exp(�t)

We can simplify the upper tail bound as follows for convenience:
Corollary C.2. For �2

r.v. Z with k degrees of freedom and deviation t � 1,Pr
�
Z�k

k
� 4t

�


exp(�kt).

C.1 Analysis of Qi under H1

Without loss of generality assume the support of u, denoted S, is {1, ..., k} and consider the first
coordinate. We expand Q1 by using y = X�⇤ + w as follows:

Q1 =
1

n
kyk22 �

1

n
ky � Xb�k22 =

1

n
kX�⇤ + wk22 �

1

n
kX�⇤ � Xb�k22 �

2

n
w>(X�⇤ � Xb�)� 1

n
kwk22

=
1

n
kX�⇤k22 �

2

n
w>X�⇤ � 1

n
(kX�⇤ � Xb�k22)�

2

n
w>(X�⇤ � Xb�)

Observe that the noise term kwk22 cancels conveniently.

Before bounding each of these four terms, we introduce a useful lemma to bound cross terms involving
noise w:
Lemma C.3 (Lemmas 8 and 9, [35]). For any fixed X 2 Rn⇥d

and independent noise vector w 2 Rn

with i.i.d. N (0,�2) entries:

|w>X✓|
n

 9�
kX✓k2

n

r
k log

d

k
for all ✓ 2 B0(2k) w.p. at least � 1� 2 exp(�40k log(d/k))

We bound each term as follows:

Term 1. The first term kX�⇤k2
2

n
contains the signal from the spike; notice its resemblance to the

k-sparse eigenvalue statistic. Rewritten in another way,

(�⇤)>
X>X
n

�⇤ = (�⇤)>b⌃2:d�
⇤

Hence, we expect this to concentrate around (�⇤)>⌃2:d�⇤, which simplifies to (see Appendix B.2
for the full calculation):

(�⇤)>⌃2:d�
⇤ = (⌃1,2:d⌃

�1
2:d)⌃2:d(⌃

�1
2:d⌃2:d,1) =

✓2u2
1(1� u2

1)

1 + (1� u2
1)✓

For concentration, observe that we may rewrite

(�⇤)>b⌃2:d�
⇤ =

1

n

nX

i=1

(X(i)�⇤)2

where X(i) is the ith row, representing the ith sample. This is just an appropriately scaled chi-squared
random variable with n degrees of freedom (since each X(i)�⇤ is i.i.d. normal), and the expected
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value of each term in the sum is the same as computed above. Applying a lower tail bound on �2

distribution (see Appendix ), with probability at least 1� � we have

(�⇤)>b⌃2:d�
⇤ � ✓2u2

1(1� u2
1)

1 + (1� u2
1)✓

·
 
1� 2

r
log(1/�)

n

!

Choosing � = exp(�k log d),

kX�⇤k22
n

� ✓2u2
1(1� u2

1)

1 + (1� u2
1)✓

·
 
1� 2

r
k log d

n

!

(a)
� 1

2
· ✓

2u2
1(1� u2

1)

1 + (1� u2
1)✓

(b)
� c2

min

4

✓2

k
(1)

where (a) as long as n > 16k log d and (b) since ✓  1 and u2
1(1� u2

1) & c2
min

/k under Condition
(C1).

Term 2. The absolute value of the second term 2
n
w>X�⇤ can be bounded by 18kX�⇤k2

n

q
k log d

k

using Lemma C.3. From (1) as long as ✓2 > c1

c
2
min

k
2 log d

n
(c1 is some constant that we will choose

later),
kX�⇤k22

n
� c2

min

4

✓2

k
� c1

4

k log d

n

so the first two terms together are lower bounded by:

kX�⇤k2
n

(kX�⇤k2 � 18
p
k log d/k) � c1

5

k log d

n
, (2)

for large enough constant c1.

Term 3. The third term, which is the prediction error kX�⇤�X�̂k2
2

n
, is upper bounded by C

�(X)2
�
2
k log d

n

with probability at least 1�C exp(�C 0k log d) by Condition 2.2 on our SLR black-box. Note �2 < 2
if we assume ✓  1.16 Now, �(X) � 1

8 with probability at least 1�C exp(�C 0n) if n > C 00k log d
since ✓  1 (see Appendix B.3 for more details). Then,

1

n
kX�⇤ � X�̂k22  C

k log d

n

Term 4. The contribution of the last cross term 2
n
w>X(�⇤ � b�) can also be bounded by Lemma C.3

w.h.p. (note �⇤ � b� 2 B0(2k))

|w>X(�⇤ � b�)|
n

 9�
kX(�⇤ � b�)k2

n

r
k log

d

k
.

Combined with the above bound for prediction error, this bounds the cross term’s contribution by at
most C k log d

n
.

Putting the bounds on four terms together, we get the following lower bound on Q.

Lemma C.4. There exists constants c1, c2, c3, c4 s.t. if ✓2 > c1

c
2
min

k
2 log d

n
and n > c2k log d, with

probability at least 1� c3 exp(�c4k log d), for any i 2 S that satisfies the size bound in Condition

(C1),

Qi >
13k log d

n
16As smaller ✓ makes the problem only harder, we assume ✓  1 for ease of computation and as standard in

literature.
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Proof. From 1-4 above, by union bound, all four bounds fail to hold with probability at most
c3 exp(�c4k log d) for appropriate constants if ✓2 > c1

c
2
min

k
2 log d

n
(required by Term 2) and n >

c2k log d for some c2 > 0 (note that both terms 1 and 3 require sufficient number of samples n). If
all four bounds hold, we have:

Qi >
c1
5

k log d

n
� C 0 k log d

n

where C,C 0 are just some constants. So if c1 is sufficiently large, the above bound is greater than
13k log d

n
.17

C.2 Analysis of Qi under H0

We could proceed by decomposing Qi the same way as in H1; all the error terms including prediction
error are still bounded by O(k log d/n) in magnitude, and the signal term is gone now since �⇤ = 0.
This will give the same upper bound (up to a constant) as the following proof is about to show.
However, we find the following direct analysis more informative and intuitive.

Since our goal is to upper bound Qi under H0, we may let b� be the optimal possible choice given y
and X (one that minimizes ky � Xb�k22, and hence maximizes Qi). We further break this into two
steps. We enumerate over all possible subsets S of size k, and conditioned on each S, choose the
optimal b�.

Fix some support S of size k. The span of XS is at most a k-dimensional subspace of Rn. Hence,
we can consider some unitary transformation U of Rn that maps the span of XS into the subspace
spanned by the first k standard basis vectors. Since U is an isometry by definition,

nQi = kyk22 � ky � Xb�Sk22 = kUyk22 � kUy � UXb�Sk22

Let ỹ = Uy. Since UXb�S has nonzero entries only in the first k coordinates, the optimal choice (in
the sense of maximizing the above quantity) of b�S is to choose linear combinations of the first k
columns of X so that UXb�S equals the first k coordinates of ỹ. Then, nQi is just the squared norm of
the first k coordinates of ỹ. Since U is some unitary matrix that is independent of y (being a function
of XS which is independent of y), ỹ still has i.i.d. N (0, 1) entries, and hence nQi is a �2-var with k
degrees of freedom.

Now we apply an upper tail bound on the �2 distribution (see Corollary C.2). Choosing t = 3 log d

k
,

and after union bounding over all
�
d

k

�

�
de

k

�k supports S, nQi > k + 12k log d

k
� 13k log d

k
with

probability at most exp(�3k log d

k
+ k log de

k
)  exp(�k log d

k
) as long as d

k
� e.

Lemma C.5. Under H0, 8i Qi 
13k log d

k
n

w.p. at least 1� exp(�k log d

k
).

Remark C.6. Union bounding over all S is necessary for the analysis. For instance, we cannot just
fix S to be S(b�) (this denotes the support of b�) since b� is a function of y, so fixing S changes the
distribution of y.
Remark C.7. Observe that this analysis of Qi for H0 also extends immediately to H1 when coordi-
nate i is outside the support. The reason the analysis cannot extend to when i 2 S is because U is not
independent of y in this case.

Corollary C.8. Under H1, if i 62 S, Qi 
13k log d

k
n

w.p. at least 1� exp(�k log d

k
).

C.3 Proof of Theorem 3.1

Proof. Proof follows immediately from Lemma C.4 and Lemma C.5. We can use our statistics Qi to
separate H0 and H1. Under H0, applying Lemma C.5 to each coordinate i and union bounding, 8i,
Qi 

13k log d
k

n
with probability at least 1� exp(�Ck log d). Meanwhile, under H1, if we consider

17The choice of constant 13 may seem a little arbitrary, but this is just to be consistent with Lemma C.5.
There, the constant just falls out of convenient choices for simplification, and is not optimized for in particular.
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any coordinate i that satisfies Condition (C1), Lemma C.4 gives

Qi >
13k log d

n

with probability at least 1 � c3 exp(�c4k log d). Since  tests whether Qi >
13k log d

k
n

for at least
one i,  distinguishes H0 and H1 successfully, with bound on type I and type II error probability
c3 exp(�c4k log d) for appropriate constants c3, c4 (note, these may be different from those of
Lemma C.4). For runtime, note that we make d calls to the SLR black-box and work with matrices of
size n⇥ d.

C.4 Proof of Theorem 3.2

Proof. As long as every ui for i 2 S has magnitude cmin/
p
k as in Condition (C2), we can repeat

the same analysis from above to all coordinates in the support. If ✓ meets the same threshold,
Qi > 13k log d

k
/n for all i 2 S with probability at least 1 � C exp(�C 0k log d) by union bound.

Also, recall Qi > 13k log d

k
/n for any i 62 S with probability at most C exp(�C 0k log d) by

Corollary C.8. By union bound over all d� k coordinates outside the support, the error probability
is at most d · C exp(�C 0k log d)  C exp(�C 00k log d). We showed that with high probability we
exactly recover the support S of u.

Runtime analysis is identical to that for the hypothesis test.

Running time The runtime of both Algorithms 1 and 2 is Õ(nd2),18 if we assume the SLR black-
box takes nearly linear time in input size, Õ(nd), which is achieved by known existing algorithms.
Note that computing the sample covariance matrix alone takes O(nd2) time, assuming one is using a
naive implementation of matrix multiplication. For a broad comparison, we consider spectral methods
and SDP-based methods, though there are methods that do not fall in either category. Spectral
methods such as covariance thresholding or truncated power method have an iteration cost O(d2)
due to operating on d⇥ d matrices, and hence have total running time Õ(d2) (Õ(·) hiding precise
convergence rate) in addition to the same O(nd2) initialization time. SDP-based methods in general
take Õ(d3) time, the time taken by interior point methods to optimize. So overall, Algorithms 1 and
2 are competitive choices for (single spiked) SPCA, at least theoretically, though they seem slower in
practice.

D Experimental Setup

We provide some futher details of the experimental setup, including selection of hyperparameters.

For the “SPCA” algorithm of [49], we used their direct implementation using an initialization with
PCA (rather than the self-contained alternating minimization algorithm they present as an alternative).
We also leave out the `2 ridge penalty for convenience of implementation (their algorithm already
performed very well in our experiments, so it was unnecessary to implement the full version).

For the truncated power method, we used the convergence criterion that the l2 norm of the difference
between eigenvectors from two consecutive iterations is less than ✏ = 0.01.

For covariance thresholding, we tried various levels of parameter ⌧ , which controls the threshold for
soft-thresholding, and indeed it performed best at [15]’s recommended value of ⌧ ⇡ 4, which is the
choice compared against.

For our Q-based algorithm SPCAvSLR, we used thresholded Lasso with � = 0.1 where � controls

the weight of the `1 regularization. This is close to the recommended choice of � = 4�
q

log d

n
from

[47] for our parameter setting.

18In what follows Õ(·) hides possible log and accuracy parameter " factors.

18


	Introduction
	Our contributions

	Preliminaries
	Problem formulation for SPCA
	Background on SLR

	Algorithms and main results
	The linear model
	Designing the test statistic
	Algorithms
	Comments

	Experiments
	Previous work
	Conclusion
	Additional background on SLR
	Deferred calculations from Section 3.1
	Linear minimum mean-square-error estimation
	Calculations for the linear model
	Properties of the design matrix X

	Proofs of main Theorems
	Analysis of Qi under H1
	Analysis of Qi under H0
	Proof of Theorem 3.1
	Proof of Theorem 3.2

	Experimental Setup

