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Abstract

Many probabilistic models of interest in scientific computing and machine learning
have expensive, black-box likelihoods that prevent the application of standard
techniques for Bayesian inference, such as MCMC, which would require access
to the gradient or a large number of likelihood evaluations. We introduce here a
novel sample-efficient inference framework, Variational Bayesian Monte Carlo
(VBMC). VBMC combines variational inference with Gaussian-process based,
active-sampling Bayesian quadrature, using the latter to efficiently approximate
the intractable integral in the variational objective. Our method produces both
a nonparametric approximation of the posterior distribution and an approximate
lower bound of the model evidence, useful for model selection. We demonstrate
VBMC both on several synthetic likelihoods and on a neuronal model with data
from real neurons. Across all tested problems and dimensions (up to D = 10),
VBMC performs consistently well in reconstructing the posterior and the model
evidence with a limited budget of likelihood evaluations, unlike other methods that
work only in very low dimensions. Our framework shows great promise as a novel
tool for posterior and model inference with expensive, black-box likelihoods.

1 Introduction

In many scientific, engineering, and machine learning domains, such as in computational neuro-
science and big data, complex black-box computational models are routinely used to estimate model
parameters and compare hypotheses instantiated by different models. Bayesian inference allows us
to do so in a principled way that accounts for parameter and model uncertainty by computing the
posterior distribution over parameters and the model evidence, also known as marginal likelihood or
Bayes factor. However, Bayesian inference is generally analytically intractable, and the statistical
tools of approximate inference, such as Markov Chain Monte Carlo (MCMC) or variational inference,
generally require knowledge about the model (e.g., access to the gradients) and/or a large number of
model evaluations. Both of these requirements cannot be met by black-box probabilistic models with
computationally expensive likelihoods, precluding the application of standard Bayesian techniques of
parameter and model uncertainty quantification to domains that would most need them.

Given a dataset D and model parameters x ∈ RD, here we consider the problem of computing both
the posterior p(x|D) and the marginal likelihood (or model evidence) p(D), defined as, respectively,

p(x|D) = p(D|x)p(x)
p(D)

and p(D) =
∫
p(D|x)p(x)dx, (1)

where p(D|x) is the likelihood of the model of interest and p(x) is the prior over parameters.
Crucially, we consider the case in which p(D|x) is a black-box, expensive function for which we
have a limited budget of function evaluations (of the order of few hundreds).

A promising approach to deal with such computational constraints consists of building a probabilistic
model-based approximation of the function of interest, for example via Gaussian processes (GP)
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[1]. This statistical surrogate can be used in lieu of the original, expensive function, allowing faster
computations. Moreover, uncertainty in the surrogate can be used to actively guide sampling of the
original function to obtain a better approximation in regions of interest for the application at hand.
This approach has been extremely successful in Bayesian optimization [2, 3, 4, 5, 6] and in Bayesian
quadrature for the computation of intractable integrals [7, 8].

In particular, recent works have applied GP-based Bayesian quadrature to the estimation of the
marginal likelihood [8, 9, 10, 11], and GP surrogates to build approximations of the posterior [12, 13].
However, none of the existing approaches deals simultaneously with posterior and model inference.
Moreover, it is unclear how these approximate methods would deal with likelihoods with realistic
properties, such as medium dimensionality (up to D ∼ 10), mild multi-modality, heavy tails, and
parameters that exhibit strong correlations—all common issues of real-world applications.

In this work, we introduce Variational Bayesian Monte Carlo (VBMC), a novel approximate inference
framework that combines variational inference and active-sampling Bayesian quadrature via GP
surrogates.1 Our method affords simultaneous approximation of the posterior and of the model
evidence in a sample-efficient manner. We demonstrate the robustness of our approach by testing
VBMC and other inference algorithms on a variety of synthetic likelihoods with realistic, challenging
properties. We also apply our method to a real problem in computational neuroscience, by fitting a
model of neuronal selectivity in visual cortex [14]. Among the tested methods, VBMC is the only one
with consistently good performance across problems, showing promise as a novel tool for posterior
and model inference with expensive likelihoods in scientific computing and machine learning.

2 Theoretical background

2.1 Variational inference

Variational Bayes is an approximate inference method whereby the posterior p(x|D) is approximated
by a simpler distribution q(x) ≡ qφ(x) that usually belongs to a parametric family [15, 16]. The
goal of variational inference is to find the variational parameters φ for which the variational posterior
qφ “best” approximates the true posterior. In variational methods, the mismatch between the two
distributions is quantified by the Kullback-Leibler (KL) divergence,

KL [qφ(x)||p(x|D)] = Eφ
[
log

qφ(x)

p(x|D)

]
, (2)

where we adopted the compact notation Eφ ≡ Eqφ . Inference is then reduced to an optimization
problem, that is finding the variational parameter vector φ that minimizes Eq. 2. We rewrite Eq. 2 as

log p(D) = F [qφ] + KL [qφ(x)||p(x|D)] , (3)

where

F [qφ] = Eφ
[
log

p(D|x)p(x)
qφ(x)

]
= Eφ [f(x)] +H[qφ(x)] (4)

is the negative free energy, or evidence lower bound (ELBO). Here f(x) ≡ log p(D|x)p(x) =
log p(D,x) is the log joint probability andH[q] is the entropy of q. Note that since the KL divergence
is always non-negative, from Eq. 3 we haveF [q] ≤ log p(D), with equality holding if q(x) ≡ p(x|D).
Thus, maximization of the variational objective, Eq. 4, is equivalent to minimization of the KL
divergence, and produces both an approximation of the posterior qφ and a lower bound on the
marginal likelihood, which can be used as a metric for model selection.

Normally, q is chosen to belong to a family (e.g., a factorized posterior, or mean field) such that
the expected log joint in Eq. 4 and the entropy can be computed analytically, possibly providing
closed-form equations for a coordinate ascent algorithm. Here, we assume that f(x), like many
computational models of interest, is an expensive black-box function, which prevents a direct
computation of Eq. 4 analytically or via simple numerical integration.

2.2 Bayesian quadrature

Bayesian quadrature, also known as Bayesian Monte Carlo, is a means to obtain Bayesian estimates
of the mean and variance of non-analytical integrals of the form 〈f〉 =

∫
f(x)π(x)dx, defined on

1Code available at https://github.com/lacerbi/vbmc.
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a domain X = RD [7, 8]. Here, f is a function of interest and π a known probability distribution.
Typically, a Gaussian Process (GP) prior is specified for f(x).

Gaussian processes GPs are a flexible class of models for specifying prior distributions over
unknown functions f : X ⊆ RD → R [1]. GPs are defined by a mean function m : X → R and a
positive definite covariance, or kernel function κ : X × X → R. In Bayesian quadrature, a common
choice is the Gaussian kernel κ(x,x′) = σ2

fN (x;x′,Σ`), with Σ` = diag[`(1)
2
, . . . , `(D)2], where

σf is the output length scale and ` is the vector of input length scales. Conditioned on training
inputs X = {x1, . . . ,xn} and associated function values y = f(X), the GP posterior will have latent
posterior conditional mean fΞ(x) ≡ f(x;Ξ,ψ) and covariance CΞ(x,x

′) ≡ C(x,x′;Ξ,ψ) in
closed form (see [1]), where Ξ = {X,y} is the set of training function data for the GP and ψ is a
hyperparameter vector for the GP mean, covariance, and likelihood.

Bayesian integration Since integration is a linear operator, if f is a GP, the posterior mean and
variance of the integral

∫
f(x)π(x)dx are [8]

Ef |Ξ[〈f〉] =
∫
fΞ(x)π(x)dx, Vf |Ξ[〈f〉] =

∫ ∫
CΞ(x,x

′)π(x)dxπ(x′)dx′. (5)

Crucially, if f has a Gaussian kernel and π is a Gaussian or mixture of Gaussians (among other
functional forms), the integrals in Eq. 5 can be computed analytically.

Active sampling For a given budget of samples nmax, a smart choice of the input samples X would
aim to minimize the posterior variance of the final integral (Eq. 5) [11]. Interestingly, for a standard
GP and fixed GP hyperparameters ψ, the optimal variance-minimizing design does not depend on the
function values at X, thereby allowing precomputation of the optimal design. However, if the GP
hyperparameters are updated online, or the GP is warped (e.g., via a log transform [9] or a square-root
transform [10]), the variance of the posterior will depend on the function values obtained so far, and
an active sampling strategy is desirable. The acquisition function a : X → R determines which
point in X should be evaluated next via a proxy optimization xnext = argmaxxa(x). Examples of
acquisition functions for Bayesian quadrature include the expected entropy, which minimizes the
expected entropy of the integral after adding x to the training set [9], and the much faster to compute
uncertainty sampling strategy, which maximizes the variance of the integrand at x [10].

3 Variational Bayesian Monte Carlo (VBMC)

We introduce here Variational Bayesian Monte Carlo (VBMC), a sample-efficient inference method
that combines variational Bayes and Bayesian quadrature, particularly useful for models with (moder-
ately) expensive likelihoods. The main steps of VBMC are described in Algorithm 1, and an example
run of VBMC on a nontrivial 2-D target density is shown in Fig. 1.

VBMC in a nutshell In each iteration t, the algorithm: (1) sequentially samples a batch of
‘promising’ new points that maximize a given acquisition function, and evaluates the (expensive) log
joint f at each of them; (2) trains a GP model of the log joint f , given the training set Ξt = {Xt,yt}
of points evaluated so far; (3) updates the variational posterior approximation, indexed by φt, by
optimizing the ELBO. This loop repeats until the budget of function evaluations is exhausted, or some
other termination criterion is met (e.g., based on the stability of the found solution). VBMC includes
an initial warm-up stage to avoid spending computations in regions of low posterior probability mass
(see Section 3.5). In the following sections, we describe various features of VBMC.

3.1 Variational posterior

We choose for the variational posterior q(x) a flexible “nonparametric” family, a mixture of K
Gaussians with shared covariances, modulo a scaling factor,

q(x) ≡ qφ(x) =
K∑

k=1

wkN
(
x;µk, σ

2
kΣ
)
, (6)

where wk, µk, and σk are, respectively, the mixture weight, mean, and scale of the k-th component,
and Σ is a covariance matrix common to all elements of the mixture. In the following, we assume
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Algorithm 1 Variational Bayesian Monte Carlo
Input: target log joint f , starting point x0, plausible bounds PLB, PUB, additional options

1: Initialization: t← 0, initialize variational posterior φ0, STOPSAMPLING← false

2: repeat
3: t← t+ 1
4: if t , 1 then . Initial design, Section 3.5
5: Evaluate y0 ← f(x0) and add (x0, y0) to the training set Ξ
6: for 2 . . . ninit do
7: Sample a new point xnew ← Uniform[PLB, PUB]
8: Evaluate ynew ← f(xnew) and add (xnew, ynew) to the training set Ξ
9: else

10: for 1 . . . nactive do . Active sampling, Section 3.3
11: Actively sample a new point xnew ← argmaxxa(x)
12: Evaluate ynew ← f(xnew) and add (xnew, ynew) to the training set Ξ
13: for each ψ1, . . . ,ψngp , perform rank-1 update of the GP posterior
14: if not STOPSAMPLING then . GP hyperparameter training, Section 3.4
15: {ψ1, . . . ,ψngp} ← Sample GP hyperparameters
16: else
17: ψ1 ← Optimize GP hyperparameters
18: Kt ← Update number of variational components . Section 3.6
19: φt ← Optimize ELBO via stochastic gradient descent . Section 3.2
20: Evaluate whether to STOPSAMPLING and other TERMINATIONCRITERIA
21: until fevals > MaxFunEvals or TERMINATIONCRITERIA . Stopping criteria, Section 3.7
22: return variational posterior φt, E [ELBO],

√
V [ELBO]

a diagonal matrix Σ ≡ diag[λ(1)
2
, . . . , λ(D)2]. The variational posterior for a given number of

mixture components K is parameterized by φ ≡ (w1, . . . , wK ,µ1, . . . ,µK , σ1, . . . , σK ,λ), which
has K(D + 2) +D parameters. The number of components K is set adaptively (see Section 3.6).

3.2 The evidence lower bound

We approximate the ELBO (Eq. 4) in two ways. First, we approximate the log joint probability f with
a GP with a squared exponential (rescaled Gaussian) kernel, a Gaussian likelihood with observation
noise σobs > 0 (for numerical stability [17]), and a negative quadratic mean function, defined as

m(x) = m0 −
1

2

D∑
i=1

(
x(i) − x(i)m

)2
ω(i)2

, (7)

where m0 is the maximum value of the mean, xm is the location of the maximum, and ω is a vector of
length scales. This mean function, unlike for example a constant mean, ensures that the posterior GP
predictive mean f is a proper log probability distribution (that is, it is integrable when exponentiated).
Crucially, our choice of variational family (Eq. 6) and kernel, likelihood and mean function of the
GP affords an analytical computation of the posterior mean and variance of the expected log joint
Eφ [f ] (using Eq. 5), and of their gradients (see Supplementary Material for details). Second, we
approximate the entropy of the variational posterior,H [qφ], via simple Monte Carlo sampling, and
we propagate its gradient through the samples via the reparametrization trick [18, 19].2 Armed
with expressions for the mean expected log joint, the entropy, and their gradients, we can efficiently
optimize the (negative) mean ELBO via stochastic gradient descent [21].

Evidence lower confidence bound We define the evidence lower confidence bound (ELCBO) as

ELCBO(φ, f) = Ef |Ξ [Eφ [f ]] +H[qφ]− βLCB

√
Vf |Ξ [Eφ [f ]] (8)

where the first two terms are the ELBO (Eq. 4) estimated via Bayesian quadrature, and the last term is
the uncertainty in the computation of the expected log joint multiplied by a risk-sensitivity parameter

2We also tried a deterministic approximation of the entropy proposed in [20], with mixed results.
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Figure 1: Example run of VBMC on a 2-D pdf. A. Contour plots of the variational posterior at
different iterations of the algorithm. Red crosses indicate the centers of the variational mixture
components, black dots are the training samples. B. ELBO as a function of iteration. Shaded area is
95% CI of the ELBO in the current iteration as per the Bayesian quadrature approximation (not the
error wrt ground truth). The black line is the true log marginal likelihood (LML). C. True target pdf.

βLCB (we set βLCB = 3 unless specified otherwise). Eq. 8 establishes a probabilistic lower bound on
the ELBO, used to assess the improvement of the variational solution (see following sections).

3.3 Active sampling

In VBMC, we are performing active sampling to compute a sequence of integrals
Eφ1 [f ] ,Eφ2 [f ] , . . . ,EφT

[f ], across iterations 1, . . . , T such that (1) the sequence of variational
parameters φt converges to the variational posterior that minimizes the KL divergence with the true
posterior, and (2) we have minimum variance on our final estimate of the ELBO. Note how this differs
from active sampling in simple Bayesian quadrature, for which we only care about minimizing the
variance of a single fixed integral. The ideal acquisition function for VBMC will correctly balance
exploration of uncertain regions and exploitation of regions with high probability mass to ensure a
fast convergence of the variational posterior as closely as possible to the ground truth.

We describe here two acquisition functions for VBMC based on uncertainty sampling. Let VΞ(x) ≡
CΞ(x,x) be the posterior GP variance at x given the current training set Ξ. ‘Vanilla’ uncertainty
sampling for Eφ [f ] is aus(x) = VΞ(x)qφ(x)

2, where qφ is the current variational posterior. Since
aus only maximizes the variance of the integrand under the current variational parameters, we expect it
to be lacking in exploration. To promote exploration, we introduce prospective uncertainty sampling,

apro(x) = VΞ(x)qφ(x) exp
(
fΞ(x)

)
, (9)

where fΞ is the GP posterior predictive mean. apro aims at reducing uncertainty of the variational
objective both for the current posterior and at prospective locations where the variational posterior
might move to in the future, if not already there (high GP posterior mean). The variational posterior
in apro acts as a regularizer, preventing active sampling from following too eagerly fluctuations of the
GP mean. For numerical stability of the GP, we include in all acquisition functions a regularization
factor to prevent selection of points too close to existing training points (see Supplementary Material).

At the beginning of each iteration after the first, VBMC actively samples nactive points (nactive = 5 by
default in this work). We select each point sequentially, by optimizing the chosen acquisition function
via CMA-ES [22], and apply fast rank-one updates of the GP posterior after each acquisition.

3.4 Adaptive treatment of GP hyperparameters

The GP model in VBMC has 3D + 3 hyperparameters, ψ = (`, σf , σobs,m0,xm,ω). We impose an
empirical Bayes prior on the GP hyperparameters based on the current training set (see Supplementary
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Material), and we sample from the posterior over hyperparameters via slice sampling [23]. In each
iteration, we collect ngp = round(80/

√
n) samples, where n is the size of the current GP training

set, with the rationale that we require less samples as the posterior over hyperparameters becomes
narrower due to more observations. Given samples {ψ} ≡ {ψ1, . . . ,ψngp}, and a random variable χ
that depends on ψ, we compute the expected mean and variance of χ as

E [χ|{ψ}] = 1

ngp

ngp∑
j=1

E [χ|ψj ] , V [χ|{ψ}] = 1

ngp

ngp∑
j=1

V [χ|ψj ] + Var
[
{E [χ|ψj ]}ngp

j=1

]
, (10)

where Var[·] is the sample variance. We use Eq. 10 to compute the GP posterior predictive mean and
variances for the acquisition function, and to marginalize the expected log joint over hyperparameters.

The algorithm adaptively switches to a faster maximum-a-posteriori (MAP) estimation of the hyper-
parameters (via gradient-based optimization) when the additional variability of the expected log joint
brought by multiple samples falls below a threshold for several iterations, a signal that sampling is
bringing little advantage to the precision of the computation.

3.5 Initialization and warm-up

The algorithm is initialized by providing a starting point x0 (ideally, in a region of high posterior
probability mass) and vectors of plausible lower/upper bounds PLB, PUB, that identify a region of high
posterior probability mass in parameter space. In the absence of other information, we obtained good
results with plausible bounds containing the peak of prior mass in each coordinate dimension, such
as the top ∼ 0.68 probability region (that is, mean ± 1 SD for a Gaussian prior). The initial design
consists of the provided starting point(s) x0 and additional points generated uniformly at random
inside the plausible box, for a total of ninit = 10 points. The plausible box also sets the reference
scale for each variable, and in future work might inform other aspects of the algorithm [6]. The
VBMC algorithm works in an unconstrained space (x ∈ RD), but bound constraints to the variables
can be easily handled via a nonlinear remapping of the input space, with an appropriate Jacobian
correction of the log probability density [24] (see Section 4.2 and Supplementary Material).3

Warm-up We initialize the variational posterior with K = 2 components in the vicinity of x0,
and with small values of σ1, σ2, and λ (relative to the width of the plausible box). The algorithm
starts in warm-up mode, during which VBMC tries to quickly improve the ELBO by moving to
regions with higher posterior probability. During warm-up, K is clamped to only two components
with w1 ≡ w2 = 1/2, and we collect a maximum of ngp = 8 hyperparameter samples. Warm-up
ends when the ELCBO (Eq. 8) shows an improvement of less than 1 for three consecutive iterations,
suggesting that the variational solution has started to stabilize. At the end of warm-up, we trim
the training set by removing points whose value of the log joint probability y is more than 10 ·D
points lower than the maximum value ymax observed so far. While not necessary in theory, we found
that trimming generally increases the stability of the GP approximation, especially when VBMC
is initialized in a region of very low probability under the true posterior. To allow the variational
posterior to adapt, we do not actively sample new points in the first iteration after the end of warm-up.

3.6 Adaptive number of variational mixture components

After warm-up, we add and remove variational components following a simple set of rules.

Adding components We define the current variational solution as improving if the ELCBO of the
last iteration is higher than the ELCBO in the past few iterations (nrecent = 4). In each iteration, we
increment the number of components K by 1 if the solution is improving and no mixture component
was pruned in the last iteration (see below). To speed up adaptation of the variational solution
to a complex true posterior when the algorithm has nearly converged, we further add two extra
components if the solution is stable (see below) and no component was recently pruned. Each new
component is created by splitting and jittering a randomly chosen existing component. We set a
maximum number of components Kmax = n2/3, where n is the size of the current training set Ξ.

Removing components At the end of each variational optimization, we consider as a candidate for
pruning a random mixture component k with mixture weight wk < wmin. We recompute the ELCBO

3The available code for VBMC currently supports both unbounded variables and bound constraints.
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without the selected component (normalizing the remaining weights). If the ‘pruned’ ELCBO differs
from the original ELCBO less than ε, we remove the selected component. We iterate the process
through all components with weights below threshold. For VBMC we set wmin = 0.01 and ε = 0.01.

3.7 Termination criteria

At the end of each iteration, we assign a reliability index ρ(t) ≥ 0 to the current variational solution
based on the following features: change in ELBO between the current and the previous iteration;
estimated variance of the ELBO; KL divergence between the current and previous variational posterior
(see Supplementary Material for details). By construction, a ρ(t) . 1 is suggestive of a stable solution.
The algorithm terminates when obtaining a stable solution for nstable = 8 iterations (with at most one
non-stable iteration in-between), or when reaching a maximum number nmax of function evaluations.
The algorithm returns the estimate of the mean and standard deviation of the ELBO (a lower bound
on the marginal likelihood), and the variational posterior, from which we can cheaply draw samples
for estimating distribution moments, marginals, and other properties of the posterior. If the algorithm
terminates before achieving long-term stability, it warns the user and returns a recent solution with
the best ELCBO, using a conservative βLCB = 5.

4 Experiments

We tested VBMC and other common inference algorithms on several artificial and real problems con-
sisting of a target likelihood and an associated prior. The goal of inference consists of approximating
the posterior distribution and the log marginal likelihood (LML) with a fixed budget of likelihood
evaluations, assumed to be (moderately) expensive.

Algorithms We tested VBMC with the ‘vanilla’ uncertainty sampling acquisition function aus
(VBMC-U) and with prospective uncertainty sampling, apro (VBMC-P). We also tested simple Monte
Carlo (SMC), annealed importance sampling (AIS), the original Bayesian Monte Carlo (BMC),
doubly-Bayesian quadrature (BBQ [9])4, and warped sequential active Bayesian integration (WSABI,
both in its linearized and moment-matching variants, WSABI-L and WSABI-M [10]). For the basic
setup of these methods, we follow [10]. Most of these algorithms only compute an approximation
of the marginal likelihood based on a set of sampled points, but do not directly compute a posterior
distribution. We obtain a posterior by training a GP model (equal to the one used by VBMC) on
the log joint evaluated at the sampled points, and then drawing 2·104 MCMC samples from the
GP posterior predictive mean via parallel slice sampling [23, 25]. We also tested two methods for
posterior estimation via GP surrogates, BAPE [12] and AGP [13]. Since these methods only compute
an approximate posterior, we obtain a crude estimate of the log normalization constant (the LML) as
the average difference between the log of the approximate posterior and the evaluated log joint at the
top 20% points in terms of posterior density. For all algorithms, we use default settings, allowing
only changes based on knowledge of the mean and (diagonal) covariance of the provided prior.

Procedure For each problem, we allow a fixed budget of 50 × (D + 2) likelihood evaluations,
where D is the number of variables. Given the limited number of samples, we judge the quality
of the posterior approximation in terms of its first two moments, by computing the “Gaussianized”
symmetrized KL divergence (gsKL) between posterior approximation and ground truth. The gsKL
is defined as the symmetrized KL between two multivariate normal distributions with mean and
covariances equal, respectively, to the moments of the approximate posterior and the moments of
the true posterior. We measure the quality of the approximation of the LML in terms of absolute
error from ground truth, the rationale being that differences of LML are used for model comparison.
Ideally, we want the LML error to be of order 1 of less, since much larger errors could severely affect
the results of a comparison (e.g., differences of LML of 10 points or more are often presented as
decisive evidence in favor of one model [26]). On the other hand, errors . 0.1 can be considered
negligible; higher precision is unnecessary. For each algorithm, we ran at least 20 separate runs per
test problem with different random seeds, and report the median gsKL and LML error and the 95%
CI of the median calculated by bootstrap. For each run, we draw the starting point x0 (if requested
by the algorithm) uniformly from a box within 1 prior standard deviation (SD) from the prior mean.
We use the same box to define the plausible bounds for VBMC.

4We also tested BBQ* (approximate GP hyperparameter marginalization), which perfomed similarly to BBQ.
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4.1 Synthetic likelihoods
Problem set We built a benchmark set of synthetic likelihoods belonging to three families that
represent typical features of target densities (see Supplementary Material for details). Likelihoods
in the lumpy family are built out of a mixture of 12 multivariate normals with component means
drawn randomly in the unit D-hypercube, distinct diagonal covariances with SDs in the [0.2, 0.6]
range, and mixture weights drawn from a Dirichlet distribution with unit concentration parameter.
The lumpy distributions are mildly multimodal, in that modes are nearby and connected by regions
with non-neglibile probability mass. In the Student family, the likelihood is a multivariate Student’s
t-distribution with diagonal covariance and degrees of freedom equally spaced in the [2.5, 2 +D/2]
range across different coordinate dimensions. These distributions have heavy tails which might be
problematic for some methods. Finally, in the cigar family the likelihood is a multivariate normal
in which one axis is 100 times longer than the others, and the covariance matrix is non-diagonal
after a random rotation. The cigar family tests the ability of an algorithm to explore non axis-aligned
directions. For each family, we generated test functions for D ∈ {2, 4, 6, 8, 10}, for a total of 15
synthetic problems. For each problem, we pick as a broad prior a multivariate normal with mean
centered at the expected mean of the family of distributions, and diagonal covariance matrix with SD
equal to 3-4 times the SD in each dimension. For all problems, we compute ground truth values for
the LML and the posterior mean and covariance analytically or via multiple 1-D numerical integrals.

Results We show the results for D ∈ {2, 6, 10} in Fig. 2 (see Supplementary Material for full
results, in higher resolution). Almost all algorithms perform reasonably well in very low dimension
(D = 2), and in fact several algorithms converge faster than VBMC to the ground truth (e.g., WSABI-
L). However, as we increase in dimension, we see that all algorithms start failing, with only VBMC
peforming consistently well across problems. In particular, besides the simple D = 2 case, only
VBMC obtains acceptable results for the LML with non-axis aligned distributions (cigar). Some
algorithms (such as AGP and BAPE) exhibited large numerical instabilities on the cigar family,
despite our best attempts at regularization, such that many runs were unable to complete.
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Figure 2: Synthetic likelihoods. A. Median absolute error of the LML estimate with respect to
ground truth, as a function of number of likelihood evaluations, on the lumpy (top), Student (middle),
and cigar (bottom) problems, for D ∈ {2, 6, 10} (columns). B. Median “Gaussianized” symmetrized
KL divergence between the algorithm’s posterior and ground truth. For both metrics, shaded areas
are 95 % CI of the median, and we consider a desirable threshold to be below one (dashed line).

4.2 Real likelihoods of neuronal model
Problem set For a test with real models and data, we consider a computational model of neuronal
orientation selectivity in visual cortex [14]. We fit the neural recordings of one V1 and one V2
cell with the authors’ neuronal model that combines effects of filtering, suppression, and response
nonlinearity [14]. The model is analytical but still computationally expensive due to large datasets
and a cascade of several nonlinear operations. For the purpose of our benchmark, we fix some
parameters of the original model to their MAP values, yielding an inference problem with D = 7 free
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parameters of experimental interest. We transform bounded parameters to uncontrained space via a
logit transform [24], and we place a broad Gaussian prior on each of the transformed variables, based
on estimates from other neurons in the same study [14] (see Supplementary Material for more details
on the setup). For both datasets, we computed the ground truth with 4 ·105 samples from the posterior,
obtained via parallel slice sampling after a long burn-in. We calculated the ground truth LML from
posterior MCMC samples via Geyer’s reverse logistic regression [27], and we independently validated
it with a Laplace approximation, obtained via numerical calculation of the Hessian at the MAP (for
both datasets, Geyer’s and Laplace’s estimates of the LML are within ∼ 1 point).
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Figure 3: Neuronal model likelihoods. A. Median absolute error of the LML estimate, as a function
of number of likelihood evaluations, for two distinct neurons (D = 7). B. Median “Gaussianized”
symmetrized KL divergence between the algorithm’s posterior and ground truth. See also Fig. 2.

Results For both datasets, VBMC is able to find a reasonable approximation of the LML and
of the posterior, whereas no other algorithm produces a usable solution (Fig. 3). Importantly, the
behavior of VBMC is fairly consistent across runs (see Supplementary Material). We argue that
the superior results of VBMC stem from a better exploration of the posterior landscape, and from
a better approximation of the log joint (used in the ELBO), related but distinct features. To show
this, we first trained GPs (as we did for the other methods) on the samples collected by VBMC (see
Supplementary Material). The posteriors obtained by sampling from the GPs trained on the VBMC
samples scored a better gsKL than the other methods (and occasionally better than VBMC itself).
Second, we estimated the marginal likelihood with WSABI-L using the samples collected by VBMC.
The LML error in this hybrid approach is much lower than the error of WSABI-L alone, but still
higher than the LML error of VBMC. These results combined suggest that VBMC builds better (and
more stable) surrogate models and obtains higher-quality samples than the compared methods.

The performance of VBMC-U and VBMC-P is similar on synthetic functions, but the ‘prospective’
acquisition function converges faster on the real problem set, so we recommend apro as the default.
Besides scoring well on quantitative metrics, VBMC is able to capture nontrivial features of the true
posteriors (see Supplementary Material for examples). Moreover, VBMC achieves these results with
a relatively small computational cost (see Supplementary Material for discussion).

5 Conclusions

In this paper, we have introduced VBMC, a novel Bayesian inference framework that combines
variational inference with active-sampling Bayesian quadrature for models with expensive black-box
likelihoods. Our method affords both posterior estimation and model inference by providing an
approximate posterior and a lower bound to the model evidence. We have shown on both synthetic
and real model-fitting problems that, given a contained budget of likelihood evaluations, VBMC is
able to reliably compute valid, usable approximations in realistic scenarios, unlike previous methods
whose applicability seems to be limited to very low dimension or simple likelihoods. Our method,
thus, represents a novel useful tool for approximate inference in science and engineering.

We believe this is only the starting point to harness the combined power of variational inference and
Bayesian quadrature. Not unlike the related field of Bayesian optimization, VBMC paves the way to
a plenitude of both theoretical (e.g., analysis of convergence, development of principled acquisition
functions) and applied work (e.g., application to case studies of interest, extension to noisy likelihood
evaluations, algorithmic improvements), which we plan to pursue as future directions.
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