
Learning with SGD and Random Features

Luigi Carratino∗
University of Genoa,

Genoa, Italy

Alessandro Rudi
INRIA – Sierra Project-team,

École Normale Supérieure, Paris

Lorenzo Rosasco
University of Genoa,
LCSL – IIT & MIT

Abstract

Sketching and stochastic gradient methods are arguably the most common tech-
niques to derive efficient large scale learning algorithms. In this paper, we inves-
tigate their application in the context of nonparametric statistical learning. More
precisely, we study the estimator defined by stochastic gradient with mini batches
and random features. The latter can be seen as form of nonlinear sketching and used
to define approximate kernel methods. The considered estimator is not explicitly
penalized/constrained and regularization is implicit. Indeed, our study highlights
how different parameters, such as number of features, iterations, step-size and
mini-batch size control the learning properties of the solutions. We do this by
deriving optimal finite sample bounds, under standard assumptions. The obtained
results are corroborated and illustrated by numerical experiments.

1 Introduction

The interplay between statistical and computational performances is key for modern machine learning
algorithms [1]. On the one hand, the ultimate goal is to achieve the best possible prediction error. On
the other hand, budgeted computational resources need be factored in, while designing algorithms.
Indeed, time and especially memory requirements are unavoidable constraints, especially in large-
scale problems.
In this view, stochastic gradient methods [2] and sketching techniques [3] have emerged as funda-
mental algorithmic tools. Stochastic gradient methods allow to process data points individually, or
in small batches, keeping good convergence rates, while reducing computational complexity [4].
Sketching techniques allow to reduce data-dimensionality, hence memory requirements, by random
projections [3]. Combining the benefits of both methods is tempting and indeed it has attracted much
attention, see [5] and references therein.
In this paper, we investigate these ideas for nonparametric learning. Within a least squares frame-
work, we consider an estimator defined by mini-batched stochastic gradients and random features
[6]. The latter are typically defined by nonlinear sketching: random projections followed by a
component-wise nonlinearity [3]. They can be seen as shallow networks with random weights [7],
but also as approximate kernel methods [8]. Indeed, random features provide a standard approach
to overcome the memory bottleneck that prevents large-scale applications of kernel methods. The
theory of reproducing kernel Hilbert spaces [9] provides a rigorous mathematical framework to study
the properties of stochastic gradient method with random features. The approach we consider is not
based on penalizations or explicit constraints; regularization is implicit and controlled by different
parameters. In particular, our analysis shows how the number of random features, iterations, step-size
and mini-batch size control the stability and learning properties of the solution. By deriving finite
sample bounds, we investigate how optimal learning rates can be achieved with different parameter
choices. In particular, we show that similarly to ridge regression [10], a number of random features
proportional to the square root of the number of samples suffices for O(1/

√
n) error bounds.
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The rest of the paper is organized as follows. We introduce problem, background and the proposed
algorithm in section 2. We present our main results in section 3 and illustrate numerical experiments
in section 4.

Notation: For any T ∈ N+ we denote by [T ] the set {1, . . . , T}, for any a, b ∈ R we de-
note by a ∨ b the maximum between a and b and with ∧ the minimum. For any linear operator
A and λ ∈ R we denote by Aλ the operator (A + λI) if not explicitly defined differently. When
A is a bounded self-adjoint linear operator on a Hilbert space, we denote by λmax(A) the biggest
eigenvalue of A.

2 Learning with Stochastic Gradients and Random Features

In this section, we present the setting and discuss the learning algorithm we consider.
The problem we study is supervised statistical learning with squared loss [11]. Given a probability
space X × R with distribution ρ the problem is to solve

min
f
E(f), E(f) =

∫
(f(x)− y)2dρ(x, y), (1)

given only a training set of pairs (xi, yi)
n
i ∈ (X × R)n, n ∈ N, sampled independently according to

ρ. Here the minimum is intended over all functions for which the above integral is well defined and ρ
is assumed fixed but known only through the samples.
In practice, the search for a solution needs to be restricted to a suitable space of hypothesis to allow
efficient computations and reliable estimation [12]. In this paper, we consider functions of the form

f(x) = 〈w, φM (x)〉, ∀x ∈ X, (2)

where w ∈ RM and φM : X → RM , M ∈ N, denotes a family of finite dimensional feature maps,
see below. Further, we consider a mini-batch stochastic gradient method to estimate the coefficients
from data,

ŵ1 = 0; ŵt+1 = ŵt− γt
1

b

bt∑
i=b(t−1)+1

(
〈ŵt, φM (xji)〉− yji

)
φM (xji), t = 1, . . . , T. (3)

Here T ∈ N is the number of iterations and J = {j1, . . . , jbT } denotes the strategy to select training
set points. In particular, in this work we assume the points to be drawn uniformly at random with
replacement. Note that given this sampling strategy, one pass over the data is reached on average
after dnb e iterations. Our analysis allows to consider multiple as well as single passes. For b = 1 the
above algorithm reduces to a simple stochastic gradient iteration. For b > 1 it is a mini-batch version,
where b points are used in each iteration to compute a gradient estimate. The parameter γt is the
step-size.
The algorithm requires specifying different parameters. In the following, we study how their choice
is related and can be performed to achieve optimal learning bounds. Before doing this, we further
discuss the class of feature maps we consider.

2.1 From Sketching to Random Features, from Shallow Nets to Kernels

In this paper, we are interested in a particular class of feature maps, namely random features [6]. A
simple example is obtained by sketching the input data. Assume X ⊆ RD and

φM (x) = (〈x, s1〉, . . . , 〈x, sM 〉) ,
where s1, . . . , sM ∈ RD is a set of identical and independent random vectors [13]. More generally,
we can consider features obtained by nonlinear sketching

φM (x) = (σ(〈x, s1〉), . . . , σ(〈x, sM 〉)) , (4)

where σ : R→ R is a nonlinear function, for example σ(a) = cos(a) [6], σ(a) = |a|+ = max(a, 0),
a ∈ R [7]. If we write the corresponding function (2) explicitly, we get

f(x) =

M∑
j=1

wjσ(〈sj , x〉), ∀x ∈ X. (5)
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that is as shallow neural nets with random weights [7] (offsets can be added easily).
For many examples of random features the inner product,

〈φM (x), φM (x′)〉 =

M∑
j=1

σ(〈x, sj〉)σ(〈x′, sj〉), (6)

can be shown to converge to a corresponding positive definite kernel k as M tends to infinity [6, 14].
We now show some examples of kernels determined by specific choices of random features.
Example 1 (Random features and kernel). Let σ(a) = cos(a) and consider (〈x, s〉+ b) in place of
the inner product 〈x, s〉, with s drawn from a standard Gaussian distribution with variance σ2, and b
uniformly from [0, 2π]. These are the so called Fourier random features and recover the Gaussian
kernel k(x, x′) = e−‖x−x

′‖2/2σ2

[6] as M increases. If instead σ(a) = a, and the s is sampled
according to a standard Gaussian the linear kernel k(x, x′) = σ2〈x, x′〉 is recovered in the limit.
[15].

These last observations allow to establish a connection with kernel methods [10] and the theory of
reproducing kernel Hilbert spaces [9]. Recall that a reproducing kernel Hilbert spaceH is a Hilbert
space of functions for which there is a symmetric positive definite function2 k : X ×X → R called
reproducing kernel, such that k(x, ·) ∈ H and 〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X . It is also
useful to recall that k is a reproducing kernel if and only if there exists a Hilbert (feature) space F
and a (feature) map φ : X → F such that

k(x, x′) = 〈φ(x), φ(x′)〉, ∀x, x′ ∈ X, (7)

where F can be infinite dimensional.

The connection to RKHS is interesting in at least two ways. First, it allows to use results and
techniques from the theory of RKHS to analyze random features. Second, it shows that random
features can be seen as an approach to derive scalable kernel methods [10]. Indeed, kernel methods
have complexity at least quadratic in the number of points, while random features have complexity
which is typically linear in the number of points. From this point of view, the intuition behind random
features is to relax (7) considering

k(x, x′) ≈ 〈φM (x), φM (x′)〉, ∀x, x′ ∈ X. (8)

where φM is finite dimensional.

2.2 Computational complexity

If we assume the computation of the feature map φM (x) to have a constant cost, the iteration (3)
requires O(M) operations per iteration for b = 1, that is O(Mn) for one pass T = n. Note that for
b > 1 each iteration cost O(Mb) but one pass corresponds to dnb e iterations so that the cost for one
pass is again O(Mn). A main advantage of mini-batching is that gradient computations can be easily
parallelized. In the multiple pass case, the time complexity after T iterations is O(MbT ).
Computing the feature map φM (x) requires to compute M random features. The computation of
one random feature does not depend on n, but only on the input space X . If for example we assume
X ⊆ RD and consider random features defined as in the previous section, computing φM (x) requires
M random projections of D dimensional vectors [6], for a total time complexity of O(MD) for
evaluating the feature map at one point. For different input spaces and different types of random
features computational cost may differ, see for example Orthogonal Random Features [16] or Fastfood
[17] where the cost is reduced from O(MD) to O(M logD). Note that the analysis presented in
his paper holds for random features which are independent, while Orthogonal and Fastfood random
features are dependent. Although it should be possible to extend our analysis for Orthogonal and
Fastfood random features, further work is needed. To simplify the discussion, in the following we
treat the complexity of φM (x) to be O(M).
One of the advantages of random features is that each φM (x) can be computed online at each iteration,
preserving O(MbT ) as the time complexity of the algorithm (3). Computing φM (x) online also
reduces memory requirements. Indeed the space complexity of the algorithm (3) is O(Mb) if the
mini-batches are computed in parallel, or O(M) if computed sequentially.

2For all x1, . . . , xn the matrix with entries k(xi, xj), i, j = 1, . . . , n is positive semi-definite.
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2.3 Related approaches

We comment on the connection to related algorithms. Random features are typically used within an
empirical risk minimization framework [18]. Results considering convex Lipschitz loss functions and
`∞ constraints are given in [19], while [20] considers `2 constraints. A ridge regression framework is
considered in [8], where it is shown that it is possible to achieve optimal statistical guarantees with a
number of random features in the order of

√
n. The combination of random features and gradient

methods is less explored. A stochastic coordinate descent approach is considered in [21], see also
[22, 23]. A related approach is based on subsampling and is often called Nyström method [24, 25].
Here a shallow network is defined considering a nonlinearity which is a positive definite kernel, and
weights chosen as a subset of training set points. This idea can be used within a penalized empirical
risk minimization framework [26, 27, 28] but also considering gradient [29, 30] and stochastic
gradient [31] techniques. An empirical comparison between Nyström method, random features and
full kernel method is given in [23], where the empirical risk minimization problem is solved by block
coordinate descent. Note that numerous works have combined stochastic gradient and kernel methods
with no random projections approximation [32, 33, 34, 35, 36, 5]. The above list of references is only
partial and focusing on papers providing theoretical analysis. In the following, after stating our main
results we provide a further quantitative comparison with related results.

3 Main Results

In this section, we first discuss our main results under basic assumptions and then more refined results
under further conditions.

3.1 Worst case results

Our results apply to a general class of random features described by the following assumption.

Assumption 1. Let (Ω, π) be a probability space, ψ : X × Ω→ R and for all x ∈ X ,

φM (x) =
1√
M

(ψ(x, ω1), . . . , ψ(x, ωM )) , (9)

where ω1, . . . , ωM ∈ Ω are sampled independently according to π.

The above class of random features cover all the examples described in section 2.1, as well as many
others, see [8, 20] and references therein. Next we introduce the positive definite kernel defined by
the above random features. Let k : X ×X → R be defined by

k(x, x′) =

∫
ψ(x, ω)ψ(x′, ω)dπ(ω), ∀, x, x′ ∈ X.

It is easy to check that k is a symmetric and positive definite kernel. To control basic properties of
the induced kernel (continuity, boundedness), we require the following assumption, which is again
satisfied by the examples described in section 2.1 (see also [8, 20] and references therein).

Assumption 2. The function ψ is continuous and there exists κ ≥ 1 such that |ψ(x, ω)| ≤ κ for any
x ∈ X,ω ∈ Ω.

The kernel introduced above allows to compare random feature maps of different size and to express
the regularity of the largest function class they induce. In particular, we require a standard assumption
in the context of non-parametric regression (see [11]), which consists in assuming a minimum for the
expected risk, over the space of functions induced by the kernel.

Assumption 3. IfH is the RKHS with kernel k, there exists fH ∈ H such that

E(fH) = inf
f∈H
E(f).

To conclude, we need some basic assumption on the data distribution. For all x ∈ X , we denote by
ρ(y|x) the conditional probability of ρ and by ρX the corresponding marginal probability on X . We
need a standard moment assumption to derive probabilistic results.
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Assumption 4. For any x ∈ X∫
Y
y2ldρ(y|x) ≤ l!Blp, ∀l ∈ N (10)

for costants B ∈ (0,∞) and p ∈ (1,∞), ρX -almost surely.

The above assumption holds when y is bounded, sub-gaussian or sub-exponential.
The next theorem corresponds to our first main result. Recall that, the excess risk for a given estimator
f̂ is defined as

E(f̂ )− E(fH),

and is a standard error measure in statistical machine learning [11, 18]. In the following theorem, we
control the excess risk of the estimator with respect to the number of points, the number of RF, the
step size, the mini-batch size and the number of iterations. We let f̂t+1 = 〈ŵt+1, φM (·)〉, with ŵt+1

as in (3).
Theorem 1. Let n,M ∈ N+, δ ∈ (0, 1) and t ∈ [T ]. Under Assumptions 1 to 4, for b ∈ [n], γt = γ
s.t. γ ≤ n

9T log nδ
∧ 1

8(1+log T ) , n ≥ 32 log2 2
δ and M & γT the following holds with probability at

least 1− δ:

EJ
[
E(f̂t+1)

]
−E(fH) .

γ

b
+

(
γt

M
+ 1

)
γt log 1

δ

n
+

log 1
δ

M
+

1

γt
. (11)

The above theorem bounds the excess risk with a sum of terms controlled by the different parameters.
The following corollary shows how these parameters can be chosen to derive finite sample bounds.
Corollary 1. Under the same assumptions of Theorem 1, for one of the following conditions

(c1.1). b = 1, γ ' 1
n , and T = n

√
n iterations (

√
n passes over the data);

(c1.2). b = 1, γ ' 1√
n

, and T = n iterations (1 pass over the data);

(c1.3). b =
√
n, γ ' 1, and T =

√
n iterations (1 pass over the data);

(c1.4). b = n, γ ' 1, and T =
√
n iterations (

√
n passes over the data);

a number
M = Õ(

√
n) (12)

of random features is sufficient to guarantee with high probability that

EJ
[
E(f̂T )

]
− E(fH) .

1√
n
. (13)

The above learning rate is the same achieved by an exact kernel ridge regression (KRR) estimator
[11, 37, 38], which has been proved to be optimal in a minimax sense [11] under the same assumptions.
Further, the number of random features required to achieve this bound is the same as the kernel ridge
regression estimator with random features [8]. Notice that, for the limit case where the number of
random features grows to infinity for Corollary 1 under conditions (c1.2) and (c1.3) we recover the
same results for one pass SGD of [39], [40]. In this limit, our results are also related to those in [41].
Here, however, averaging of the iterates is used to achieve larger step-sizes.
Note that conditions (c1.1) and (c1.2) in the corollary above show that, when no mini-batches are
used (b = 1) and 1

n ≤ γ ≤
1√
n

, then the step-size γ determines the number of passes over the data
required for optimal generalization. In particular the number of passes varies from constant, when
γ = 1√

n
, to
√
n, when γ = 1

n . In order to increase the step-size over 1√
n

the algorithm needs to
be run with mini-batches. The step-size can then be increased up to a constant if b is chosen equal
to
√
n (condition (c1.3)), requiring the same number of passes over the data of the setting (c1.2).

Interestingly condition (c1.4) shows that increasing the mini-batch size over
√
n does not allow to

take larger step-sizes, while it seems to increase the number of passes over the data required to reach
optimality.
We now compare the time complexity of algorithm (3) with some closely related methods which
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achieve the same optimal rate of 1√
n

. Computing the classical KRR estimator [11] has a complexity
of roughly O(n3) in time and O(n2) in memory. Lowering this computational cost is possible with
random projection techniques. Both random features and Nyström method on KRR [8, 26] lower
the time complexity to O(n2) and the memory complexity to O(n

√
n) preserving the statistical

accuracy. The same time complexity is achieved by stochastic gradient method solving the full kernel
method [33, 36], but with the higher space complexity of O(n2). The combination of the stochastic
gradient iteration, random features and mini-batches allows our algorithm to achieve a complexity
of O(n

√
n) in time and O(n) in space for certain choices of the free parameters (like (c1.2) and

(c1.3)). Note that these time and memory complexity are lower with respect to those of stochastic
gradient with mini-batches and Nyström approximation which are O(n2) and O(n) respectively [31].
A method with similar complexity to SGD with RF is FALKON [30]. This method has indeed a time
complexity of O(n

√
n log(n)) and O(n) space complexity. This method blends together Nyström

approximation, a sketched preconditioner and conjugate gradient.

3.2 Refined analysis and fast rates

We next discuss how the above results can be refined under an additional regularity assumption.
We need some preliminary definitions. Let H be the RKHS defined by k, and L : L2(X, ρX) →
L2(X, ρX) the integral operator

Lf(x) =

∫
k(x, x′)f(x′)dρX(x′), ∀f ∈ L2(X, ρX), x ∈ X,

where L2(X, ρX) = {f : X → R : ‖f‖2ρ =
∫
|f |2dρX <∞}. The above operator is symmetric

and positive definite. Moreover, Assumption 1 ensures that the kernel is bounded, which in turn
ensures L is trace class, hence compact [18].
Assumption 5. For any λ > 0, define the effective dimension as N (λ) = Tr((L + λI)−1L), and
assume there exist Q > 0 and α ∈ [0, 1] such that

N (λ) ≤ Q2λ−α. (14)

Moreover , assume there exists r ≥ 1/2 and g ∈ L2(X, ρX) such that

fH(x) = (Lrg)(x). (15)

Condition (14) describes the capacity/complexity of the RKHSH and the measure ρ. It is equivalent
to classic entropy/covering number conditions, see e.g. [18]. The case α = 1 corresponds to making
no assumptions on the kernel, and reduces to the worst case analysis in the previous section. The
smaller is α the more stringent is the capacity condition. A classic example is considering X = RD
with dρX(x) = p(x)dx, where p is a probability density, strictly positive and bounded away from
zero, and H to be a Sobolev space with smoothness s > D/2. Indeed, in this case α = D/2s and
classical nonparametric statistics assumptions are recovered as a special case. Note that in particular
the worst case is s = D/2. Condition (15) is a regularity condition commonly used in approximation
theory to control the bias of the estimator [42].
The following theorem is a refined version of Theorem 1 where we also consider the above capacity
condition (Assumption 5).
Theorem 2. Let n,M ∈ N+, δ ∈ (0, 1) and t ∈ [T ], under Assumptions 1 to 4, for b ∈ [n], γt = γ
s.t. γ ≤ n

9T log nδ
∧ 1

8(1+log T ) , n ≥ 32 log2 2
δ and M & γT the following holds with high probability:

EJ
[
E(f̂t+1)

]
− E(fH) .

γ

b
+

(
γt

M
+ 1

) N ( 1
γt

)
log 1

δ

n
+
N
(

1
γt

)2r−1
log 1

δ

M(γt)2r−1
+

(
1

γt

)2r

.

(16)

The main difference is the presence of the effective dimension providing a sharper control of the
stability of the considered estimator. As before, explicit learning bounds can be derived considering
different parameter settings.
Corollary 2. Under the same assumptions of Theorem 2, for one of the following conditions

(c2.1). b = 1, γ ' n−1, and T = n
2r+α+1
2r+α iterations (n

1
2r+α passes over the data);
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(c2.2). b = 1, γ ' n−
2r

2r+α , and T = n
2r+1
2r+α iterations (n

1−α
2r+α passes over the data);

(c2.3). b = n
2r

2r+α , γ ' 1, and T = n
1

2r+α iterations (n
1−α
2r+α passes over the data);

(c2.4). b = n, γ ' 1, and T = n
1

2r+α iterations (n
1

2r+α passes over the data);

a number
M = Õ(n

1+α(2r−1)
2r+α ) (17)

of random features suffies to guarantee with high probability that

EJ
[
E(ŵT )

]
− E(fH) . n−

2r
2r+α . (18)

The corollary above shows that multi-pass SGD achieves a learning rate that is the same as kernel
ridge regression under the regularity assumption 5 and is again minimax optimal (see [11]). Moreover,
we obtain the minimax optimal rate with the same number of random features required for ridge
regression with random features [8] under the same assumptions. Finally, when the number of random
features goes to infinity we also recover the results for the infinite dimensional case of the single-pass
and multiple pass stochastic gradient method [33].
It is worth noting that, under the additional regularity assumption 5, the number of both random
features and passes over the data sufficient for optimal learning rates increase with respect to the one
required in the worst case (see Corollary 1). The same effect occurs in the context of ridge regression
with random features as noted in [8]. In this latter paper, it is observed that this issue tackled can be
using more refined, possibly more costly, sampling schemes [20].
Finally, we present a general result from which all our previous results follow as special cases. We
consider a more general setting where we allow decreasing step-sizes.
Theorem 3. Let n,M, T ∈ N, b ∈ [n] and γ > 0. Let δ ∈ (0, 1) and ŵt+1 be the estimator in
Eq. (3) with γt = γκ−2t−θ and θ ∈ [0, 1[. Under Assumptions 1 to 4, when n ≥ 32 log2 2

δ and

γ ≤ n

9T 1−θ log n
δ

∧

{
θ∧(1−θ)

7 θ ∈]0, 1[
1

8(1+log T ) otherwise,
(19)

moreover

M ≥
(
4 + 18γT 1−θ) log

12γT 1−θ

δ
, (20)

then, for any t ∈ [T ] the following holds with probability at least 1− 9δ

EJ
[
E(ŵt+1)

]
− inf
w∈F
E(w) ≤ c1

γ

btmin(θ,1−θ) (log t ∨ 1) (21)

+

(
c2 + c3

1

M
log

M

δ

(
γt1−θ ∨ 1

)) N ( κ2

γt1−θ

)
n

(
log2(t) ∨ 1

)
log2 4

δ
(22)

+ c4

(
N ( κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1
log2−2r (11γt1−θ

)
+

(
1

γt1−θ

)2r
)
, (23)

with c1, c2, c3, c4 constants which do not depend on b, γ, n, t,M, δ.

We note that as the number of random features M goes to infinity, we recover the same bound of [33]
for decreasing step-sizes. Moreover, the above theorem shows that there is no apparent gain in using
a decreasing stepsize (i.e. θ > 0) with respect to the regimes identified in Corollaries 1 and 2.

3.3 Sketch of the Proof

In this section, we sketch the main ideas in the proof. We relate f̂t and fH introducing several
intermediate functions. In particular, the following iterations are useful,

v̂1 = 0; v̂t+1 = v̂t − γt
1

n

n∑
i=1

(
〈v̂t, φM (xi)〉 − yi

)
φM (xi), ∀t ∈ [T ]. (24)

ṽ1 = 0; ṽt+1 = ṽt − γt
∫
X

(
〈ṽt, φM (x)〉 − y

)
φM (x)dρ(x, y), ∀t ∈ [T ]. (25)

v1 = 0; vt+1 = vt − γt
∫
X

(
〈vt, φM (x)〉 − fH(x)

)
φM (x)dρX(x), ∀t ∈ [T ]. (26)
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Figure 1: Classification error of SUSY (left) and HIGGS (right) datasets as the no of random features varies

Further, we let

ũλ = argmin
u∈RM

∫
X

(
〈u, φM (x)〉 − fH(x)

)2
dρX(x) + λ‖u‖2, λ > 0, (27)

uλ = argmin
u∈F

∫
X

(
〈u, φ(x)〉 − y

)2
dρ(x, y) + λ‖u‖2, λ > 0, (28)

where (F , φ) are feature space and feature map associated to the kernel k. The first three vectors are
defined by the random features and can be seen as an empirical and population batch gradient descent
iterations. The last two vectors can be seen as a population version of ridge regression defined by the
random features and the feature map φ, respectively.
Since the above objects (24), (25), (26), (27), (28) belong to different spaces, instead of comparing
them directly we compare the functions in L2(X, ρX) associated to them, letting

ĝt = 〈v̂t, φM (·)〉 , g̃t = 〈ṽt, φM (·)〉 , gt = 〈vt, φM (·)〉 , g̃λ = 〈ũλ, φM (·)〉 , gλ = 〈uλ, φ(·)〉 .

Since it is well known [11] that

E(f)− E(fH) = ‖f − fH‖2ρ,

we than can consider the following decomposition

f̂t − fH = f̂t − ĝt (29)
+ ĝt − g̃t (30)
+ g̃t − gt (31)
+ gt − g̃λ (32)
+ g̃λ − gλ (33)
+ gλ − fH. (34)

The first two terms control how SGD deviates from the batch gradient descent and the effect of noise
and sampling. They are studied in Lemma 1, 2, 3, 4 5, 6 in the Appendix, borrowing and adapting
ideas from [33, 36, 8]. The following terms account for the approximation properties of random
features and the bias of the algorithm. Here the basic idea and novel result is the study of how the
population gradient decent and ridge regression are related (32) (Lemma 9 in the Appendix). Then,
results from the the analysis of ridge regression with random features are used [8].

4 Experiments

We study the behavior of the SGD with RF algorithm on subsets of n = 2 × 105 points of the
SUSY 3 and HIGGS 4 datasets [43]. The measures we show in the following experiments are an
average over 10 repetitions of the algorithm. Further, we consider random Fourier features that

3https://archive.ics.uci.edu/ml/datasets/SUSY
4https://archive.ics.uci.edu/ml/datasets/HIGGS
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Figure 2: Classification error of SUSY (left) and HIGGS (right) datasets as step-seize and mini-batch size vary

are known to approximate translation invariant kernels [6]. We use random features of the form
ψ(x, ω) = cos(wTx+ q), with ω := (w, q), w sampled according to the normal distribution and q
sampled uniformly at random between 0 and 2π. Note that the random features defined this way
satisfy Assumption 2.
Our theoretical analysis suggests that only a number of RF of the order of

√
n suffices to gain optimal

learning properties. Hence we study how the number of RF affect the accuracy of the algorithm on
test sets of 105 points. In Figure 3.3 we show the classification error after 5 passes over the data of
SGD with RF as the number of RF increases, with a fixed batch size of

√
n and a step-size of 1. We

can observe that over a certain threshold of the order of
√
n, increasing the number of RF does not

improve the accuracy, confirming what our theoretical results suggest.
Further, theory suggests that the step-size can be increased as the mini-batch size increases to reach
an optimal accuracy, and that after a mini-batch size of the order of

√
n more than 1 pass over the

data is required to reach the same accuracy. We show in Figure 2 the classification error of SGD with
RF after 1 pass over the data, with a fixed number of random features

√
n, as mini-batch size and

step-size vary, on test sets of 105 points. As suggested by theory, to reach the lowest error as the
mini-batch size grows the step-size needs to grow as well. Further for mini-batch sizes bigger that√
n the lowest error can not be reached in only 1 pass even if increasing the step-size.

5 Conclusions

In this paper we investigate the combination of sketching and stochastic techniques in the context of
non-parametric regression. In particular we studied the statistical and computational properties of
the estimator defined by stochastic gradient descent with multiple passes, mini-batches and random
features. We proved that the estimator achieves optimal statistical properties with a number of
random features in the order of

√
n (with n the number of examples). Moreover we analyzed possible

trade-offs between the number of passes, the step and the dimension of the mini-batches showing
that there exist different configurations which achieve the same optimal statistical guarantees, with
different computational impacts.
Our work can be extended in several ways: First, (a) we can study the effect of combining random
features with accelerated/averaged stochastic techniques as [32]. Second, (b) we can extend our
analysis to consider more refined assumptions, generalizing [35] to SGD with random features.
Additionally, (c) we can study the statistical properties of the considered estimator in the context of
classification with the goal of showing fast decay of the classification error, as in [34]. Moreover,
(d) we can apply the proposed method in the more general context of least squares frameworks for
multitask learning [44, 45] or structured prediction [46, 47, 48], with the goal of obtaining faster
algorithms, while retaining strong statistical guarantees. Finally, (e) to integrate our analysis with
more refined methods to select the random features analogously to [49, 50] in the context of column
sampling.
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A Appendix

We start recalling some definitions and define some new operators.

A.1 Preliminary definitions

Let F be the feature space corresponding to the kernel k given in Assumption 2.

Given φ : X → F (feature map), we define the operator S : F → L2(X, ρX) as

(Sw)(·) = 〈w, φ(·)〉F , ∀w ∈ F . (35)

If S∗ is the adjoint operator of S, we let C : F → F be the linear operator C = S∗S, which can be
written as

C =

∫
X

φ(x)⊗ φ(x)dρX(x). (36)

We also define the linear operator L : L2(X, ρX) → L2(X, ρX) such that L = SS∗, that can be
represented as

(Lf)(·) =

∫
X

〈φ(x), φ(·)〉F f(x)dρX(x), ∀f ∈ L2(X, ρX). (37)

We now define the analog of the previous operators where we use the feature map φM instead of φ.
We have SM : RM → L2(X, ρX) defined as

(SMv)(·) = 〈v, φM (·)〉RM , ∀v ∈ RM , (38)

together with CM : RM → RM and LM : L2(X, ρX)→ L2(X, ρX) defined as CM = S∗MSM and
LM = SMS

∗
M respectively.

We also define the empirical counterpart of the previous operators. The operator ŜM : RM → Rn is
defined as,

Ŝ>M =
1√
n

(φM (x1), . . . , φM (xn)) , (39)

and with ĈM : RM → RM and L̂M : Rn → Rn are defined as ĈM = Ŝ>M ŜM and L̂M = ŜM Ŝ
>
M ,

respectively.

Remark 1 (from [51, 52]). Let P : L2(X, ρX) → L2(X, ρX) be the projection operator whose
range is the closure of the range of L. Let fρ : X → R be defined as

fρ =

∫
ydρ(y|x).

If there exists fH ∈ H such that
inf
f∈H
E(f) = E(fH),

then
Pfρ = SfH,

or equivalently, there exists g ∈ L2(X, ρX) such that

Pfρ = Lrg,

with 1/2 ≤ r ≤ 1. In particular, we have R := ‖fH‖H = ‖g‖L2(X,ρX).

With the operators introduced above and Remark 1, we can rewrite the auxiliary objects (24), (25),
(26), (27), (28) respectively as

v̂1 = 0; v̂t+1 = (I − γtĈM )v̂t + γtŜ
∗
M ŷ, ∀t ∈ [T ], (40)

ṽ1 = 0; ṽt+1 = (I − γtCM )ṽt + γtS
∗
Mfρ, ∀t ∈ [T ], (41)

v1 = 0; vt+1 = (I − γtCM )vt + γtS
∗
MPfρ, ∀t ∈ [T ]. (42)
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where ŷ = n−1/2(y1, . . . , yn), and

ũλ = S∗ML
−1
M,λPfρ (43)

uλ = S∗L−1λ Pfρ (44)

By a simple induction argument the three sequences can be written as

v̂t+1 =
∑t
i=1 γi

∏t
k=i+1(I − γkĈM )Ŝ∗M ŷ (45)

ṽt+1 =
∑t
i=1 γi

∏t
k=i+1(I − γkĈM )S∗Mfρ (46)

vt+1 =
∑t
i=1 γi

∏t
k=i+1(I − γkCM )S∗MPfρ (47)

A.2 Error decomposition

We can now rewrite the error decomposition of f̂t − fH using the operators introduced above as

SM ŵt − Pfρ = SM ŵt − SM v̂t (48)
+ SM v̂t − SM ṽt (49)
+ SM ṽt − SMvt (50)

+ SMvt − LML−1M,λPfρ (51)

+ LML
−1
M,λPfρ − LL

−1
λ Pfρ (52)

+ LL−1λ Pfρ − Pfρ. (53)

A.3 Lemmas

The first three lemmas we present are some technical lemmas used when bounding the first three
terms (48), (49), (50) of the error decomposition.

Lemma 1. Under Assumption 2 the following holds for any t,M, n ∈ N

‖ṽt − vt‖ = 0 a.s. (54)

Proof. Given (46), (47) and defining AMt =
∑t
i=1 γi

∏t
k=i+1(I − γkCM ), we can write

‖ṽt − vt‖ = ‖AMtS
∗
M (I − P )fρ‖ ≤ ‖AMt‖ ‖S∗M (I − P )‖ ‖fρ‖ . (55)

Under Assumption 2, by Lemma 2 of [8], we have ‖S∗M (I − P )‖ = 0, which completes the
proof.

Lemma 2. Let M ∈ N. Under Assumption 2 and 3, let γtκ2 ≤ 1, δ ∈]0, 1], the following holds with
probability 1− δ for all t ∈ [T ]

‖ṽt+1‖ ≤ 2Rκ2r−1

1 +

√
9κ2

M
log

M

δ
max

( t∑
i=1

γt

) 1
2

, κ−1

 . (56)

Proof. Considering (41) (42), we can write

‖ṽt+1‖ ≤ ‖ṽt+1 − vt+1‖+ ‖vt+1‖ = ‖vt+1‖, (57)

where in the last equality we used the result from Lemma 1. Using Assumption 3 (see also Remark 1),
we derive

‖vt+1‖ =

∥∥∥∥∥
t∑
i=1

γiS
∗
M

t∏
k=i+1

(I − γkLM )Pfρ

∥∥∥∥∥ ≤ R
∥∥∥∥∥

t∑
i=1

γiS
∗
M

t∏
k=i+1

(I − γkLM )Lr

∥∥∥∥∥ (58)

Define QMt =
∑t
i=1 γiS

∗
M

∏t
k=i+1(I − γkLM ). Note that ‖Lr− 1

2 ‖ ≤ κ2r−1 for r ≥ 1
2 and that

‖L−1/2M,η L
1/2‖ ≤ 2 holds with probability 1− δ when 9κ2

M log M
δ ≤ η ≤ ‖L‖ (see Lemma 5 in [26]).
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Moreover, when η ≥ ‖L‖, we have that ‖L−1/2M,η L
1/2‖ ≤ η−1/2‖L1/2‖ ≤ 1. So ‖L−1/2M,η L

1/2‖ ≤ 2
with probability 1− δ, when

9κ2

M
log

M

δ
≤ η. (59)

So when (59) holds, with probability 1− δ we can write

R‖QMtL
r‖ = R‖QMtL

1
2

M,ηL
− 1

2

M,ηL
1
2Lr−

1
2 ‖

≤ R‖QMtL
1
2

M,η‖‖L
− 1

2

M,ηL
1
2 ‖‖Lr− 1

2 ‖

≤ 2Rκ2r−1‖QMtL
1
2

M,η‖

≤ 2Rκ2r−1
(
‖QMtL

1
2

M‖+ η
1
2 ‖QMt‖

)
. (60)

Now note that for any a ∈ [0, 1/2],

‖QMtL
a
M‖ ≤ max

κ2a−1,( t∑
i=1

γi

) 1
2−a
 (61)

(see Lemma B.10(i) in [36] or Lemma 16 of [33]). We use (61) with a = 1
2 and a = 0 to bound

‖QMtL
1/2
M ‖ and ‖QMt‖ respectively and plug the results in (60). To complete the proof we take

η = 9κ2

M log M
δ .

Lemma 3. Let λ > 0, R ∈ N and δ ∈ (0, 1). Let ζ1, . . . , ζR be i.i.d. random vectors bounded
by κ > 0. Denote with QR = 1

R

∑R
j=1 ζj ⊗ ζj and by Q the expectation of QR. Then, for any

λ ≥ 9κ2

R log R
δ , we have

‖(QR + λI)−1/2(Q+ λI)1/2‖2 ≤ 2.

Proof. This lemma is a more refined version of a result in [53]. When ‖Q‖ ≥ λ ≥ 9κ2

R log R
δ , by

combining Prop. 8 of [8], with Prop. 6 and in particular Rem. 10 point 2 of the same paper, we have
that ‖(QR + λI)−1/2(Q+ λI)1/2‖ ≤ 2, with probability at least 1− δ. To cover the case λ > ‖Q‖,
note that

‖(QR + λI)−1/2(Q+ λI)1/2‖ ≤ (‖Q‖1/2 + λ1/2)/λ1/2.

When λ > ‖Q‖, we have that

‖(QR + λI)−1/2(Q+ λI)1/2‖ ≤ sup
λ>‖Q‖

(‖Q‖1/2 + λ1/2)/λ1/2 ≤ 2.

We need the following technical lemma that complements Proposition 10 of [8] when λ ≥ ‖L‖, and
that we will need for the proof of Lemma 6.

Lemma 4. Let M ∈ N and δ ∈ (0, 1]. For any λ > 0 such that

M ≥
(

4 +
18κ2

λ

)
log

12κ2

λδ
,

the following holds with probability 1− δ

NM (λ) :=

∫
X

‖(LM + λI)−
1
2φM (x)‖2dρX(x) ≤ max

(
2.55,

2κ2

‖L‖

)
N (λ).

Proof. First of all note that

NM (λ) :=

∫
X

‖(LM + λI)−
1
2φM (x)‖2dρX(x) = Tr(L

− 1
2

M,λLML
− 1

2

M,λ) = Tr(L−1M,λLM ).
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Now consider the case when λ ≤ ‖L‖. By applying Proposition 10 of [8] we have that under the
required condition on M , the following holds with probability at least 1− δ

NM (λ) ≤ 2.55N (λ).

For the case λ > ‖L‖, note that Tr(AA−1λ ) satisfies the following inequality for any trace class
positive linear operator A with trace bounded by κ2 and λ > 0,

‖A‖
‖A‖+ λ

≤ Tr(AA−1λ ) ≤ Tr(A)

λ
.

So, when λ > ‖L‖, sinceNM (λ) = Tr(CMC
−1
Mλ) andN (λ) = Tr(LL−1λ ), and bothL and ĈM have

trace bounded by κ2, we have NM (λ) ≤ κ2

λ and N (λ) ≥ ‖L‖
‖L‖+λ . So by selecting q = κ2(‖L‖+λ)

λ‖L‖ ,
we have

NM (λ) ≤ κ2

λ
= q

‖L‖
‖L‖+ λ

≤ qN (λ).

Finally note that

q ≤ sup
λ>‖L‖

κ2(‖L‖+ λ)

λ‖L‖
≤ 2

κ2

‖L‖
.

We now start bounding the different parts of the error decomposition. The next two lemmas bound
the first two terms (48), (49). To bound these we require the above lemmas and adapting ideas from
[33, 36, 8].
Lemma 5. Under Assumption 2 and 4, let δ ∈]0, 1[, n ≥ 32 log2 2

δ , and γt = γκ−2t−θ for all
t ∈ [T ], with θ ∈ [0, 1[ and γ such that

0 < γ ≤ tmin(θ,1−θ)

8(log t+ 1)
, ∀t ∈ [T ]. (62)

When
1

γt1−θ
≥ 9

n
log

n

δ
(63)

for all t ∈ [T ], with probability at least 1− 2δ,

EJ‖SM (ŵt+1 − v̂t+1)‖2 ≤ 208Bp

(1− θ)b

(
γt−min(θ,1−θ)

)
(log t ∨ 1). (64)

Proof. The proof is derived by applying Proposition 6 in [33] with γ satisfying condition (62),
λ = 1

γtt
, δ2 = δ3 = δ, and some changes that we now describe. Instead of the stochastic iteration wt

and the batch gradient iteration νt as defined in [33] we consider (3) and (40) respectively, as well
as the operators SM , CM , LM , ŜM , ĈM , L̂M defined in Section 2 instead of Sρ, Tρ,Lρ, Sx, Tx,Lx

defined in [33]. Instead of assuming that exists a κ ≥ 1 for which 〈x, x′〉 ≤ κ2,∀x, x′ ∈ X we have
Assumption 2 which implies the same κ2 upper bound of the operators used in the proof. To apply
this version of Proposition 6 note that their Equation (63) is satisfied by Lemma 25 of [33], while
their Equation (47) is satisfied by our Lemma 3, from which we obtain the condition (63).

Lemma 6. Under Assumptions 2, 4 and 3, let δ ∈]0, 1[ and γt = γκ−2t−θ for all t ∈ [T ], with
γ ∈]0, 1] and θ ∈ [0, 1[. When

M ≥
(
4 + 18γt1−θ

)
log

12γt1−θ

δ
, (65)

for all t ∈ [T ] with probability at least 1− 3δ

‖SM (v̂t+1 − ṽt+1)‖ ≤ 4

(
Rκ2r

(
1 +

√
9

M
log

M

δ

(√
γt1−θ ∨ 1

))
+
√
B

)
×

×
(

8

(1− θ)
+ 4 log t+ 4 +

√
2γ

)√γt1−θ
n

+

√
2
√
pq0N ( κ2

γt1−θ
)

√
n

 log
4

δ
, (66)

where q0 = max
(

2.55, 2κ2

‖L‖

)
.
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Proof. The proof can be derived from the one of Theorem 5 in [33] with λ = 1
γtt

, δ1 = δ2 = δ,
and some changes we now describe. Instead of the iteration νt and µt defined in [33] we consider
(40) and (41) respectively, as well as the operators SM , CM , LM , ŜM , ĈM , L̂M defined in Section 2
instead of Sρ, Tρ,Lρ, Sx, Tx,Lx defined in [33]. Instead of assuming that exists a κ ≥ 1 for which
〈x, x′〉 ≤ κ2,∀x, x′ ∈ X we have Assumption 2 which imply the same ‖CM‖ ≤ κ2 upper bound
of the operators used in the proof. Further, when in the proof we need to bound ‖vt+1‖ we use our
Lemma 2 instead of Lemma 16 of [33]. In addition instead of Lemma 18 of [33] we use Lemma 6 of
[8], together with Lemma 4, obtaining the desired result with probability 1− 3δ, when M satisfies
M ≥ (4 + 18γtt) log 12γtt

δ . Under the assumption that γt = γκ−2t−θ, the two condition above can
be rewritten as (65).

The next lemma states that the third term (50) of the error decomposition is equal to zero.
Lemma 7. Under Assumption 3 the following holds for any t,M, n ∈ N

‖SM ṽt − SMvt‖ = 0 a.s. (67)

Proof. From Lemma 1 and the definition of operator norm the result follows trivially.

The next Lemma is a known result from Lemma 8 of [8] which bounds the distance between the
Tikhonov solution with RF and the Tikhonov solution without RF (52).
Lemma 8. Under Assumption 2 and 3 for any λ > 0, δ ∈ (0, 1/2], when

M ≥

(
4 +

18κ2

λ

)
log

8κ2

λδ
(68)

the following holds with probability at least 1− 2δ,

‖LL−1λ Pfρ − LML−1M,λPfρ‖ ≤ 4Rκ2r

 log 2
δ

Mr
+

√
λ2r−1N (λ)2r−1 log 2

δ

M

 q1−r, (69)

where q := log 11κ2

λ .

The next lemma is one of our main contributions and studies how the population gradient decent with
RF and ridge regression with RF are related (51).
Lemma 9. Under Assumption 3 the following holds with probability 1− δ for λ = 1∑t

i=1 γi
for all

t ∈ [T ]

‖SMvt+1 − LML−1M,λPfρ‖ρ ≤ 8Rκ2r

(
log 2

δ

Mr
+

√
N ((

∑t
i=1 γi)

−1)2r−1 log 2
δ

M(
∑t
i=1 γi)

2r−1

)
×

× log1−r

(
11κ2

t∑
i=1

γi

)
+ 2R

(
t∑
i=1

γi

)−r
, (70)

when

M ≥

(
4 + 18

t∑
i=1

γi

)
log

(
8κ2

∑t
i=1 γi
δ

)
. (71)

Proof. Denoting QM =
∑t
i=1 γi

∏t
k=i+1(I − γkLM ) we can write

SMvt+1 = QMLMPfρ

Then

SMvt+1 − LML−1M,λPfρ = QMLM,λLML
−1
M,λ − LML

−1
M,λPfρ

= (QM (LM + λI)− I)LML
−1
M,λPfρ. (72)
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Denote by Ai,t the operator Ai,t :=
∏t
k=i(I − γkLM ), and note that

Ai,t := (I − γkLM )Ai+1,t.

We can then derive

QMLM =

t∑
i=1

γi

t∏
k=i+1

(I − γkLM )LM =

t∑
i=1

(I − (I − γiLM ))

t∏
k=i+1

(I − γkLM )

=

t∑
i=1

(I − (I − γiLM ))Ai+1,t =

t∑
i=1

Ai+1,t −
t∑
i=1

(I − γiLM )Ai+1,t

=

t∑
i=1

Ai+1,t −
t∑
i=1

Ai,t = I +

t∑
i=2

Ai,t −
t∑
i=1

Ai,t = I −A1,t.

We now write

‖(QM (LM + λI)− I)LM‖ = ‖(QMLM + λQM − I)LM‖
= ‖(I −A1,t + λQM − I)LM‖
= ‖λQMLM −A1,tLM‖
≤ ‖λQMLM‖+ ‖A1,tLM‖. (73)

For the first term in (73) we have

‖λQMLM‖ = λ‖I −A1,t‖ ≤ λ,
since LM is positive operator and γi‖LM‖ < 1, so A1,t is positive with norm smaller than one by
construction, implying that ‖I −A1,t‖ ≤ 1. The second term in (73) can be bounded using Lemma
15 in [33],

‖A1,tLM‖ ≤ (

t∑
i=1

γi)
−1

Now back to (72), we can write

‖SMvt+1 − LML−1M,λPfρ‖ρ ≤

(
λ+

1∑t
i=1 γi

)
‖L−1MλPfρ‖ρ. (74)

Setting λ = 1∑t
i=1 γi

, and calling this quantity λ̃ for the rest of the proof, we can write

‖SMvt+1 − LML−1
M,λ̃

Pfρ‖ρ ≤ 2λ̃‖L−1
Mλ̃

Pfρ‖ρ (75)

= 2‖(λ̃L−1
Mλ̃
− λ̃L−1

λ̃
+ λ̃L−1

λ̃
)Pfρ‖ρ (76)

≤ 2‖(λ̃L−1
Mλ̃
− λ̃L−1

λ̃
)Pfρ‖ρ + 2λ̃‖L−1

λ̃
Pfρ‖ρ. (77)

Since AA−1λ = I − λA−1λ for any bounded symmetric operator A and λ > 0, we can write the last
term of (77) as

λ̃‖L−1
λ̃
Pfρ‖ρ = ‖(LL−1

λ̃
− I)Pfρ‖ρ.

We can then use Lemma 10 to control this quantity as

‖(LL−1
λ̃
− I)Pfρ‖ρ ≤ Rλ̃r. (78)

For the first term, analogously

‖(λ̃L−1
Mλ̃
− λ̃L−1

λ̃
)Pfρ‖ρ = ‖((I − λ̃L−1

Mλ̃
)− (I − λ̃L−1λ ))Pfρ‖ρ

= ‖(LML−1
Mλ̃
− LL−1

λ̃
)Pfρ‖ρ

≤ 4Rκ2r

 log 2
δ

Mr
+

√
λ̃2r−1N (λ̃)2r−1 log 2

δ

M

(log
11κ2

λ̃

)1−r

, (79)

where the last step holds when M ≥ (4 + 18λ̃−1) log(8κ2(λ̃δ)−1) and consists in the application of
Lemma 9. Now recalling the definition of λ̃ we complete the proof.
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The last result is a classical bound of the approximation error for the Tikhonov filter (53), see [11].
Lemma 10 (From [11] or Lemma 5 of [8]). Under Assumption 3

‖LL−1λ Pfρ − Pfρ‖ ≤ Rλr (80)

A.4 Proofs of Theorems

We now present the proofs of our theorems. Theorem 2 and 1 are specific case of the more general
Theorem 3.

Proof of Theorem 3. We start considering Lemma 6, and we note that condition (65) is satisfied
when

M ≥
(
4 + 18γT 1−θ) log

12γT 1−θ

δ
. (81)

Noting that (19) imply
√

2γ ≤ 1, we can derive from (66)

‖SM (v̂t+1 − vt+1)‖2 ≤

(
(17− 9θ)

√
8
√
p

(1− θ)

)2

×

×
(

32B + 64R2κ4r
(

1 +
9

M
log

M

δ

(
γt1−θ ∨ 1

)))
×

×
q0N ( κ2

γt1−θ
)

n

(
log2 t ∨ 1

)
log2 4

δ
, (82)

when (81) holds.

Let λ = κ2

γt1−θ
. Given Lemma 8 we derive from (69) that∥∥∥LL−1λ Pfρ − LML−1M,λPfρ

∥∥∥2 ≤ 32R2κ4r

(
log2 2

δ

M2r
+
N ( κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1

)
×

× log2−2r (11γt1−θ
)
, (83)

when (81) holds.

Let γt = γκ−2t−θ for all t ∈ [T ]. Given Lemma 9 we derive from (70)∥∥∥SMvt+1 − LML−1M,λPfρ

∥∥∥2 ≤ 8R2κ4r

(
32

(
log2 2

δ

M2r
+
N ( κ2

γt1−θ
)2r−1 log 2

δ

M(γt1−θκ−2)2r−1

)
×

× log2−2r (11γt1−θ
)

+

(
1

γt1−θ

)2r
)
, (84)

when (81) holds.

Similarly from Lemma 10

‖LL−1λ Pfρ − Pfρ‖2 ≤ R2κ4r
(

1

γt1−θ

)2r

. (85)

The desired result is obtained by gathering the results in (64), (82), (84), (83), (85). Requiring γ,M
to satisfy the associated conditions (81), (62), (63). In particular note that (62) is satisfied when θ = 0
by γ ≤ (8(log T + 1))−1, while, if θ > 0, we have

tmin(θ,1−θ)

8(log t+ 1)
= e−min(θ,1−θ) (et)min(θ,1−θ)

8 log(et)
≥ e−min(θ,1−θ) inf

t∈1

(et)min(θ,1−θ)

8 log(et)

= e−min(θ,1−θ) inf
z≥emin(θ,1−θ)

z
8

min(θ,1−θ) log z

≥ e−min(θ,1−θ) inf
z≥1

z
8

min(θ,1−θ) log z
≥ e−min(θ,1−θ) min(θ, 1− θ)

4
,
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where we performed the change of variable tmin(θ,1−θ) = z. Finally note that e−min(θ,1−θ) ≥ e−1/2,
for any θ ∈ (0, 1). Moreover the (81), (63) are satisfied for any t ∈ [T ] by requiring them to hold for
t = T .

Proof of Theorem 2. Choosing θ = 0 in Theorem 3 we complete the proof.

Proof of Theorem 1. Considering the case of Assumption 5 with α = 1 we can bound N (1/γt) ≤
γt in Theorem 3 and complete the proof.

20


	Introduction
	Learning with Stochastic Gradients and Random Features
	From Sketching to Random Features, from Shallow Nets to Kernels
	Computational complexity
	Related approaches

	Main Results
	Worst case results
	Refined analysis and fast rates
	Sketch of the Proof

	Experiments
	Conclusions
	Appendix
	Preliminary definitions
	Error decomposition
	Lemmas
	Proofs of Theorems


