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Abstract

In this work we study the problem of using machine-learned predictions to improve
the performance of online algorithms. We consider two classical problems, ski
rental and non-clairvoyant job scheduling, and obtain new online algorithms that
use predictions to make their decisions. These algorithms are oblivious to the
performance of the predictor, improve with better predictions, but do not degrade
much if the predictions are poor.

1 Introduction

Dealing with uncertainty is one of the most challenging issues that real-world computational tasks,
besides humans, face. Ranging from “will it snow next week?” to “should I rent an apartment or
buy a house?”, there are questions that cannot be answered reliably without some knowledge of the
future. Similarly, the question of “which job should I run next?” is hard for a CPU scheduler that
does not know how long this job will run and what other jobs might arrive in the future.

There are two interesting and well-studied computational paradigms aimed at tackling uncertainty.
The first is in the field of machine learning where uncertainty is addressed by making predictions
about the future. This is typically achieved by examining the past and building robust models based
on the data. These models are then used to make predictions about the future. Humans and real-world
applications can use these predictions to adapt their behavior: knowing that it is likely to snow next
week can be used to plan a ski trip. The second is in the field of algorithm design. Here, the effort
has to been to develop a notion of competitive ratio1 for the goodness of an algorithm in the presence
of an unknown future and develop online algorithms that make decisions heedless of the future but
are provably good in the worst-case, i.e., even in the most pessimistic future scenario. Such online
algorithms are popular and successful in real-world systems and have been used to model problems
including paging, caching, job scheduling, and more (see the book by Borodin and El-Yaniv [5]).

Recently, there has been some interest in using machine-learned predictions to improve the quality
of online algorithms [20, 18]. The main motivation for this line of research is two-fold. The first
is to design new online algorithms that can avoid assuming a worst-case scenario and hence have
better performance guarantees both in theory and practice. The second is to leverage the vast
amount of modeling work in machine learning, which precisely deals with how to make predictions.
Furthermore, as machine-learning models are often retrained on new data, these algorithms can
naturally adapt to evolving data characteristics. When using the predictions, it is important that
the online algorithm is unaware of the performance of the predictor and makes no assumptions on
the types of prediction errors. Additionally, we desire two key properties of the algorithm: (i) if
the predictor is good, then the online algorithm should perform close to the best offline algorithm
(consistency) and (ii) if the predictor is bad, then the online algorithm should gracefully degrade, i.e.,
its performance should be close to that of the online algorithm without predictions (robustness).

1Informally, competitive ratio compares the worst-case performance of an online algorithm to the best offline
algorithm that knows the future.
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Our problems. We consider two basic problems in online algorithms and show how to use machine-
learned predictions to improve their performance in a provable manner. The first is ski rental, in
which a skier is going to ski for an unknown number of days and on each day can either rent skis at
unit price or buy them for a higher price b and ski for free from then on. The uncertainty is in the
number of skiing days, which a predictor can estimate. Such a prediction can be made reasonably
well, for example, by building models based on weather forecasts and past behavior of other skiers.
The ski rental problem is the canonical example of a large class of online rent-or-buy problems, which
arise whenever one needs to decide between a cheap short-term solution (“renting”) and an expensive
long-term one (“buying”). Several extensions and generalizations of the ski rental problem have
been studied leading to numerous applications such as dynamic TCP acknowledgement [11], buying
parking permits [21], renting cloud servers [14], snoopy caching [13], and others. The best known
deterministic algorithm for ski rental is the break-even algorithm: rent for the first b− 1 days and
buy on day b. It is easy to observe that the break-even algorithm has a competitive ratio of 2 and no
deterministic algorithm can do better. On the other hand, Karlin et al. [12] designed a randomized
algorithm that yields a competitive ratio of e

e−1 ≈ 1.58, which is also optimal.

The second problem we consider is non-clairvoyant job scheduling. In this problem a set of jobs, all
of which are available immediately, have to be scheduled on one machine; any job can be preempted
and resumed later. The objective is to minimize the sum of completion times of the jobs. The
uncertainty in this problem is that the scheduler does not know the running time of a job until it
actually finishes. Note that a predictor in this case can predict the running time of a job, once again, by
building a model based on the characteristics of the job, resource requirements, and its past behavior.
Non-clairvoyant job scheduling, introduced by Motwani et al. [23], is a basic problem in online
algorithms with a rich history and, in addition to its obvious applications to real-world systems, many
variants and extensions of it have been studied extensively in the literature [9, 3, 1, 10]. Motwani et
al. [23] showed that the round-robin algorithm has a competitive ratio of 2, which is optimal.

Main results. Before we present our main results we need a few formal notions. In online algorithms,
the competitive ratio of an algorithm is defined as the worst-case ratio of the algorithm cost to the
offline optimum. In our setting, this is a function c(η) of the error η of the predictor2. We say that an
algorithm is γ-robust if c(η) ≤ γ for all η, and that it is β-consistent if c(0) = β. So consistency is a
measure of how well the algorithm does in the best case of perfect predictions, and robustness is a
measure of how well it does in the worst-case of terrible predictions.

Let λ ∈ (0, 1) be a hyperparameter. For the ski rental problem with a predictor, we first obtain a
deterministic online algorithm that is (1 + 1/λ)-robust and (1 + λ)-consistent (Section 2.2). We
next improve these bounds by obtaining a randomized algorithm that is ( 1

1−e−(λ−1/b)
)-robust and

( λ
1−e−λ )-consistent, where b is the cost of buying (Section 2.3). For the non-clairvoyant scheduling

problem, we obtain a randomized algorithm that is (2/(1− λ))-robust and (1/λ)-consistent. Note
that the consistency bounds for all these algorithms circumvent the lower bounds, which is possible
only because of the predictions.

It turns out that for these problems, one has to be careful how the predictions are used. We illustrate
through an example that if the predictions are used naively, one cannot ensure robustness (Section 2.1).
Our algorithms proceed by opening up the classical online algorithms for these problems and using
the predictions in a judicious manner. We also conduct experiments to show that the algorithms we
develop are practical and achieve good performance compared to ones that do not use any prediction.

Related work. The work closest to ours is that of Medina and Vassilvitskii [20] and Lykouris
and Vassilvitskii [18]. The former used a prediction oracle to improve reserve price optimization,
relating the gap beween the expected bid and revenue to the average predictor loss. In a sense,
this paper initiated the study of online algorithms equipped with machine learned predictions. The
latter developed this framework further, introduced the concepts of robustness and consistency,
and considered the online caching problem with predictions. It modified the well-known Marker
algorithm to use the predictions ensuring both robustness and consistency. While we operate in the
same framework, none of their techniques are applicable to our setting. Another recent work is that
of Kraska et al. [17] that empirically shows that better indexes can be built using machine learned
models; it does not provide any provable guarantees for its methods.

2The definition of the prediction error η is problem-specific. In both the problems considered in this paper, η
is defined to be the L1 norm of the error.
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There are other computational models that try to tackle uncertainty. The field of robust optimiza-
tion [16] considers uncertain inputs and aims to design algorithms that yield good performance
guarantees for any potential realization of the inputs. There has been some work on analyzing
algorithms when the inputs are stochastic or come from a known distribution [19, 22, 6]. In the
optimization community, the whole field of online stochastic optimization concerns online decision
making under uncertainty by assuming a distribution on future inputs; see the book by Russell Bent
and Pascal Van Hentenryck [4]. Our work differs from these in that we do not assume anything about
the input; in fact, we do not assume anything about the predictor either!

2 Ski rental with prediction

In the ski rental problem, let rentals cost one unit per day, b be the cost to buy, x be the actual number
of skiing days, which is unknown to the algorithm, and y be the predicted number of days. Then
η = |y − x| is the prediction error. Note that we do not make any assumptions about its distribution.
The optimum cost is OPT = min{b, x}.

2.1 Warmup: A simple consistent, non-robust algorithm

We first show that an algorithm that naively uses the predicted number of days to decide whether or
not to buy is 1-consistent, i.e., its competitive ratio is 1 when η = 0. However, this algorithm is not
robust, as the competitive ratio can be arbitrarily large in case of incorrect predictions.

Algorithm 1: A simple 1-consistent algorithm
if y ≥ b then

Buy on the first day.
else

Keep renting for all skiing days.
end

Lemma 2.1. Let ALG denote the cost of the solution obtained by Algorithm 1 and let OPT denote
the optimal solution cost on the same instance. Then ALG ≤ OPT+ η.

Proof. We consider different cases based on the relative values of the prediction y and the actual
number of days x of the instance. Recall that Algorithm 1 incurs a cost of b whenever the prediction
is at least b and incurs a cost of x otherwise.

• y ≥ b, x ≥ b =⇒ ALG = b = OPT.
• y < b, x < b =⇒ ALG = x = OPT
• y ≥ b, x < b =⇒ ALG = b ≤ x+ y − x = x+ η = OPT+ η
• y < b, x ≥ b =⇒ ALG = x < b+ x− y = b+ η = OPT+ η

A major drawback of Algorithm 1 is its lack of robustness. In particular, its competitive ratio can be
unbounded if the prediction y is small but x� b. Our goal next is to obtain an algorithm that is both
consistent and robust.

2.2 A deterministic robust and consistent algorithm

In this section, we show that a small modification to Algorithm 1 yields an algorithm that is both
consistent and robust. Let λ ∈ (0, 1) be a hyperparameter. As we see later, varying λ gives us a
smooth trade-off between the robustness and consistency of the algorithm.
Theorem 2.2. With a parameter λ ∈ (0, 1), Algorithm 2 has a competitive ratio of at most

min

{
1 + λ

λ
, (1 + λ) +

η

(1− λ)OPT

}
. In particular, Algorithm 2 is (1+1/λ)-robust and (1+λ)-

consistent.

Proof. We begin with the first bound. Suppose y ≥ b and the algorithm buys the skis at the start of
day dλbe. Since the algorithm incurs a cost of b+dλbe−1 whenever x ≥ dλbe, the worst competitive
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Algorithm 2: A deterministic robust and consistent algorithm.
if y ≥ b then

Buy on the start of day dλbe
else

Buy on the start of day db/λe
end

ratio is obtained when x = dλbe, for which OPT = dλbe. In this case, we have ALG = b+dλbe−1 ≤
b+ λb ≤

(
1+λ
λ

)
dλbe =

(
1+λ
λ

)
OPT. On the other hand, when y < b, the algorithm buys skis at the

start of day db/λe and rents until then. In this case, the worst competitive ratio is attained whenever
x = db/λe as we have OPT = b and ALG = b+ db/λe − 1 ≤ b+ b/λ =

(
1+λ
λ

)
OPT.

To prove the second bound, we need to consider the following two cases. Suppose y ≥ b. Then,
for all x < dλbe, we have ALG = OPT = x. On the other hand, for x ≥ dλbe, we have
ALG = b + dλbe − 1 ≤ (1 + λ)b ≤ (1 + λ)(OPT + η). The second inequality follows since
either OPT = b (if x ≥ b) or b ≤ y ≤ OPT + η (if x < b). Suppose y < b. Then, for all
x ≤ b, we have ALG = OPT = x. Similarly, for all x ∈ (b, db/λe), we have ALG = x ≤ y + η <
b + η = OPT + η. Finally for all x ≥ db/λe, noting that η = x − y > b/λ − b = (1 − λ)b/λ,
we have ALG = b + db/λe − 1 ≤ b + b/λ < b + ( 1

1−λ )η = OPT + ( 1
1−λ )η. Thus we obtain

ALG ≤ (1 + λ)OPT+ ( 1
1−λ )η, completing the proof.

Thus, Algorithm 2 gives an option to trade-off consistency and robustness. In particular, greater trust
in the predictor suggests setting λ close to zero as this leads to a better competitive ratio when η is
small. On the other hand, setting λ close to one is conservative and yields a more robust algorithm.

2.3 A randomized robust and consistent algorithm

In this section we consider a family of randomized algorithms and compare their performance against
an oblivious adversary. In particular, we design robust and consistent algorithms that yield a better
trade-off than the above deterministic algorithms. Let λ ∈ (1/b, 1) be a hyperparameter. For a given
λ, Algorithm 3 samples the day when skis are bought based on two different probability distributions,
depending on the prediction received, and rents until that day.

Algorithm 3: A randomized robust and consistent algorithm
if y ≥ b then

Let k ← bλbc;
Define qi ←

(
b−1
b

)k−i · 1
b(1−(1−1/b)k)

for all 1 ≤ i ≤ k;
Choose j ∈ {1 . . . k} randomly from the distribution defined by qi;
Buy at the start of day j.

else
Let `← db/λe;
Define ri ←

(
b−1
b

)`−i · 1
b(1−(1−1/b)`)

for all 1 ≤ i ≤ `;
Choose j ∈ {1 . . . `} randomly from the distribution defined by ri;
Buy at the start of day j.

end

Theorem 2.3. Algorithm 3 yields a competitive ratio of at most min{ 1
1−e−(λ−1/b)

, λ
1−e−λ (1+

η
OPT )}.

In particular, Algorithm 3 is ( 1
1−e−(λ−1/b)

)-robust and ( λ
1−e−λ )-consistent.

Proof. We consider different cases depending on the relative values of y and x.

(i) y ≥ b, x ≥ k. Here, we have OPT = min{b, x}. Since the algorithm incurs a cost of (b+ i− 1)
when we buy at the beginning of day i, we have

E[ALG] =
k∑
i=1

(b+ i− 1)qi =

k∑
i=1

(b+ i− 1)

(
b− 1

b

)k−i
1

b(1− (1− 1/b)k)
=

k

1− (1− 1/b)k
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≤ k

1− e−k/b
≤
(

k/b

1− e−k/b

)
(OPT+ η) ≤

(
λ

1− e−λ

)
(OPT+ η).

(ii) y ≥ b, x < k. Here, we have OPT = x. On the other hand, the algorithm incurs a cost of
(b+ i− 1) only if it buys at the beginning of day i ≤ x. In particular, we have

E[ALG] =
x∑
i=1

(b+ i− 1)qi +

k∑
i=x+1

xqi

=
1

b(1− (1− 1/b)k)

[
x∑
i=1

(b+ i− 1)

(
b− 1

b

)k−i
+

k∑
i=x+1

x

(
b− 1

b

)k−i]

=
x

1− (1− 1/b)k
≤
(

1

1− e−k/b

)
OPT ≤

(
1

1− e−(λ−1/b)

)
OPT,

which establishes robustness. In order to prove consistency, we can rewrite the RHS as follows

E[ALG] ≤
(

1

1− e−k/b

)
OPT =

(
k/b

1− e−k/b

)
OPT+

(
(b−k)/b

1− e−k/b

)
x

≤
(

k/b

1− e−k/b

)
OPT+

(
k/b

1− e−k/b

)
η ≤

(
λ

1− e−λ

)
(OPT+ η),

since x < k and b− k ≤ η.

(iii) y < b, x < `. Here, we have OPT = min{b, x}. On the other hand, the expected cost of the
algorithm can be computed similar to (ii)

E[ALG] =
x∑
i=1

(b+ i− 1)ri +
∑̀
i=x+1

xri ≤
(

1

1− e− /̀b

)
x

≤
(

1

1− e−1/λ

)
(OPT+ η) ≤

(
λ

1− e−λ

)
(OPT+ η).

(iv) y < b, x ≥ `. Here, we have OPT = b. The expected cost incurred by the algorithm is as in (i).

E[ALG] =
∑̀
i=1

(b+ i− 1)ri =
`

1− (1− 1/b)`
≤ db/λe

(1− e− /̀b)

≤
(

1/λ+ 1/b

(1− e−1/λ)

)
OPT ≤

(
1

1− e−(λ−1/b)

)
OPT,

which proves robustness. To prove consistency, we rewrite the RHS as follows.

E[ALG] ≤ `

1− e− /̀b
≤ `

1− e−1/λ
=

1

1− e−1/λ
(b+ `− b)

≤ 1

1− e−1/λ
(OPT+ η) ≤

(
λ

1− e−λ

)
(OPT+ η).

Algorithms 2 and 3 both yield a smooth trade-off between the robustness and consistency guarantees
for the ski rental problem. As shown in Figure 1, the randomized algorithm offers a much better
trade-off by always guaranteeing smaller consistency for a given robustness guarantee. We remark
that setting λ = 1 in Algorithms 2 and 3 allows us to recover the best deterministic and randomized
algorithms for the classical ski rental problem without using predictions.

2.4 Extensions

Consider a generalization of the ski rental problem where we have a varying demand xi for computing
resources on each day i. Such a situation models the problem faced while designing small enterprise
data centers. System designers have the choice of buying machines at a high setup cost or renting

5



machines from a cloud service provider to handle the computing needs of the enterprise. One can
satisfy the demand in two ways: either pay 1 to rent one machine and satisfy one unit of demand for
one day, or pay b to buy a machine and use it to satisfy one unit of demand for all future days. It is
easy to cast the classical ski rental problem in this framework by setting xi = 1 for the first x days
and to 0 later. Kodialam [15] considers this generalization and gives a deterministic algorithm with a
competitive ratio of 2 as well as a randomized algorithm with competitive ratio of e

e−1 .

Figure 1: Ski rental: Robustness vs.
consistency.

Now suppose we have predictions yi for the demand on day
i. We define η =

∑
i |xi − yi| to be the total L1 error of the

predictions. Both Algorithms 2 and 3 extend naturally to this
setting to yield the same robustness and consistency guarantees
as in Theorems 2.2 and 2.3. Our results follow from viewing
an instance of ski rental with varying demand problem as k
disjoint instances of the classical ski rental problem, where k
is an upper bound on the maximum demand on any day. The
proofs are similar to those in Sections 2.2 and 2.3; we omit
them for brevity.

3 Non-clairvoyant job scheduling with prediction

We consider the simplest variant of non-clairvoyant job scheduling, i.e., scheduling n jobs on a
single machine with no release dates. The processing requirement xj of a job j is unknown to the
algorithm and only becomes known once the job has finished processing. Any job can be preempted
at any time and resumed at a later time without any cost. The objective function is to minimize the
sum of completion times of the jobs. Note that no algorithm can yield any non-trivial guarantees if
preemptions are not allowed.

Let x1, . . . , xn denote the actual processing times of the n jobs, which are unknown to the non-
clairvoyant algorithm. In the clairvoyant case, when processing times are known up front, the optimal
algorithm is to simply schedule the jobs in non-decreasing order of job lengths, i.e., shortest job
first. A deterministic non-clairvoyant algorithm called round-robin (RR) yields a competitive ratio of
2 [23], which is known to be best possible.

Now, suppose that instead of being truly non-clairvoyant, the algorithm has an oracle that predicts the
processing time of each job. Let y1, . . . , yn be the predicted processing times of the n jobs. Then
ηj = |xj − yj | is the prediction error for job j, and η =

∑n
j=1 ηj is the total error. We assume that

there are no zero-length jobs and that units are normalized such that the actual processing time of
the shortest job is at least one. Our goal in this section is to design algorithms that are both robust
and consistent, i.e., can use good predictions to beat the lower bound of 2, while at the same time
guaranteeing a worst-case constant competitive ratio.

3.1 A preferential round-robin algorithm

In scheduling problems with preemption, we can simplify exposition by talking about several jobs
running concurrently on the machine, with rates that sum to at most 1. For example, in the round-robin
algorithm, at any point of time, all k unfinished jobs run on the machine at equal rates of 1/k. This is
just a shorthand terminology for saying that in any infinitesimal time interval, 1/k fraction of that
interval is dedicated to running each of the jobs.

We call a non-clairvoyant scheduling algorithm monotonic if it has the following property: given two
instances with identical inputs and actual job processing times (x1, . . . , xn) and (x′1, . . . , x

′
n) such

that xj ≤ x′j for all j, the objective function value found by the algorithm for the first instance is no
higher than that for the second. It is easy to see that the round-robin algorithm is monotonic.

We consider the Shortest Predicted Job First (SPJF) algorithm, which sorts the jobs in the increasing
order of their predicted processing times yj and executes them to completion in that order. Note that
SPJF is monotonic, because if processing times xj became smaller (with predictions yj staying the
same), all jobs would finish only sooner, thus decreasing the total completion time objective. SPJF
produces the optimal schedule in the case that the predictions are perfect, but for bad predictions,
its worst-case performance is not bounded by a constant. To get the best of both worlds, i.e. good
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performance for good predictions as well as a constant-factor approximation in the worst-case, we
combine SPJF with RR using the following, calling the algorithm Preferential Round-Robin (PRR).

Lemma 3.1. Given two monotonic algorithms with competitive ratios α and β for the minimum total
completion time problem with preemptions, and a parameter λ ∈ (0, 1), one can obtain an algorithm
with competitive ratio min{αλ ,

β
1−λ}.

Proof. The combined algorithm runs the two given algorithms in parallel. The α-approximation (call
it A) is run at a rate of λ, and the β-approximation (B) at a rate of 1− λ. Compared to running at
rate 1, if algorithm A runs at a slower rate of λ, all completion times increase by a factor of 1/λ, so it
becomes a α

λ -approximation. Now, the fact that some of the jobs are concurrently being executed by
algorithm B only decreases their processing times from the point of view of A, so by monotonicity,
this does not make the objective of A any worse. Similarly, when algorithm B runs at a lower rate of
1− λ, it becomes a β

1−λ -approximation, and by monotonicity can only get better from concurrency
with A. Thus, both bounds hold simultaneously, and the overall guarantee is their minimum.

We next analyze the performance of SPJF.

Lemma 3.2. The SPJF algorithm has competitive ratio at most
(
1 + 2η

n

)
.

Proof. Assume w.l.o.g. that jobs are numbered in non-decreasing order of their actual processing
times, i.e. x1 ≤ . . . ≤ xn. For any pair of jobs (i, j), define d(i, j) as the amount of job i that has
been executed before the completion time of job j. In other words, d(i, j) is the amount of time by
which i delays j. Let ALG denote the output of SPJF. Then

ALG =

n∑
j=1

xj +
∑

(i,j):i<j

(d(i, j) + d(j, i)).

For i < j such that yi < yj , the shorter job is scheduled first and hence d(i, j)+d(j, i) = xi+0, but
for job pairs that are wrongly predicted, the longer job is scheduled first, so d(i, j)+ d(j, i) = 0+xj .
This yields

ALG =

n∑
j=1

xj +
∑

(i,j):i<j
yi<yj

xi +
∑

(i,j):i<j
yi≥yj

xj =

n∑
j=1

xj +
∑

(i,j):i<j

xi +
∑

(i,j):i<j
yi≥yj

(xj − xi)

≤
n∑
j=1

xj +
∑

(i,j):i<j

xi +
∑

(i,j):i<j
yi≥yj

ηi + ηj = OPT+
∑

(i,j):i<j
yi≥yj

ηi + ηj ≤ OPT+ (n− 1)η,

which yields ALG
OPT ≤ 1 + (n−1)η

OPT . Now, using our assumption that all jobs have length at least 1, we
have OPT ≥ n(n+1)

2 . This yields an upper bound of 1 + 2(n−1)η
n(n+1) < 1 + 2η

n on the competitive ratio
of SPJF.

We give an example showing that this bound is asymptotically tight. Suppose that there are n− 1 jobs
with processing times 1 and one job with processing time 1 + ε and suppose the predicted lengths are
yj = 1 for all jobs. Then η = ε, OPT = n(n+1)

2 + ε, and, if SPJF happens to schedule the longest
job first, increasing the completion time of n− 1 jobs by ε each, ALG = OPT+ (n− 1)ε. This gives
the ratio of ALG

OPT = 1 + 2(n−1)η
n(n+1)+2ε , which approaches the bound in Lemma 3.2 as n increases and ε

decreases.

Finally, we bound the performance of the preferential round-robin algorithm.

Theorem 3.3. The preferential round-robin algorithm with parameter λ ∈ (0, 1) has competitive
ratio at most min{ 1λ (1 +

2η
n ), 2

1−λ}. In particular, it is 2
1−λ -robust and 1

λ -consistent.

Proof. This follows from the competitive ratio of SPJF (Lemma 3.2) and the competitive ratio of 2
for round-robin, and by combining the two algorithms using Lemma 3.1.
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Setting λ > 0.5 gives an algorithm that beats the round-robin ratio of 2 in the case of sufficiently
good predictions. For the special case of zero prediction errors (or, more generally, if the order of
jobs sorted by yj is the same as that sorted by xj), we can obtain an improved competitive ratio of
1+λ
2λ via a more sophisticated analysis.

Theorem 3.4. The preferential round-robin algorithm with parameter λ ∈ (0, 1) has competitive
ratio at most ( 1+λ2λ ) when η = 0.

Proof. Suppose w.l.o.g. that the jobs are sorted in non-decreasing job lengths (both actual and
predicted), i.e. x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn. Since the optimal solution schedules the jobs
sequentially, we have

OPT =

n∑
j=1

(n− j + 1)xj =

n∑
j=1

xj +
∑

(i,j):i<j

xi. (1)

We call a job active if it has not completed yet. When there are k active jobs, the preferential
round-robin algorithm executes all active jobs at a rate of 1−λ

k , and the active job with the shortest
predicted processing time (we call this job current) at an additional rate of λ. Note that each job j
finishes while being the current job. This can be shown inductively: suppose job j− 1 finishes at time
t. Then by time t, job j has received strictly less processing than j − 1, but its size is at least as big.
So it has some processing remaining, which means that it becomes current at time t and stays current
until completion. Let phase k of the algorithm denote the interval of time when job k is current.

For any pair of jobs (i, j), define d(i, j) as the amount of job i that has been executed before the
completion time of j. In other words, d(i, j) is the amount of time by which i delays j. We can now
express the cost of our algorithm as

ALG =

n∑
j=1

xj +
∑

(i,j):i<j

d(i, j) +
∑

(i,j):i<j

d(j, i). (2)

If i < j, as job i completes before job j, we have d(i, j) = xi. To compute the last term in (2),
consider any phase k, and let tk denote its length. In this phase, the current job k executes at a rate of
at least λ, which implies that tk ≤ xk

λ . During phase k, jobs {k + 1, ..., n} receive tk(1−λ)
n−k+1 amount

of processing each. Such a job k + i delays i jobs with smaller indices, namely {k, ..., k + i− 1}.
Let dk(i, j) denote the delay in phase k:∑

(i,j):i<j

dk(j, i) =
tk(1− λ)
n− k + 1

·
n−k∑
i=1

i =
tk(1− λ)(n− k)

2
≤ xk(1− λ)(n− k)

2λ
.

Substituting back into Equation (2),

ALG =

n∑
j=1

xj +
∑

(i,j):i<j

d(i, j) +
∑

(i,j):i<j

n∑
k=1

dk(j, i)

≤
n∑
j=1

xj +
∑

(i,j):i<j

xi +

n∑
k=1

xk(1− λ)(n− k)
2λ

= OPT+

n∑
k=1

xk(1− λ)(n− k)
2λ

≤ OPT+
1− λ
2λ

n∑
k=1

xk(n− k + 1) = OPT+
1− λ
2λ

OPT =
1 + λ

2λ
OPT,

using Equation (1) for the last line.

4 Experimental results

4.1 Ski rental

We test the performance of our algorithms for the ski rental problem via simulations. For all
experiments, we set the cost of buying to b = 100 and the actual number of skiing days x is a
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(a) Ski Rental (b) Non-clairvoyant Scheduling

Figure 2: Average competitive ratio over varying prediction errors.
uniformly drawn integer from [1, 4b]. The predicted number of days y is simulated as y = x + ε
where ε is drawn from a normal distribution with mean 0 and standard deviation σ. We consider
both randomized and deterministic algorithms for two different values of the trade-off parameter λ.
Recall that by setting λ = 1, our algorithms ignore the predictions and reduce to the known optimal
algorithms (deterministic and randomized, respectively) [12]. We set λ = 0.5 for the deterministic
algorithm that guarantees a worst-case competitive ratio of 3. In order to obtain the same worst-
case competitive ratio, we set λ = ln(3/2) for the randomized algorithm. For each σ, we plot the
average competitive ratio obtained by each algorithm over 10000 independent trials in Figure 2a. We
observe that even for rather large prediction errors, our algorithms perform significantly better than
their classical counterparts. In particular, even our deterministic algorithm that uses the predictions
performs better than the classical randomized algorithm for errors up to a standard deviation of 2b.

4.2 Non-clairvoyant scheduling

N min max mean σ
50 1 22352 2168 5475.42

Table 1: Statistics of job lengths.

We generate a synthetic dataset with 50 jobs where the
processing time of each job is sampled independently from
a Pareto distribution with an exponent of α = 1.1. (As
observed in prior work [7, 8, 2], job size distributions
in a number of settings are well-modeled by a Pareto
distribution with α close to 1.) Pertinent characteristics of the generated dataset are presented
in Table 1. In order to simulate predicted job lengths and compare the performance of the different
algorithms with respect to the errors in the prediction, we set the predicted job length yi = xi + εi,
where εi is drawn from a normal distribution with mean zero and standard deviation σ.

Figure 2b shows the competitive ratio of the three algorithms versus varying prediction errors. For a
parameter σ, we plot the average competitive ratio over 1000 independent trials where the prediction
error has the specified standard deviation. As expected, the naïve strategy of scheduling jobs in
non-decreasing order of their predicted job lengths (SPJF) performs very well when the errors are
low, but quickly deteriorates as the errors increase. In contrast, our preferential round-robin algorithm
(with λ = 0.5) performs no worse than round-robin even when the predictions have very large error.

5 Conclusions

In this paper we furthered the study of using ML predictions to provably improve the worst-case
performance of online algorithms. There are many other important online algorithms including
k-server, portfolio optimization, etc, and it will be interesting to see if predictions can be useful for
them as well. Another research direction would be to use the error distribution of the ML predictor to
further improve the bounds.
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