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Abstract

The dominant object detection approaches treat the recognition of each region
separately and overlook crucial semantic correlations between objects in one scene.
This paradigm leads to substantial performance drop when facing heavy long-tail
problems, where very few samples are available for rare classes and plenty of
confusing categories exists. We exploit diverse human commonsense knowledge
for reasoning over large-scale object categories and reaching semantic coherency
within one image. Particularly, we present Hybrid Knowledge Routed Modules
(HKRM) that incorporates the reasoning routed by two kinds of knowledge forms:
an explicit knowledge module for structured constraints that are summarized with
linguistic knowledge (e.g. shared attributes, relationships) about concepts; and an
implicit knowledge module that depicts some implicit constraints (e.g. common
spatial layouts). By functioning over a region-to-region graph, both modules can
be individualized and adapted to coordinate with visual patterns in each image,
guided by specific knowledge forms. HKRM are light-weight, general-purpose
and extensible by easily incorporating multiple knowledge to endow any detection
networks the ability of global semantic reasoning. Experiments on large-scale
object detection benchmarks show HKRM obtains around 34.5% improvement on
VisualGenome (1000 categories) and 30.4% on ADE in terms of mAP. Codes and
trained model can be found in https://github.com/chanyn/HKRM.

1 Introduction

The most state-of-the-art object detection methods [16, 43, 8, 4] follow the region-based paradigm,
which treats the classification and boundingbox regression of each region proposal separately. The
detection performance purely relies on the discriminative capabilities of region features, which
often depends on sufficient training data for each category. Such paradigm thus obtains substantial
performance drop when dealing with large-scale detection task [49, 18] that recognizes and localizes
a large number of categories (e.g. 3000 classes in VG [23]). The long-tail problem is very common,
where very few samples exist for rare classes, such as pepperoni and bagel. On the other hand,
detection challenges such as heavy occlusion, class ambiguities and tiny-size objects become more
severe due to more categories within one image. However, humans can still identity objects precisely
under complex circumstances because of the remarkable reasoning ability resorting to commonsense
∗Both authors contributed equally to this work.
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Figure 1: An example of how different types of commonsense knowledge can facilitate large-scale
object detection, especially for rare classes (e.g. the obscured mandarin). We illustrate three useful
knowledge forms: attribute knowledge, relationship knowledge and spatial knowledge.

knowledge. This inspires us to explore how to incorporate diverse knowledge forms into current
detection paradigm in a light-weight and effective way, in order to mimic human reasoning procedure.

When humans watch a scene [3], each object is not identified individually. Different knowledge
obtained by a human commonsense can help to make a correct identification by considering global
semantic coherency. An example of hybrid knowledge reasoning in Figure 1 would be to identify
the obscured “mandarin” (bottom-right). Human can recognize it is a mandarin learned from hybrid
commonsense: a) this round object is orange and just like the other nearby mandarins (shared
attribute knowledge); b) this object is in the bowl (pairwise relationship knowledge); c) this object
has moderate size and its position is near to other fruits (spatial layout).

Recently, some works incorporate knowledge via direct relation modeling [34, 9, 19] or iterative
reasoning architecture [33, 5, 6]. Different from recent implicit relation networks [19, 52] that learned
inter-region relationships in an implicit and uncontrollable way, recently an iterative reasoning
[6] was proposed to combine both local and global reasoning. However, they take only region
predictions of a basic detection network, rather than enhancing intermediate feature representations.
Furthermore, they directly use statistic edge connections in a prior knowledge graph while ignoring
the compatibility of prior knowledge with visual evidence in each image. Given diverse object
appearances and correlations in each image, personalized edge connections with respect to each
knowledge form should be adaptive for different regions. On the contrary, our work aims to develop
in-place knowledge modules which can not only explicitly incorporate any kinds of commonsense
knowledge (both explicit or implicit) for better semantic reasoning but also link external knowledge
with visual observations in each image in an adaptive way.

In this paper, we propose Hybrid Knowledge Routed Modules (HKRM) to incorporate multiple
semantic reasoning routed by two major kinds of knowledge forms: an explicit knowledge module
that exploits structure constraints that are summarized with linguistic knowledge (e.g. shared
attributes, co-occurrence and relationships), and an implicit knowledge module to encode some
implicit commonsense constraints over object (e.g. common spatial layouts). Instead of building
category-to-category graph [26, 38, 22, 33, 7], each knowledge module in HKRM learns adaptive
context connections for each pair of regions by regarding a specific prior knowledge graph as external
supervisions, rather than fixing the connections. Our HKRM is general-purposed and extensible by
easily integrating several individualized knowledge modules instantiated with any chosen knowledge
forms to pursue more advanced and hybrid semantic reasoning. As a showcase, we experiment
with three kinds of knowledge forms in this paper: the attribute knowledge (e.g. color, status),
pairwise relationship knowledge such as co-occurrence and object-verb-subject relationship, the
spatial knowledge including layout, size and overlap. HKRM is light-weight and easily plugged into
any detection network for endowing its ability in global reasoning.

Our HKRM thus enables sharing visual features among certain regions with similar attributes,
pairwise relationship or spatial relationship. The recognition and localization of difficult regions
with heavy occlusions, class ambiguities and tiny-size problems can be thus remedied by discovering
adaptive contexts from other regions guided by external knowledge. Another merit of HKRM lies in
the ability of distilling common characteristics among common/uncommon categories so that the
problem of crucial imbalanced categories can be alleviated.

The proposed HKRM outperforms the state-of-the-art Faster RCNN [43] with a large margin on
two large-scale object detection benchmarks, that is, ADE [56] with 445 object classes and VG [23]
with 1000 or 3000 classes. Particularly, our HKRM achieves around 34.5% of mAP improvement
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Figure 2: Overview of our HKRM, including two kinds of general modules: an explicit knowledge
module to incorporate external knowledge and an implicit knowledge module to learn knowledge
without explicit definitions or being summarized by human, such as spatial layouts. An adaptive
region-to-region knowledge graph is constructed by regarding each specified external knowledge as
the supervision of edge connections. The features of each region node are then enhanced through
integrating several individual knowledge modules instantiated with distinct knowledge forms. The
evolved features after each module are combined to produce final object detection results.

on VG (1000 categories), 26.5% on VG (3000 categories) and 30.4% on ADE. More interestingly,
further analysis shows our HKRM module can provide meaningful explanations about how different
commonsense knowledge can help perform reasonable visual reasoning and what each module
actually learn with the guidance of external knowledge.

2 Related Work

Object Detection. Big progress has been made recent years on object detection due to the use of
CNN such as Faster RCNN [43], R-FCN [8], SSD [30] and YOLO [41]. The backbones are some
feature extractors such as VGG 16 [47] and Resnet 101 [17]. However, the number of categories
being considered usually is small: 20 for PASCAL VOC [10] and 80 for COCO [29]. However, those
methods are usually performed on each proposal individually without reasoning.

Visual Reasoning. Visual reasoning seeks to incorporate different information or interplay between
objects or scenes. Several aspects such as shared attributes [11, 24, 39, 1, 2, 36], relationships among
objects can be considered. [13, 32, 42] relies on finding similarity as the attributes in the linguistic
space. For incorporating information such as relationship, most early works use object relations as a
post-processing step [50, 14, 12, 37]. Recent works consider a graph structure [26, 38, 22, 33, 7, 6].
On the other hand, there are some sequential reasoning model for relationships [5, 25, 6]. In these
works, a fixed graph is usually considered, while our module’s graph has adaptive region-to-region
edges which can be embedded with any kinds of external knowledge.

Few-shot Recognition. Few-shot recognition seeks to learn a new concept with a few annotated
examples which share the similar problem with us. Early work focus on learning attributes embedding
to represent categories [1, 21, 24, 44]. Most recent works use knowledge graph such as WordNet [35]
to distill information among categories [46, 9, 54, 33, 53]. [15] further defined a GNN architecture to
learn a knowledge graph implicitly. In contrast, our module is explicitly routed and benefits from the
guidance of hybrid knowledge forms.

3 The Proposed Approach

3.1 Overview

The goal of this paper is to develop general modules for incorporating knowledge to facilitate large-
scale object detection with global reasoning. Our HKRM includes two kinds of modules to support
any prior knowledge forms, shown in Figure 2: an explicit knowledge module to incorporate external
knowledge and an implicit knowledge module to learn knowledge without explicit definitions or
being summarized by the human. Taking an image as the input, visual features are extracted for each
proposal region through the region proposal network. Based on the region features, each module
builds an adaptive region-to-region undirected graph Ĝ : Ĝ =< N , ∧E >, where N are region
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Figure 3: Explicit Knowledge Module. Taking the pairwise L1 differences of the f as inputs, a
region-to-region graph is generated by stacked MLP. This process is supervised by the ground truth of
the external knowledge. The output evolved feature f ′ is the enhanced feature via graph propagation.
Then f ′ is concatenated to the f to produce final detection results.

proposal nodes and each edge ei,j ∈ E defines a kind of knowledge between two nodes. Each module
then outputs enhanced features integrating a particular knowledge. Finally, outputs from several
modules are concatenated together and fed into the boundingbox regression layer and classification
layer to obtain final detection results.

3.2 Explicit Knowledge Module

We regard the human commonsense knowledge that can be clearly defined and summarized using
linguistics as explicit knowledge. The most representative explicit knowledge forms can be attribute
knowledge (e.g. “apple is red.”) and pairwise relationship knowledge (e.g. “man rides bicycles”). Our
explicit knowledge module aims to enhance region features with kinds of explicit knowledge forms.
Specifically, as shown in Figure 3, this module updates edge connections between each pair of region
graph nodes in Ĝ, supervised by a mapping of the ground truth from a class-to-class knowledge
graph Q. This Q is a certain form of linguistic knowledge.

3.2.1 Module Definition

Adaptive region-to-region graph. We first define a region-to-region graph Ĝ for all Nr = |N |
region proposals with visual features f = {fi}Nr

i=1, fi ∈ RD of D dimension extracted from the
backbone network, where N are region proposal nodes and ei,j ∈ Ê is the learned graph edge for
each pair of region nodes. Given any external knowledge form, distinct edge connections Ê can
be accordingly updated to characterize specific context information for each region proposal in the
context of specific knowledge. Formally, given a specific knowledge graph Q, each edge between
two regions êij is learned by a stacked Multi-layer Perceptron (MLP) :

êij = MLPQ(α(fi, fj)), (1)

where α(·) is chosen to be the pairwise L1 difference between features of each region pair (fi, fj)
since L1 difference is symmetric. Given different prior graphs Q, MLPQ would be parametrized with
WQ distinctly to generate different region-to-region graphs Ĝ, leading to personalized knowledge
reasoning.

We learn MLPQ by directly enforcing the predicted êij to be consistent with the edge weights of
a prior graph Q. We define Q =< C,V > as a class-to-class graph with C class graph nodes and
their prior edge weights vi,j∈ V , such as attribute and relationship graphs. During training, as we
know ground-truth categories of each region, the edge êij of two region nodes is learned towards
the edge weights ẽij of ground truth categories of region nodes in Q, that is, ẽij = vci,cj where ci is
the ground truth class of i-th region. Such explicit supervision with ground truth classes of region
nodes would ensure the learning of a reliable graph reasoning regardless of the errors from proposal
localization. MLPQ is then learned to encode explicit region-wise knowledge correlations that can
be applied in the testing phase. The loss function of learned edge weights {êij} for all Nr region
proposals is defined as:
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L(f ,WQ,Q) =

Nr∑
i=1

Nr∑
j=1

1

2
(êij − ẽij)2. (2)

Feature evolving via graph reasoning. After performing row normalization over learned edges
Ê = {êij}, we can propagate features of connected regions into enhancing each region features f ′ by
different weighted edges, which can be solved by matrix multiplication:

f ′ = ÊfW e, (3)
where W e ∈ RD×E is a transformation weight matrix and f ′ ∈ RE are the enhanced features with
E dimension via graph reasoning. Those regions with heavy occlusions, class ambiguities and the
tiny-size problem can be remedied by discovering adaptive contexts from other regions guided by
external knowledge. The trainable parameters are WQ of the stacked MLP and W e.

3.2.2 Module Specification with Different Knowledge

We can specify different prior knowledge graphs Q to obtain distinct graph reasoning behaviors.
Here, we take attribute knowledge graph and relationship knowledge graph as the examples. We refer
readers to find illustrations of constructing knowledge graphs in Supplementary material.

Attribute Knowledge. Attribute knowledge graph QA as one kind of Q denotes object classes
are connected with kinds of attributes such as colors, size, materials, and status. The explicit
knowledge module instantiated with attribute knowledge will facilitate features of rare classes with
more frequent classes by transferring their shared visual attribute properties. Let us consider C
classes and K attributes, we obtain a C ×K frequency distribution table for each class-attribute pair,
detailed in experiments. Then the pairwise Jensen–Shannon (JS) divergence between probability
distributions Pci and Pcj of two classes ci and cj can be measured as the edge weights of two classes
eAci,cj = JS(Pci ||Pcj ). We consider JS divergence to measure the similarity instead of KL divergence
here since we expect a symmetry undirected graph while KL(Pi||Pj) 6= KL(Pj ||Pi). Finally, the
module outputs a enhanced feature f ′a ∈ REa .

Relationship Knowledge. Relationship knowledge QR denotes the pairwise relationship between
classes, such as location relationship (e.g. along, on), the “subject-verb-object” relationship (e.g.
eat, wear) or co-occurrence relationship. The evolved features will be enhanced with high-level
semantic correlations between regions. Similarly, we obtain QR by calculating frequent statistics
either from the semantic information or simply from the occurrence among all class pairs. The
symmetric transformation and row normalization are performed on edge weights. Let f ′r ∈ REr

denotes the output of the explicit relationship module.

3.3 Implicit Knowledge Module

Considering some commonsense knowledge without explicit definitions or being summarized by the
human, we regard them as implicit knowledge and thus an implicit knowledge module is designed.
Taking geometry priors as an example, besides those explicit pairwise locations, there also exists
some complicate location information, such as “the ceiling is always above all the other objects” and
“the water is always below the ships, mountains and the sky”. Taking features q = {qi} as inputs that
depict the features of each region (e.g. geometric features), our implicit knowledge module integrates
multiple graph reasoning over M region-to-region graphs obtained by M stacked MLPs following (1)
to encode these implicit priors. The analogous idea of multi-head attention can be found in [6, 19, 51].
This enables the module to catch multiple spatial relationships such as “up and down”, “left and right”
and “corner and center”. Visualization of different learned graphs can be found in Supplementary
material. Similar to region-to-region graph used in explicit knowledge module, we learn specific
edge weights {ê(m)

ij } of each graph Ĝm,m = 1, . . . ,M for all-region proposal pairs, following Eqn.
1. We then average edge weights of all graph {Ĝm} and add them with a identity matrix I to obtain
the edge connections êIij ∈ ÊI :

êIij =
1

M

M∑
m=1

ê
(m)
ij + I. (4)
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% Method AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

V
G

1
0
0
0

Light-head rcnn[27] 6.2 10.9 6.2 2.8 6.5 9.8 14.6 18.0 18.7 7.2 17.1 25.3

FPN[28] 5.6 10.1 5.4 3.4 5.8 8.0 13.0 16.5 16.6 7.5 15.7 20.6

Faster RCNN[43] 5.8 10.7 5.7 1.9 5.8 10.0 13.7 17.2 17.2 4.9 15.7 25.3

Attribute 7.4 12.9 7.4 2.4 7.4 13.7 17.0 21.4 21.5 6.0 19.5 33.0

Relation 7.4 12.8 7.5 3.0 7.5 13.0 17.0 21.6 21.7 7.2 19.8 31.4

Spatial 7.3 12.1 7.7 2.7 7.2 12.7 17.7 21.9 22.0 6.3 19.5 33.3
HKRM (All) 7.8+2.0 13.4+2.7 8.1+2.4 4.1+2.2 8.1+2.3 12.7+2.7 18.1+4.4 22.7+5.5 22.7+5.5 9.6+4.7 20.8+5.1 31.4+6.1

V
G

3
0
0
0

Light-head rcnn[27] 3.0 5.1 3.2 1.7 4.0 5.8 7.3 9.0 9.0 4.3 10.3 15.4

FPN[28] 3.3 5.2 3.2 1.9 4.3 4.8 6.9 8.3 8.3 4.3 9.8 11.6

Faster RCNN[43] 3.4 6.0 3.4 1.6 4.3 7.3 8.1 9.8 9.8 3.8 10.9 17.0

Attribute 4.1 7.0 4.3 2.5 5.3 7.9 9.7 11.7 11.7 5.7 12.8 19.6

Relation 4.2 7.1 4.3 2.6 5.3 8.1 9.7 11.9 11.9 6.0 12.8 19.8

Spatial 4.0 6.7 4.1 2.3 5.1 7.6 9.3 11.2 11.2 5.3 12.4 18.7

HKRM (All) 4.3+0.9 7.2+1.2 4.4+1.0 2.6+1.0 5.5+1.2 8.4+1.1 10.1+2.0 12.2+2.4 12.2+2.4 5.9+2.1 13.0+2.1 20.5+2.5

A
D

E

Light-head rcnn[27] 7.0 11.7 7.3 2.4 5.1 11.2 9.6 13.3 13.4 4.3 10.4 20.4

FPN[28] 6.5 12.1 6.2 3.3 6.0 10.5 9.5 12.9 13.0 5.3 11.9 18.6

Faster RCNN[43] 7.9 14.7 7.5 2.1 5.8 13.2 10.6 14.2 14.4 4.5 11.9 22.4

Attribute 9.6 16.8 9.7 3.1 7.0 15.9 12.7 16.9 17.1 6.1 14.1 26.3

Relation 9.6 16.8 9.8 3.0 7.2 15.4 12.6 16.8 17.0 6.2 14.2 26.0

Spatial 8.7 14.0 9.0 3.1 6.9 14.3 11.4 15.5 15.6 5.0 12.7 24.2

HKRM (All) 10.3+2.4 18.0+3.0 10.4+2.9 4.1+2.0 7.9+2.1 16.8+3.6 13.6+3.0 18.3+4.1 18.5+4.1 7.1+2.6 15.5+3.6 28.4+6.0

Table 1: Main results of test datasets on VG1000 , VG3000 and ADE. “Attribute”, Relation” and
“Spatial” are the baseline Faster RCNN adding the corresponding knowledge module alone. HKRM
is the model with a combination of all.

We then adopt matrix multiplication g′ = ÊIfW g to get the evolved features g′ ∈ REg . The
trainable parameters are weights of M stacked MLP for learning edge weights of knowledge graphs
{Ĝm}, and the transformation matrix W g ∈ RD×Eg is shared for all graphs.

Module specification with spatial layout. Here, we instantiate the implicit knowledge module by
spatial layout inputs to capture complicated spatial constraints by using specific input information.
The input geometry feature qi of each region is simply object bounding box. To make qi be invariant
to the scale transformation, a relative geometry feature is used, as (xi

w̄ ,
yi

h̄
, wi

w̄ ,
hi

h̄
, pi), where w̄ and h̄

denotes the size of the image and pi is the initial foreground probability of each region. Note that
edge weights are implicitly learned via the back-propagation of the whole network.

4 Experiments

Dataset and Evaluation. We conduct experiments on large-scale object detection benchmarks with
a large number of classes: that is, Visual Genome (VG) [23] and ADE [56]. The task is to localize an
object and classify it, which is different from the experiments with given ground truth locations [6].
For Visual Genome, we use the latest release (v1.4), and synsets [45] instead of the raw names of
the categories due to inconsistent label annotations, following [20, 6]. We consider two set of target
classes: 1000 most frequent classes and 3000 most frequent classes, resulting in two settings VG1000

and VG3000. We split the remaining 92960 images with objects on these class sets into 87960 and
5,000 for training and testing, respectively. In term of ADE dataset, we use 20,197 images for training
and 1,000 images for testing, following [6]. To validate the generalization capability of models and
the usefulness of transferred knowledge graph from VG, 445 classes that overlap with VG dataset
are selected as targets. Since ADE is a segmentation dataset, we convert segmentation masks to
bounding boxes [6] for all instances. For evaluation, we adopt the metrics from COCO detection
evaluation criteria [29], that is, mean Average Precision (mAP) across different IoU thresholds
(IoU= {0.5 : 0.95, 0.5, 0.75}) and scales (small, medium, big). We also use Average Recall (AR)
with different number of given detection per image ({1, 10, 100}) and different scales (small, medium,
big).

Additionally, we also evaluate on PASCAL VOC 2007 [10] and MSCOCO 2017 [29] to show prior
knowledge can help detection for a small set of frequent classes (20/80 classes). PASCAL VOC
consists of about 10k trainval images (included VOC 2007 trainval and VOC 2012 trainval) and 5k
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Dataset Method Backbone #. Parameter (M) mAP (%)

PASCAL VOC20

SMN[5] ResNet-101 66.7 67.8
Faster RCNN[43] ResNet-101 57.0 75.1

HKRM (All) ResNet-101 59.2 78.8

MSCOCO80

SMN[5] ResNet-101 68.1 31.6
Relation Network[19] ResNet-101 64.6 35.2

Faster RCNN[43] ResNet-101 58.3 34.2
HKRM (All) ResNet-101 60.3 37.8

Table 2: Comparisons of mean Average Precision (mAP) and #. Parameter on PASCAL VOC 2007
test set and COCO 2017 val set.

test images over 20 object categories. We only report mAP scores using IoU thresholds at 0.5 for
the purpose of comparison with other existing methods. MSCOCO 2017 contains 118k images for
training, 5k for evaluation.

Knowledge Graph Construction. We apply general knowledge graphs for both experiments on VG
and ADE datasets. With the help of the statistics of the annotations in the VG dataset, we can both
create attribute knowledge and relationship knowledge graphs. Specifically, we consider top 200 most
frequent attributes annotations in VG such as color, material and status of the categories (C = 3000),
and then count their frequent statistics as the class-attribute table. For relationship knowledge, we
use top 200 most frequent relationship annotations in VG such as location relationship, subject-
verb-object relationship, and count frequent statistics of each class-relationship pair. Illustrations of
constructed knowledge graphs can be found in Supplementary material.

Implementation Details. We treat the state-of-the-art Faster RCNN [43, 55] as our baseline and
implement all models in Pytorch [40]. We also compare with Light-head RCNN [27] and FPN [28].
ResNet-101 [17] pretrained on ImageNet [45] is used as our backbone network. The parameters
before conv3 and the batch normalization are fixed, same with [27]. During training, we augment
with flipped images and multi-scaling (pixel size={400, 500, 600, 700, 800}). During testing, pixel
size= 600 is used. Following [43], RPN is applied on the conv4 feature maps. The total number
of proposed regions after NMS is 128. Features in conv5 are avg-pooled to become the input of
the final classifier. Unless otherwise noted, settings are same for all experiments. In terms of our
explicit attribute and relationship knowledge module upon region proposals, we use the final conv5
for 128 regions after avg-pool (D= 2048) as our module inputs. We consider a 4 stacked linear layers
as MLPQ(output channels:[256, 128, 64, 1]). ReLU is selected as the activation function between
each linear layer. The output size : Ea = Er = 256, which is considered sufficient to contain the
enhanced feature. In terms of implicit knowledge module, we employ M = 10 implicit graphs. For
learning each graph, 2 stacked linear layers are used (output channels:[5, 1]). pi is the score of the
foreground form the RPN. The output size: Eg = 256. To avoid over-fitting, the final version of
HKRM is the combination of three shrink modules with each output size equals 256. f ′a, f ′r, g′ and f
are concatenated together and fed into the boundingbox regression layer and classification layer.We
apply stochastic gradient descent with momentum to optimize all models. The initial learning rate
is 0.01, reduce three times (×0.01) during fine-tuning; 10−4 as weight decay; 0.9 as momentum.
For both VG and ADE dataset, we train 28 epochs with mini-batch size of 2 for both the baseline
Faster RCNN. (Further training after 14 epochs won’t increase the performance of baseline.) For our
HKRM, we use 14 epochs of the baseline as pretrained model and train another 14 epochs with same
settings with baseline.

4.1 Comparison with state-of-the-art

We report the result comparisons on VG1000 with 1000 categories , VG3000 with 3000 categories
and ADE dataset in Table 1. As can be seen, all our model variants outperform the baseline Faster
RCNN[43] on all dataset. Our HKRM achieves an overall AP of 7.8% compared to 5.8% by Faster
RCNN on VG1000, 4.3% compared to 3.4% on VG3000, and 10.3% compared to 7.9% on ADE,
respectively. Moreover, our model achieves significant higher performance on both classification
and localization accuracy than the baseline on all cases (i.e. different scales and overlaps). This
verifies the effectiveness of incorporating global reasoning guided by rich external knowledge into
local region recognition. More significant performance gap by our HKRM can be observed for those
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Figure 4: Qualitative result comparison on VG1000 between Faster RCNN and our HKRM. Objects
with occlusion, ambiguities and rare category can be detected by our modules.

rare categories with very few samples (about 1.5% average improvement for the top 150 infrequent
categories by our method in terms of mAP).

To compare with the state-of-art knowledge-enhanced methods, we also implement HKRM on
PASCAL VOC and MS COCO datasets with only 20/80 categories in Table 2. For PASCAL VOC,
our HKRM performs 1.1% better than the baseline Faster RCNN, and outperforms Spatial Memory
Network [5]. For MSCOCO, comparison is made between Relation Network [19] and Spatial Memory
Network. The proposed HKRM boosts the mAP from 34.9% to 37.8% and outperform all the other
methods. Our method can also boost the performance in the more simplified dataset benefiting from
the shared linguistic knowledge and spatial layout knowledge. Note that HKRM consisted of three
knowledge modules totally increases about 2% parameters and is light-weight compared to [5, 19].

Figure 4 shows the qualitative result comparison between our HKRM and Faster RCNN. Our HKRM
can detect the obscure palm trees far away in the left image. In the middle image, the multiple
overlapped small objects such as glass and paper is recognized by our method. “Pepperoni” is a rare
category and is detected on the pizza in the right image.

4.2 Ablation Studies

The effect of different explicit knowledge. We analyze the effect of both attribute and relationship
knowledge on final detection performance. The attribute module along can increase overall AP by
1.6% for VG1000, 0.6% for VG3000 and 1.7% for ADE over baseline. The relationship module has
similar performance with a slightly higher result for VG3000. Sharing visual feature according to both
attribute and relationship knowledge can actually boost the performance of object detection.

The effect of different explicit knowledge. We analyze the effect of both attribute knowledge and
relationship knowledge on final detection performance. The attribute module along can increase
overall AP by 1.6% for VG1000, 0.6% for VG3000 and 1.7% for ADE over baseline. The relationship
module has similar performance with a slightly higher result for VG3000. Sharing visual feature
according to both attribute and relationship knowledge can actually boost the performance of object
detection.

The effect of implicit knowledge. As can be seen, the implicit spatial module alone helps around
1.5% for VG1000, 0.3% for VG3000 and 0.8% for ADE. The spatial module alone is not as effective
263 as the attribute and relation module. However, the unsupervised learning of the spatial knowledge
264 still can significantly help the object recognition through those undefined knowledge.

Generalization capability. From Table 1, the external knowledge graph from VG can actually help
to improve the performance of ADE. Therefore, any datasets with overlap categories can share the
existing knowledge graph. Besides, our module can be added to diverse detection systems easily.

Global reasoning. The proposed HKRM achieves the global reasoning over regions via one-time
propagation over all graph edges and nodes. Benefiting from the learned knowledge graph for each
image, our HKRM is able to propagate information between nodes which are not connected in the
prior knowledge graph. We have tried the higher orders of feature transformation (e.g. 2 and 3) and
did not observed significant improvement. In fact, over-transformation will even make the enhanced
features all identical.
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Visualization for the output features of the Explicit Attribute module by t-SNE

Visualization for the output features of the Implicit Spatial module by t-SNE

Figure 5: 2-D visualization of f ′a and g′ by t-SNE method [31]: the explicit module with attribute
knowledge (top); implicit knowledge module with spatial knowledge (bottom) . The red regions
are enlarged in right panels. The categories shared the similar attribute knowledge (top) and spatial
relationship (bottom) are closed to each other. This verifies that our modules learn the corresponding
knowledge.

Analysis of feature interpretability. To better understand the underlying feature representations that
our HKRM actually learn for graph reasoning, we record the output f ′a and g′ (Ea = Eg = 512) from
the explicit attribute module and implicit spatial module and its corresponding real labels from each
region of 8000 VG1000 images. Then we take average according to the labels and use the t-SNE [31]
clustering method to visualize them as shown in Figure 5. Note that if features of some categories are
closed to each other, the edges between those close categories are more likely to be activated. From
two enlarged regions on top, we can see that features of categories which share similar attributes
such as “water”, ”sand” and “electronics” are closed to each other. And this speaks well our explicit
knowledge module successfully incorporates the prior attribute knowledge and leads to interpretable
feature learning. Similarly, from two bottom enlarged regions, features of objects which has spatial
relationship such as “on face” and “in kitchen counter” are closed to each other. This validates our
spatial knowledge module is capable of encoding underlying spatial relationships. Benefiting from
explicit knowledge supervision, the feature clustering property of the explicit attribute module seems
to be better than those of the implicit knowledge module. More gradient visualization [48] results for
the enhanced features are included in Supplementary materials for better understanding the module.

5 Conclusion

We present two novel general knowledge modules in HKRM. The first one can embed any external
knowledge through supervision. The second one can implicitly learn some knowledge without
explicit definitions or being summarized by human. Both modules can be easily applied to the
original detection system to improve the detection performance. The experiment and analysis
indicated HKRM can alleviate the problems of large-scale object detection. For our future work, we
can use Cholesky decomposition to re-parametrize the region-to-region graph to further reduce half
of the module parameters due to the property of symmetry of our graph. We can also add experiments
using the word embedding knowledge in the explicit module and the latest new Open Images Dataset
which consists about 600 categories.
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