
Statistical Recurrent Network on the space of
symmetric positive definite matrices (Supplementary

material)

Anonymous Author(s)
Affiliation
Address
email

1 Proofs for the propositions stated in the paper1

Proposition 1. Φ as defined in the paper is a bijection from SPD(n) onto Φ (SPD(n)).2

Proof. Let Φ = Ψ ◦ β where Ψ : SPD(n) → N and β : N → S∞, where N is the space of zero3

mean n-variate Gaussian densities. LetH = β (N ). Clearly Ψ is invertible, since, given a zero-mean4

Gaussian distribution, we can get its covariance matrix. One can think of this as drawing samples5

from the density and the sample covariance matrix asymptotically converges to the covariance of the6

Gaussian distribution. Now, given f̃ ∈ H, f = f̃∫
f̃

such that, f̃ = β(f). Thus, we can prove that7

Φ = Ψ ◦ β is a bijection from SPD(n) onto Φ(SPD(n)).8

Proposition 2. Let, A,B ∈ SPD(n). Let f̃ = Φ (A) and g̃ = Φ (B). Then, d (2A, 2B) =9

dS

(
f̃ , g̃
)

.10

Proof.

dS

(
f̃ , g̃
)

=

√
− log〈f̃ , g̃〉2

=

√
−2 log

(
〈f, g〉
‖f‖‖g‖

)

=

√√√√√√−2 log


(

(2π)
3 det (A+B)

)−1/2

(
(2π)

3 det (2A)
)−1/4 (

(2π)
3 det (2B)

)−1/4


=

√
−2

[
− log det (A+B)

2
+

log det (2A)

4
+

log det (2B)

4

]
=
√

log det (A+B)− 1/2 log det (2A)− 1/2 log det (2B)

=d (2A, 2B)

In the above proof, we have used the fact that, 〈f, g〉 =
(

(2π)
3 det (A+B)

)−1/2

, where f and g11

are zero-mean Gaussian densities with covariances A and B respectively.12

Proposition 3. (H, dS) is a compact and complete metric space but not a length space.13
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Proof. The symmetry, non-negativity and the identity of the indiscernible are easy to prove. In order14

to prove triangle inequality, observe that I−yyt is positive semi-definite, for all y ∈ H. As, x, z ∈ H,15

〈x,y〉〈y, z〉 ≤ 〈x, z〉. Now, since log is an increasing function, we get dS(x,y)+dS(y, z) ≥ d(x, z).16

This proves that (H, dS) is a metric space.17

Since any compact metric space is complete, it suffices to show that (H, dS) is a compact metric18

space. Let Γ : (H, dA) → (H, dS), where dA is the arc-length metric restricted to H. Then,19

Γ(x) =
√
− log cos2(x). Hence, dΓ

dx = tan(x)√
− log cos2(x/2)

. Since x ∈ [0, π/2), Γ is an increasing20

function. Now, let ε > 0 and let y ∈ H, and dA(x,y) ≤ ε implies, dS(x,y) ≤ Γ(ε) > 0. Now,21

choose δ = Γ(ε) to conclude that Γ is continuous and as (H, dA) is compact so is (H, dS).22

Proposition 4. The minimizer of Eq. 14 (in the paper) is given by mk = sin(θ−α)
sin(θ) mk−1 + sin(α)

sin(θ)xk,23

where θ = arccos(〈mk−1,xk〉) and α = arctan

(
−1+
√

4c2(1−wk)−4c2(1−wk)2+1

2c(1−wk)

)
and c =24

tan(θ).25

Proof. Let α = arccos(〈mk−1,mk〉). Let, θ = arccos(〈mk−1,xk〉). Define,26

g(α) = −(1− wk) log(cos2(α))− (wk) log(cos2(θ − α))

Then, the partial of g(α) with respect to α is given by:27

∂g(α)

∂α
= 2(1− wk) tan(α)− 2wk tan(θ − α)

After setting ∂g(α)
∂α = 0, we get,28

tan(α)

tan(θ − α)
=

wk
1− wk

(1 + tan(θ) tan(α)) tan(α)

tan(θ)− tan(α)
=

wk
1− wk

Let, x = tan(x), c = tan(θ). Thus, we get29

(1 + cx)x =
wk

1− wk
(c− x)

cx2 + (1 +
wk

1− wk
)x− c wk

1− wk
= 0

cx2 +
1

1− wk
x− c wk

1− wk
= 0

Solving the above quadratic, we get30

x =
−1 +

√
4c2(1− wk)− 4c2(1− wk)2 + 1

2c(1− wk)

α = arctan

(
−1 +

√
4c2(1− wk)− 4c2(1− wk)2 + 1

2c(1− wk)

)
Now, as α = arccos(〈mk−1,mk〉), mk = sin(θ−α)

sin(θ) mk−1 + sin(α)
sin(θ)xk.31

Proposition 5. Var (mk)→ 0 as k →∞.32

Proof. Let θk = cos−1
(
mT
k m∗

)
= dA (mk,m∗), then by Taylor’s expansion,33

d2 (mk,m∗) = − log cos2 θk
= −2 log cos θk

= −2

[
−θ

2
k

2
− θ4

k

12
+O

(
θ6
k

)]
= θ2

k +
θ4
k

6
+O

(
θ6
k

)
2



So34

lim
k→∞

E
[
d2 (mk,m∗)

]
= lim
k→∞

E
[
θ2
k

]
+ E

[
θ4
k

6

]
+ E

[
O
(
θ6
k

)]
.

Since E
[
θ2
k

]
= E

[
d2
A (mk,m∗)

]
→ 0 [3], by dominated convergence theorem and the fact that35

θk ∈
[
0, π2

]
, E
[
limk→∞ θ2

k

]
= limk→∞E

[
θ2
k

]
= 0. So limk→∞ θ2

k = 0 (∵ θ2
k ≥ 0). Then again36

by dominated convergence theorem, limk→∞E
(
θ2n
k

)
= E

[
limk→∞ θ2n

k

]
= 0 for n ∈ N. Thus37

lim
k→∞

V ar (mk) = lim
k→∞

E
[
d2 (mk,m∗)

]
= 0

38

Proposition 6. The rate of converge of the proposed recursive FM estimator is super linear.39

Proof.
d(mn,mm) ≤ d(mn,mn+1) + · · ·+ d(mm−1,mm)

=
√
−2 log cosαn+1 + · · ·+

√
−2 log cosαm

=

m∑
k=n+1

√
−2 log cosαk

≤ (m− n− 1)

√√√√− 2

m− n− 1

m∑
k=n+1

log cosαk

=

√√√√−2(m− n− 1) log

(
m∏

k=n+1

cosαk

)

where, αn = tan−1

(
−1+

√
4c2(1− 1

n )−4c2(1− 1
n )

2
+1

2c(1− 1
n )

)
, where c = tan(θn) and θn =40

cos−1 mt
n−1xn. Now, we have41

tanαn =
−1 +

√
4c2
(
1− 1

n

)
− 4c2

(
1− 1

n

)2
+ 1

2c
(
1− 1

n

)
=
− n
n−1 +

√
4c2n

(n−1) − 4c2 + n2

(n−1)2

2c

≈
− n
n−1 + 1 + 1

2

[
4c2n

(n−1) − 4c2 + n2

(n−1)2 − 1
]

2c

=

1
2

[
n
n−1 − 1

]2
+ 1

2

[
4c2n

(n−1) − 4c2
]

2c

≈ −1

2

1

(n− 1)2
+

2c2

n− 1

Using the taylor series of tan−1(x),42

αn ≈ tan−1

(
−1

2

1

(n− 1)2
+

2c2

n− 1

)
= −1

2

1

(n− 1)2
+

2c2

n− 1
+O

((
1

n− 1

)6
)

Hence, 1
n2 < αn <

1
n . It is easy to show using the proof in [1], that for αn = 1

n we get a linear43

convergence rate. Hence, the rate of convergence is super-linear.44

45
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1.1 Discretization of Φ46

Given A ∈ SPD(n), we have a mapping Φ : SPD(n) → S∞ that maps A 7→ f/‖f‖, where f is47

the Gaussian density of zero mean and covariance A. Though, this is a well-defined mapping, in48

experiments we need a discretization of f/‖f‖. Given f ∈ N , we will use Algorithm 1 to get β(f)49

on a finite dimensional manifold.50

Algorithm 1: Algorithm to map a Gaussian density on to a finite dimensional oblique manifold.
Input: f ∈ N ; ε > 0; b : number of bins
Output: f̃ ∈ Sb−1 × · · · × Sb−1︸ ︷︷ ︸

n2 times.

1 Choose the vector v uniformly at random from Sn−1;
2 For i = 1, · · · , n and j = 1, · · · , n, let vij = v + ε(ei + ej), where {ei} are the canonical basis of Rn;
3 Project f on vij to get an univariate zero-mean Gussian of variance σ2

ij , for each i, j;
4 Take a uniform b number of grids in [−2σij , 2σij ] and get a probability vector for each univariate Gaussian;
5 Use the square root parametrization to map each discretized probability vector on Sb−1;
6 Arrange the probability vectors to get a point on the oblique manifold, Sb−1 × · · · × Sb−1.

In Algorithm 1, we have used the projection idea proposed in [2]. We have chosen the interval of51

discretization as the 95% confidence interval. Here we chose n2 random projections but one may52

want to use more number of random projections to get a higher resolution.53

In the next section, we perform synthetic experiments to demonstrate comparison results of the54

proposed metric on the hypersphere and Stein metric on SPD(n) in terms of error and computational55

time. Furthermore, we demonstrate the efficiency of our recursive FM estimator over it’s batch-mode56

counterpart.57

2 Synthetic experiments58

In this subsection, we performed experiments on synthetic data to show the performance comparison59

for computing the FM of the data points on the hypersphere (mapped from SPD(n) to the hypersphere60

using Φ) endowed with our new metric against the FM of data points on SPD(n) (prior to the61

mapping) endowed with the Stein metric. In the latter case, the FM is computed using the recursive62

FM estimator defined in [4]. Here, we have randomly generated data samples on SPD(n) from63

a Log-Normal distribution with mean I and variance 1.0. We vary the number of samples, N as64

well as the dimension n. For each instance, we compute the FM using both the metrics and plot the65

performance curves. In the context of the required computation time, we can see that the proposed66

metric on hypersphere is significantly faster than when using the Stein metric on SPD(n) as depicted67

in Fig. 1. In terms of the accuracy of the computed FM with respect to the ground truth FM (which is68

known for the synthetic data), using the Stein and the proposed metric respectively, we get almost69

similar variance of the FM estimator. Because of the proven isometry, any difference in the variance is70

due to the discretization of the density corresponding to the sample SPD matrix on SPD(n). Though,71

we have used the discretization as proposed in Algorithm 1, as pointed out earlier, to achieve a72

better accuracy (smaller error), one may want to use finer discretization. Increased resolution in the73

discretization will not be of much concern since the new metric is computable much more efficiently74

than the Stein metric. In our experiments, we observed that even by taking just n2 random projections,75

we were able to achieve comparable error. Note that, both by varying n andN , we can empirically see76

that computation using the new metric is significantly faster compared to using the Stein metric based77

FM estimator. Furthermore, in Fig. 1, we present a comparison of the two metrics for computing the78

FM of samples, depicting the number of samples required by the respective FM estimators to achieve79

an accuracy within prespecified tolerance. This analysis is required for finite samples and it is evident80

from the figure that using both of these metrics we need almost same number of samples to achieve81

the desired error tolerance.82

We have also performed experiments to compare the performance of our proposed recursive FM83

estimator and it’s batchmode counterpart. For the gradient descent based batchmode technique,84

we have used a “warm restart”, i.e., we initialize the gradient descent algorithm with the old mean85

whenever a new sample data point is input to the algorithm. From Fig. 2, we can see that the recursive86
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Figure 1: Comparison of FM computation time using the Stein and proposed metric.

Figure 2: Comparison between the recursive and batch mode FM estimators

technique is much faster without sacrificing much error. In fact the error from both the estimators are87

very close but computationally the recursive FM estimator is significantly faster. Further, we also88

present a time and error/accuracy trade-off plot for the proposed recursive FM estimator. From this89

plot, we can conclude that the product of time and error/accuracy is bounded from above, which90

basically indicates that even if the desired error is very small (high accuracy) we need finite number91

of samples to achieve this.92
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