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Abstract

In this paper, we propose a generative multi-column network for image inpainting.
This network synthesizes different image components in a parallel manner within
one stage. To better characterize global structures, we design a confidence-driven
reconstruction loss while an implicit diversified MRF regularization is adopted to
enhance local details. The multi-column network combined with the reconstruction
and MREF loss propagates local and global information derived from context to the
target inpainting regions. Extensive experiments on challenging street view, face,
natural objects and scenes manifest that our method produces visual compelling
results even without previously common post-processing.

1 Introduction

Image inpainting (also known as image completion) aims to estimate suitable pixel information to
fill holes in images. It serves various applications such as object removal, image restoration, image
denoising, to name a few. Though studied for many years, it remains an open and challenging problem
since it is highly ill-posed. In order to generate realistic structures and textures, researchers resort to
auxiliary information, from either surrounding image areas or external data.

A typical inpainting method exploits pixels under certain patch-wise similarity measures, addressing
three important problems respectively to (1) extract suitable features to evaluate patch similarity; (2)
find neighboring patches; and (3) to aggregate auxiliary information.

Features for Inpainting Suitable feature representations are very important to build connections
between missing and known areas. In contrast to traditional patch-based methods using hand-crafted
features, recent learning-based algorithms learn from data. From the model perspective, inpainting
requires understanding of global information. For example, only by seeing the entire face, the system
can determine eyes and nose position, as shown in top-right of Figure[T] On the other hand, pixel-level
details are crucial for visual realism, e.g. texture of the skin/facade in Figurem

Recent CNN-based methods utilize encoder-decoder [[18 25, 24! |9, |26] networks to extract features
and achieve impressive results. But there is still much room to consider features as a group of different
components and combine both global semantics and local textures.

Reliable Similar Patches In both exemplar-based [[7, 8 4} 21} 10} [1 1, 2]] and recent learning-based
methods [[18] 25] 24| |9l 26], explicit nearest-neighbor search is one of the key components for
generation of realistic details. When missing areas originally contain structure different from context,
the found neighbors may harm the generation process. Also, nearest-neighbor search during testing is
also time-consuming. Unlike these solutions, we in this paper apply search only in the training phase
with improved similarity measure. Testing is very efficient without the need of post-processing.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



Figure 1: Our inpainting results on building, face, and natural scene.

Spatial-variant Constraints Another important issue is that inpainting can take multiple candi-
dates to fill holes. Thus, optimal results should be constrained in a spatially variant way — pixels
close to area boundary are with few choices, while the central part can be less constrained. In fact,
adversarial loss has already been used in recent methods (18], 23} 24} [9] to learn multi-modality.
Various weights are applied to loss [18}, 25] 26] for boundary consistency. In this paper, we design a
new spatial-variant weight to better handle this issue.

The overall framework is a Generative Multi-column Convolutional Neural Network (GMCNN) for
image inpainting. The multi-column structure [T]] is used since it can decompose images into
components with different receptive fields and feature resolutions. Unlike multi-scale or coarse-to-
fine strategies [24] [12]] that use resized images, branches in our multi-column network directly use
full-resolution input to characterize multi-scale feature representations regarding global and local
information. A new implicit diversified Markov random field (ID-MRF) term is proposed and used in
the training phase only. Rather than directly using the matched feature, which may lead to visual
artifacts, we incorporate this term as regularization.

Additionally, we design a new confidence-driven reconstruction loss that constrains the generated
content according to the spatial location. With all these improvements, the proposed method can
produce high quality results considering boundary consistency, structure suitability and texture
similarity, without any post-processing operations. Exemplar inpainting results are given in Figure [I]

2 Related Work

Exemplar-based Inpainting Among traditional methods, exemplar-based inpainting [[7, [8 4} 211,
copies and pastes matching patches in a pre-defined order. To preserve structure, patch
priority computation specifies the patch filling order [4] [7, [8} 21]]. With only low-level information,
these methods cannot produce high-quality semantic structures that do not exist in examples, e.g.,
faces and facades.

CNN Inpainting Since the seminal context-encoder work [[18]], deep CNNs have achieved significant
progress. Pathak et al. proposed training an encoder-decoder CNN and minimizing pixel-wise
reconstruction loss and adversarial loss. Built upon context-encoder, in [9]], global and local discrimi-
nators helped improve the adversarial loss where a fully convolutional encoder-decoder structure was
adopted. Besides encoder-decoder, U-net-like structure was also used [23]].

Yang et al.[24] and Yu et al.[26] introduced coarse-to-fine CNNs for image inpainting. To generate
more plausible and detailed texture, combination of CNN and Markov Random Field [24]] was taken
as the post-process to improve inpainting results from the coarse CNN. It is inevitably slow due to
iterative MRF inference. Lately, Yu et al. conducted nearest neighbor search in deep feature space
[26], which brings clearer texture to the filling regions compared with previous strategies of a single
forward pass.

3 Our Method

Our inpainting system is trainable in an end-to-end fashion, which takes an image X and a binary
region mask M (with value O for known pixels and 1 otherwise) as input. Unknown regions in image

X are filled with zeros. It outputs a complete image Y. We detail our network design below.
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Figure 2: Our framework.

3.1 Network Structure

Our proposed Generative Multi-column Convolutional Neural Network (GMCNN) shown in Figure 2]
consists of three sub-networks: a generator to produce results, global&local discriminators for
adversarial training, and a pretrained VGG network to calculate ID-MRF loss. In the testing
phase, only the generator network is used.

The generator network consists of n (n = 3) parallel encoder-decoder branches to extract different
levels of features from input X with mask M, and a shared decoder module to transform deep features
into natural image space Y. We choose various receptive fields and spatial resolutions for these
branches as shown in Figure[2] which capture different levels of information. Branches are denoted
as {fi(\)} G € {1,2,...,n}), trained in a data driven manner to generate better feature components
than handcrafted decomposition.

Then these components are up-sampled (bilinearly) to the original resolution and are concatenated
into feature map F'. We further transform features ' into image space via shared decoding module
with 2 convolutional layers, denoted as d(-). The output is Y = d(F). Minimizing the difference
between Y and Y makes {f;(-)}i=1....., capture appropriate components in X for inpainting. d(-)
further transforms such deep features to our desired result. Note that although f;(-) seems independent
of each other, they are mutually influenced during training due to d(-).

Analysis Our framework is by nature different from commonly used one-stream encoder-decoder
structure and the coarse-to-fine architecture [12]]. The encoder-decoder transforms the image
into a common feature space with the same-size receptive field, ignoring the fact that inpainting
involves different levels of representations. The multi-branch encoders in our GMCNN contrarily do
not have this problem. Our method also overcomes the limitation of the coarse-to-fine architecture,
which paints the missing pixels from small to larger scales where errors in the coarse-level already
influence refinement. Our GMCNN incorporates different structures in parallel. They complement
each other instead of simply inheriting information.

3.2 ID-MREF Regularization

Here, we address aforementioned semantic structure matching and computational-heavy iterative
MREF optimization issues. Our scheme is to take MRF-like regularization only in the training phase,
named implicit diversified Markov random fields (ID-MRF). The proposed network is optimized to
minimize the difference between generated content and corresponding nearest-neighbors from ground
truth in the feature space. Since we only use it in training, complete ground truth images make it
possible to know high-quality nearest neighbors and give appropriate constraints for the network.

To calculate ID-MREF loss, it is possible to simply use direct similarity measure (e.g. cosine similarity)
to find the nearest neighbors for patches in generated content. But this procedure tends to yield
smooth structure, as a flat region easily connects to similar patterns and quickly reduces structure
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Figure 3: Using different similarity measures to search the nearest neighbors. (a) Inpainting results
using cosine similarity. (b) Inpainting results using our relative similarity. (c) Ground truth image
where red rectangle highlights the filling region (Best viewed in original resolution and with color).

variety, as shown in Figure[3a). We instead adopt a relative distance measure [17, [16, to model
the relation between local features and target feature set. It can restore subtle details as illustrated in

Figure 3[b).

Specifically, let Yg be the generated content for the missing regions, YL and YZ are the features
generated by the Ly, feature layer of a pretrained deep model. For neuranpatches v and s extracted
from Y; and Y ¥ respectively, the relative similarity from v to s is defined as

RS(v,s) = exp(( plv.s) /1), )

maxye, (yr) #(v,r) + €

where p(-, -) is the cosine similarity. r € ps(Y*) means r belongs to Y excluding s. h and € are
two positive constants. If v is like s more than other neural patches in Y*, RS(v, s) turns large.

Next, RS(v, s) is normalized as

RS(v,s) = RS(v,s)/ Z RS(v,r). 2)

reps(YL)

Finally, with Eq. (2)), the ID-MRF loss between YgL and YT is defined as

1 _
Lar(L) = —log(-; > max RS(v,s)), 3)
seYl vEYg

where Z is a normalization factor. For each s € Y%, v = arg max,, vt RS(v,s) means V is closer
g

to s compared with other neural patches in YgL. In the extreme case that all neural patches in Y; are
close to one patch s, other patches r have their max, RS(v, r) small. So £y (L) is large.

On the other hand, when the patches in Y; are close to different candidates in YZ, each r in Y£
has its unique nearest neighbor in YgL. The resulting max, ¢ 1. RS(v,r) is thus big and £/ (L)
9

becomes small. We show one example in the supplementary file. From this perspective, minimizing
L (L) encourages each v in Y;“ to approach different neural patches in YT, diversifying neighbors,
as shown in Figure [3[(b).

An obvious benefit for this measure is to improve the similarity between feature distributions in ?5
and Y’. By minimizing the ID-MREF loss, not only local neural patches in YgL find corresponding
candidates from Y, but also the feature distributions come near, helping capture variation in
complicated texture.

Our final ID-MREF loss is computed on several feature layers from VGG19. Following common
practice 3} [14]], we use conv4_2 to describe image semantic structures. Then conv3_2 and conv4_2



are utilized to describe image texture as

4
Lonry = Lar(convd_2) + Z L (convt_2). 4)
t=3

More Analysis During training, ID-MRF regularizes the generated content based on the reference.
It has the strong ability to create realistic texture locally and globally. We note the fundamental
difference from the methods of [24}26], where nearest-neighbor search via networks is employed in
the testing phase. Our ID-MRF regularization exploits both reference and contextual information
inside and out of the filling regions, and thus causes high diversity in inpainting structure generation.

3.3 Information Fusion

Spatial Variant Reconstruction Loss Pixel-wise reconstruction loss is important for inpainting
[L8 25/ 26]]. To exert constraints based on spatial location, we design the confidence-driven recon-
struction loss where unknown pixels close to the filling boundary are more strongly constrained than
those away from it. We set the confidence of known pixels as 1 and unknown ones related to the
distance to the boundary. To propagate the confidence of known pixels to unknown ones, we use a
Gaussian filter g to convolve M to create a loss weight mask M, as

M, = (g« M) © M, 5)

where ¢ is with size 64 x 64 and its standard deviation is 40. M' = 1 — M + M and M? = 0.
© is the Hadamard product operator. Eq. (3)) is repeated several times to generate M,,,. The final
reconstruction loss is

,CC:H(Y-G([X,ML@))@Mle, (6)
where G ([X, M]; 6) is the output of our generative model GG, and 6 denotes learn-able parameters.

Compared with the reconstruction loss used in [[L8 25, 126]], ours exploits spatial locations and their
relative order by considering confidence on both known and unknown pixels. It results in the effect of
gradually shifting learning focus from filling border to the center and smoothing the learning curve.

Adversarial Loss Adversarial loss is a catalyst in filling missing regions and becomes common in
many creation tasks. Similar to those of 9] 26]], we apply the improved Wasserstein GAN [6] and use
local and global discriminators. For the generator, the adversarial loss is defined as

Ladv = ~Exnpx[D(G(X;0)] + Agp Bz [([[Vx D(X) © My|l2 — 1)%], M

where X = tG([X,M];0) + (1 —t)Y and t € [0, 1].

3.4 Final Objective

With confidence-driven reconstruction loss, ID-MREF loss, and adversarial loss, the model objective
of our net is defined as
L= Lc + )\mrfﬁm'rf + )\advﬁadva (8)

where \yq, and A,,;¢ are used to balance the effects between local structure regularization and
adversarial training.

3.5 Training

We train our model first with only confidence-driven reconstruction loss and set A, and Aqq, t0
Os to stabilize the later adversarial training. After our model G converges, we set A,y = 0.05 and
Aadv = 0.001 for fine tuning until converge. The training procedure is optimized using Adam solver
[L3] with learning rate 1e — 4. We set 51 = 0.5 and 82 = 0.9. The batch size is 16.

For an input image Y, a binary image mask M (with value 0 for known and 1 for unknown pixels) is
sampled at a random location. The input image X is produced as X = Y ® (1 — M). Our model
G takes the concatenation of X and M as input. The final prediction is Y = Y ® (1 — M) +
G([X,M]) ® M. All input and output are linearly scaled within range [—1, 1].



Table 1: Quantitative results on the testing datasets.

Method Pairs street view-100 ImageNet-200 Places2-2K CelebA-HQ-2K
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CE [18] 23.49 0.8732 23.56 0.9105 — — — -

MSNPS [24] | 24.44 0.8477 20.62  0.7217 - — - —
CA [26] 23.78 0.8588 22.44  0.8917 20.03 0.8539 23.98 0.9441
Ours 24.65 0.8650 2243 0.8939 20.16 0.8617 25.70 0.9546

4 Experiments

We evaluate our method on five datasets of Paris street view [[18], Places2 [28]], ImageNet [19],
CelebA [[15], and CelebA-HQ [12].

4.1 Experimental Settings

We train our models on the training set and evaluate our model on the testing set (for Paris street view)
or validation set (for Places2, ImageNet, CelebA, and CelebA-HQ). In training, we use images of
resolution 256 x 256 with the largest hole size 128 x 128 in random positions. For Paris street view,
places2, and ImageNet, 256 x 256 images are randomly cropped and scaled from the full-resolution
images. For CelebA and CelebA-HQ face datasets, images are scaled to 256 x 256. All results given
in this paper are not post-processed.

Our implementation is with Tensorflow v1.4.1, CUDNN v6.0, and CUDA v8.0. The hardware is
with an Intel CPU E5 (2.60GHz) and TITAN X GPU. Our model costs 49.37ms and 146.11ms per
image on GPU for testing images with size 256 x 256 and 512 x 512, respectively. Using ID-MRF
in training phrase costs 784ms more per batch (with 16 images of 256 x 256 x 3 pixels). The total
number of parameters of our generator network is 12.562M.

4.2 Qualitative Evaluation

As shown in Figures[]and[T0] compared with other methods, ours gives obvious visual improvement
on plausible image structures and crisp textures. The more reasonably generated structures mainly
stem from the multi-column architecture and confidence-driven reconstruction loss. The realistic
textures are created via ID-MRF regularization and adversarial training by leveraging the contextual
and corresponding textures.

In Figures 9] we show partial results of our method and CA [26] on CelebA and CelebA-HQ face
datasets. Since we do not apply MRF in a non-parametric manner, visual artifacts are much reduced.
It is notable that finding suitable patches for these faces is challenging. Our ID-MRF regularization
remedies the problem. Even the face shadow and reflectance can be generated as shown in Figure[9]

Also, our model is trained with arbitrary-location and -size square masks. It is thus general to be
applied to different-shape completion as shown in Figures[I0]and [T} More inpainting results are in
our project website.

4.3 Quantitative Evaluation

Although the generation task is not suitable to be evaluated by peak signal-to-noise ratio (PSNR) or
structural similarity (SSIM), for completeness, we still give them on the testing or validation sets of
four used datasets for reference. In ImageNet, only 200 images are randomly chosen for evaluation
since MSNPS [24] takes minutes to complete a 256 x 256 size image. As shown in Table[I] our
method produces decent results with comparable or better PSNR and SSIM.

We also conduct user studies as shown in Table 2] The protocol is based on large batches of blind
randomized A/B tests deployed on the Google Forms platform. Each survey involves a batch of 40
pairwise comparisons. Each pair contains two images completed from the same corrupted input by
two different methods. There are 40 participants invited for user study. The participants are asked
to select the more realistic image in each pair. The images are all shown at the same resolution
(256 x 256). The comparisons are randomized across conditions and the left-right order is randomized.



Table 2: Result of user study. Each entry is the percentage of cases where results by our approach are
judged more realistic than another solution.

Paris street view ImageNet Places2 CelebA CelebA-HQ
GMCNN > CE [18] 98.1% 88.3% - - -
GMCNN > MSNPS [24] 94.4% 86.5% - - -
GMCNN > CA [26] 84.2% 78.5% 69.6%  99.0% 93.8%

All images are shown for unlimited time and the participant is free to spend as much time as desired
on each pair. In all conditions, our method outperforms the baselines.

4.4 Ablation Study

Figure 4: Visual comparison of CNNs with different structures. (a) Input image. (b) Single encoder-
decoder. (¢) Coarse-to-fine structure [26]. (d) GMCNN with the fixed receptive field in all branches.
(e) GMCNN with varied receptive fields.

Single Encoder-Decoder vs. Coarse-to-Fine vs. GMCNN We evaluate our multi-column archi-
tecture by comparing with single encode-decoder and coarse-to-fine networks with two sequential
encoder-decoder (same as that in [26] except no contextual layer). The single encoder-decoder is
just the same as our branch three (B3). To minimize the influence of model capacity, we triple the
filter sizes in the single encoder-decoder architecture to make its parameter size as close to ours as
possible. The loss for these three structures is the same, including confidence-driven reconstruction
loss, ID-MRF loss, and WGAN-GP adversarial loss. The corresponding hyper-parameters are the
same. The testing results are shown in Figure d] Our GMCNN structure with varied receptive fields
in each branch predicts reasonable image structure and texture compared with single encoder-decoder
and coarse-to-fine structure. Additional quantitative experiment is given in Table 3] showing the
proposed structure is beneficial to restore image fidelity.

Table 3: Quantitative results of different structures on Paris street view dataset (ED: Encoder-decoder,
-f/-v: fixed/varied receptive fields).

Model ED Coarse-to-fine  GMCNN-f GMCNN-v w/o ID-MRF GMCNN-v
PSNR | 23.75 23.63 24.36 24.62 24.65
SSIM | 0.8580 0.8597 0.8644 0.8657 0.8650

Varied Receptive Fields vs. Fixed Receptive Field We then validate the necessity of using varied
receptive fields in branches. The GMCNN with the same receptive field in each branch turns to using
3 identical third Branches in Figure 2] with filter size 5 x 5. Figure 4 shows within the GMCNN
structure, branches with varied receptive fields give visual more appealing results.

Spatial Discounted Reconstruction Loss vs. Confidence-Driven Reconstruction Loss We com-
pare our confidence-driven reconstruction loss with alternative spatial discounted reconstruction loss
[26]. We use a single-column CNN trained only with the losses on the Paris street view dataset. The
testing results are given in Figure[5] Our confidence-driven reconstruction loss works better.

With and without ID-MRF Regularization We train a complete GMCNN on the Paris street
view dataset with all losses and one model that does not involve ID-MRF. As shown in Figure
[l ID-MREF can significantly enhance local details. Also, the qualitative and quantitative changes
are given in Table El and Figure [7| about how A, ¢ affects inpainting performance. Empirically,
Amrf = 0.02 ~ 0.05 strikes a good balance.
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Figure 5: Visual comparisons of different reconstruction losses. (a) Input image. (b) Spatial
discounted loss [26]. (c) Confidence-driven reconstruction loss.
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Figure 6: Visual comparison of results using ID-MRF and not with it. (a) Input image. (b) Results
using ID-MRE. (c) Results without using ID-MRF.

(d) (e)

(b)

Figure 7: Visual comparison of results using ID-MRF with different \.,,.¢ (a) Input image. (b)
Amrf = 2.(€) Apprp = 0.2. (d) Aprp = 0.02. (&) Aoy = 0.002.

Table 4: Quantitative results about how ID-MRF regularizes the inpainting performance.

Amrf 2 0.2 0.02 0.002
PSNR | 24.62 2453 24.64 24.36
SSIM | 0.8659 0.8652 0.8654 0.8640

5 Conclusion

We have primarily addressed the important problems of representing visual context and using it to
generate and constrain unknown regions in inpainting. We have proposed a generative multi-column
neural network for this task and showed its ability to model different image components and extract
multi-level features. Additionally, the ID-MRF regularization is very helpful to model realistic texture
with a new similarity measure. Our confidence-driven reconstruction loss also considers spatially
variant constraints. Our future work will be to explore other constraints with location and content.

Limitations Similar to other generative neural networks [18] 24} 26} 25]] for inpainting, our method
still has difficulties dealing with large-scale datasets with thousands of diverse object and scene
categories, such as ImageNet. When data falls into a few categories, our method works best, since
the ambiguity removal in terms of structure and texture can be achieved in these cases.



Figure 8: Visual comparisons on Paris street view (up) and ImageNet (down). (a) Input image. (b)
CE [18]. (c) MSNPS [24]. (d) CA [26]. (e) Our results (best viewed in higher resolution).

Figure 9: Visual comparisons on CelebA (Left) and CelebA-HQ (Right). (a) Input image. (b) CA
[26]. (c) Our results.

Figure 10: Visual comparisons on Places2 for 512 x 680 images with random masks. (a) Input image.
(b) Results by CA [26]]. (c) Our results.
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