Learning to Infer Graphics Programs from
Hand-Drawn Images

Kevin Ellis
MIT

ellisk@mit.edu daniel

Armando Solar-Lezama
MIT

Daniel Ritchie

Brown University

_ritchie@brown.edu

Joshua B. Tenenbaum
MIT

asolar@csail.mit.edu jbt@mit.edu

Abstract

We introduce a model that learns to convert simple hand drawings into graphics
programs written in a subset of I&TEX. The model combines techniques from
deep learning and program synthesis. We learn a convolutional neural network
that proposes plausible drawing primitives that explain an image. These drawing
primitives are a specification (spec) of what the graphics program needs to draw.
We learn a model that uses program synthesis techniques to recover a graphics
program from that spec. These programs have constructs like variable bindings,
iterative loops, or simple kinds of conditionals. With a graphics program in hand,
we can correct errors made by the deep network and extrapolate drawings.

1 Introduction

Human vision is rich — we infer shape, objects, parts of objects, and relations between objects — and
vision is also abstract: we can perceive the radial symmetry of a spiral staircase, the iterated repetition
in the Ising model, see the forest for the trees, and also the recursion within the trees. How could we
build an agent with similar visual inference abilities? As a small step in this direction, we cast this
problem as program learning, and take as our goal to learn high—level graphics programs from simple
2D drawings. The graphics programs we consider make figures like those found in machine learning
papers (Fig.[I), and capture high-level features like symmetry, repetition, and reuse of structure.

ot all

for (i < 3)
rectangle (3*i,-2*i+4,
3%i+2,6)
for (j < i + 1)
circle(3*i+1,-2%j+5)

efsls
o —
®

reflect (y=8)
for (i<3)
if (1>0)
rectangle(3*i-1,2,3%i,3)
circle(3*i+1,3*i+1)

0, O
DOD
olliae

o Wil

—

() (b)

Figure 1: (a): Model learns to convert hand drawings (top) into I&[EX (rendered below). (b) Learns to
synthesize high-level graphics program from hand drawing.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

The key observation behind our work is that going from pixels to programs involves two distinct
steps, each requiring different technical approaches. The first step involves inferring what objects
make up an image — for diagrams, these are things like as rectangles, lines and arrows. The second
step involves identifying the higher-level visual concepts that describe how the objects were drawn.
In Fig. 1(b), it means identifying a pattern in how the circles and rectangles are being drawn that is
best described with two nested loops, and which can easily be extrapolated to a bigger diagram.

This two-step factoring can be framed as probabilistic inference in a generative model where a
latent program is executed to produce a set of drawing commands, which are then rendered to form
an image (Fig.[2). We refer to this set of drawing commands as a specification (spec) because it
specifies what the graphics program drew while lacking the high-level structure determining how the
program decided to draw it. We infer a spec from an image using stochastic search (Sequential Monte
Carlo) and infer a program from a spec using constraint-based program synthesis [1] — synthesizing
structures like symmetries, loops, or conditionals. In practice, both stochastic search and program
synthesis are prohibitively slow, and so we learn models that accelerate inference for both programs
and specs, in the spirit of “amortized inference” [2], training a neural network to amortize the cost of
inferring specs from images and using a variant of Bias—Optimal Search [3] to amortize the cost of
synthesizing programs from specs.

Image Spec/Drawing Commands Program
(Observed) (Latent) (Latent)
Rendering | 1ipe, 1ine, | Execution [for (j < 3) EEEEE
K_\ rectangle, for (i < 3) [HHHH]
line(...) E i
\/{ \/[line(...) Xtrapolation
Learning + Learning + rectangle (...) Error
Stochastic search Program synthesis correction

Section[2} Image—Spec Section 3} Spec—Program Section [4} Applications
Figure 2: Black arrows: Top—down generative model; Program— Spec—Image. Red arrows: Bottom—

up inference procedure. Bold: Random variables (image/spec/program)

The new contributions of this work are (1) a working model that can infer high-level symbolic
programs from perceptual input, and (2) a technique for using learning to amortize the cost of
program synthesis, described in Section[3.1]

2 Neural architecture for inferring specs

We developed a deep network architecture for efficiently inferring a spec, S, from a hand-drawn
image, I. Our model combines ideas from Neurally-Guided Procedural Models [4]] and Attend-
Infer-Repeat [3], but we wish to emphasize that one could use many different approaches from the
computer vision toolkit to parse an image in to primitive drawing commands (in our terminology,
a “spec”) [6]. Our network constructs the spec one drawing command at a time, conditioned on
what it has drawn so far (Fig. [3). We first pass a 256 x 256 target image and a rendering of the
drawing commands so far (encoded as a two-channel image) to a convolutional network. Given the
features extracted by the convnet, a multilayer perceptron then predicts a distribution over the next
drawing command to execute (see Tbl.[I). We also use a differentiable attention mechanism (Spatial
Transformer Networks: [[7]) to let the model attend to different regions of the image while predicting
drawing commands. We currently constrain coordinates to lie on a discrete 16 x 16 grid, but the grid
could be made arbitrarily fine.

We trained our network by sampling specs .S and target images [for randomly generated scene{] and
maximizing Py[S|I], the likelihood of S given I, with respect to model parameters 6, by gradient
ascent. We trained on 10° scenes, which takes a day on an Nvidia TitanX GPU. Supplement Section
1 gives the full details of the architecture and training of this network.

"Because rendering ignores ordering we put the drawing commands into a canonical order

Figure 3: Neural
architecture for
inferring specs from
images. Blue: net-
work inputs. Black:
network opera-
tions. Red: draws
from a multino-

%8

Target image: [D—

256 X 256 X 2

CNN . .
mial. Typewriter
&) font: network out-
é) puts. Renders on a
16 x 16 grid, shown
- in gray. STN: dif-
Renderer ~ =~ ferentiable attention
C ; Next drawing command mechanism [[7].
anvas: render(S) g
Table 1: Primitive drawing commands currently supported by our model.
circle(z,y) Circle at (x,y)
rectangle(x1,y1, T2, Y2) Rectangle with corners at (z1,y1) & (22, y2)
line(z1, Y1, T2, Y2, Line from (z1,y1) to (z2,y2),
arrow € {0, 1},dashed € {0,1}) optionally with an arrow and/or dashed
STOP Finishes spec inference

Our network can “derender” random synthetic images by doing a beam search to recover specs
maximizing Py[S|I]. But, if the network predicts an incorrect drawing command, it has no way
of recovering from that error. For added robustness we treat the network outputs as proposals for
a Sequential Monte Carlo (SMC) sampling scheme [8]. Our SMC sampler draws samples from
the distribution oc L(I|render(S))Py[S|I], where L(:|-) uses the pixel-wise distance between two
images as a proxy for a likelihood. Here, the network is learning a proposal distribution to amortize
the cost of inverting a generative model (the renderer) [2].

Experiment 1: Figure 4 To evaluate which components of the model are necessary to parse
complicated scenes, we compared the neural network with SMC against the neural network by itself
(i.e., w/ beam search) or SMC by itself. Only the combination of the two passes a critical test of
generalization: when trained on images with < 12 objects, it successfully parses scenes with many
more objects than the training data. We compare with a baseline that produces the spec in one shot by
using the CNN to extract features of the input which are passed to an LSTM which finally predicts the
spec token-by-token (LSTM in Fig.). This architecture is used in several successful neural models
of image captioning (e.g., [9]]), but, for this domain, cannot parse cluttered scenes with many objects.

40 II:II SMCNN (100 'p;r'ti'd'e'sl' TTTTTTTTTTTT Figure 4: Parsing IATEX output after train-

35 HET NN (10 particles) { ingondiagrams with < 12 objects. Out-of-
30 || sMc (1000 particles) sample generalization: Model generalizes
LSTM (1000 particles) 1 to scenes with many more objects (= at ceil-
ing when tested on twice as many objects as
were in the training data). Neither SMC nor
the neural network are sufficient on their
own. # particles varies by model: we com-
pare the models with equal runtime (= 1
sec/object). Average number of errors is (#
incorrect drawing commands predicted by
model)+(# correct commands that were not
predicted by model).

25
20
15
10

Average number of errors

objects

2.1 Generalizing to real hand drawings

We trained the model to generalize to hand drawings by introducing noise into the renderings of
the training target images, where the noise process mimics the kinds of variations found in hand
drawings. While our neurally-guided SMC procedure used pixel-wise distance as a surrogate for
a likelihood function (L(-|-) in Sec. , pixel-wise distance fares poorly on hand drawings, which
never exactly match the model’s renders. So, for hand drawings, we learn a surrogate likelihood
function, Lieymed(+|). The density Lieamed(:|) is predicted by a convolutional network that we train
to predict the distance between two specs conditioned upon their renderings. We train Lieymeq(+|-) to
approximate the symmetric difference, which is the number of drawing commands by which two
specs differ:

—1og Lieamed (render (S)|render(Ss2)) ~ |S1 — Sa| + |S2 — 51| (1)
Supplement Section 2 explains the architecture and training of Lieamed-

Experiment 2: Figures We evaluated, but did not train, our system on 100 real hand-drawn
figures; see Fig.[5H6 These were drawn carefully but not perfectly with the aid of graph paper. For
each drawing we annotated a ground truth spec and had the neurally guided SMC sampler produce
10% samples. For 63% of the drawings, the Top-1 most likely sample exactly matches the ground
truth; with more samples, the model finds specs that are closer to the ground truth annotation (Fig. [7).
We will show that the program synthesizer corrects some of these small errors (Sec. [4.1)).

(5880 84

Figure 5: Left to right: Ising model, recurrent network architec- Figure 6: Near misses. Right-

ture, figure from a deep learning textbook [[10], graphical model most: illusory contours (note:
no SMC in rightmost)

0.0 0.2 0.4 0.6 0.8 1.0

100 — = : . 100 Figure 7: How close are the model’s out-
——— . _ | — Top1 — Full Model

: <) = Tops || — No Attention puts to the ground truth on hand draw-

90 N ~{ Toploo NosMC g ings, as we consider larger sets of sam-

— Mo D‘S_tj“ce ples (1, 5, 100)? Distance to ground

: LU truth measured by the intersection over

80 Formmilide o SO S Vi 80 union (IoU) of predicted spec vs. ground

truth spec: IoU of sets (specs) A and B is

|ANB|/|AUBI. (a) for 63% of drawings
70 the model’s top prediction is exactly cor-

rect; (b) for 70% of drawings the ground

truth is in the top 5 model predictions;
~+60 (c) for 4% of drawings all of the model
outputs have no overlap with the ground
; - truth. Red: the full model. Other colors:

0.4 0.6 0.8 1.0 lesioned versions of our model.

Intersection over Union

% of drawings

3 Synthesizing graphics programs from specs

Although the spec describes the contents of a scene, it does not encode higher-level features of
an image such as repeated motifs or symmetries, which are more naturally captured by a graphics
program. We seek to synthesize graphics programs from their specs.

We constrain the space of programs by writing down a context free grammar over programs — what
in the program languages community is called a Domain Specific Language (DSL) [L1]. Our DSL
(Tbl.[2) encodes prior knowledge of what graphics programs tend to look like.

Table 2: Grammar over graphics programs. We allow loops (for) with conditionals (if), vertical/hor-
izontal reflections (reflect), variables (Var) and affine transformations (Z x Var+7Z).

Program— Statement; - - - ; Statement
Statement— circle(Expression,Expression)
Statement— rectangle(Expression,Expression,Expression,Expression)
Statement— 1line(Expression,Expression,Expression,Expression,Boolean,Boolean)
Statement— for(0 < Var < Expression) { if (Var >0) { Program }; Program }
Statement— reflect(Axis) { Program }
Expression— ZXxVar+Z
Axis— X =ZIY =1Z
Z — aninteger

Given the DSL and a spec S, we want a program that both satisfies S and, at the same time, is
the “best” explanation of S. For example, we might prefer more general programs or, in the spirit
of Occam’s razor, prefer shorter programs. We wrap these intuitions up into a cost function over
programs, and seek the minimum cost program consistent with .S:

program(.S) = arg max 1 [p consistent w/ S] exp (—cost(p)) ()

peDSL

We define the cost of a program to be the number of Statement’s it contains (Tbl. [2). We also
penalize using many different numerical constants; see Supplement Section 3. Returning to the
generative model in Fig.[2] this setup is the same as saying that the prior probability of a program p is
x exp (—cost(p)) and the likelihood of a spec S given a program p is 1[p consistent w/ .S].

The constrained optimization problem in Eq.[2]is intractable in general, but there exist efficient-in-
practice tools for finding exact solutions to such program synthesis problems. We use the state-of-
the-art Sketch tool [[1]]. Sketch takes as input a space of programs, along with a specification of the
program’s behavior and optionally a cost function. It translates the synthesis problem into a constraint
satisfaction problem and then uses a SAT solver to find a minimum-cost program satisfying the
specification. Sketch requires a finite program space, which here means that the depth of the program
syntax tree is bounded (we set the bound to 3), but has the guarantee that it always eventually finds
a globally optimal solution. In exchange for this optimality guarantee it comes with no guarantees
on runtime. For our domain synthesis times vary from minutes to hours, with 27% of the drawings
timing out the synthesizer after 1 hour. Tbl. [3|shows programs recovered by our system. A main
impediment to our use of these general techniques is the prohibitively high cost of searching for
programs. We next describe how to learn to synthesize programs much faster (Sec. [3.1)), timing out
on 2% of the drawings and solving 58% of problems within a minute.

3.1 Learning a search policy for synthesizing programs

We want to leverage powerful, domain-general techniques from the program synthesis community,
but make them much faster by learning a domain-specific search policy. A search policy poses
search problems like those in Eq. [2] but also offers additional constraints on the structure of the
program (Tbl.). For example, a policy might decide to first try searching over small programs
before searching over large programs, or decide to prioritize searching over programs that have loops.

A search policy mg(0|S) takes as input a spec S and predicts a distribution over synthesis problems,
each of which is written o and corresponds to a set of possible programs to search over (so o C DSL).
Good policies will prefer tractable program spaces, so that the search procedure will terminate early,
but should also prefer program spaces likely to contain programs that concisely explain the data.
These two desiderata are in tension: tractable synthesis problems involve searching over smaller
spaces, but smaller spaces are less likely to contain good programs. Our goal now is to find the
parameters of the policy, written 6, that best navigate this trade-off.

Given a search policy, what is the best way of using it to quickly find minimum cost programs? We
use a bias-optimal search algorithm (c.f. Schmidhuber 2004 [3]):

Table 3: Drawings (left), their specs (middle left), and programs synthesized from those specs (middle
right). Compared to the specs the programs are more compressive (right: programs have fewer lines
than specs) and automatically group together related drawing commands. Note the nested loops and
conditionals in the Ising model, combination of symmetry and iteration in the bottom figure, affine
transformations in the top figure, and the complicated program in the second figure to bottom.

Drawing Spec Program Compression factor
Line (2,15, 4,15)
]_— Line(4,9, 4,13) for (1<3)
Fv Line (3,11, 3,14) line(i,-1%i+6, 6 __ 2X
Line (2,13, 2,15) 2%i+2,-1%i+6) 3
Line (3,14, 6,14) line(i,-2*%i+4,i,-1%xi+6)
Line (4,13, 8,13)
Circle (5,8) for (i<3)
Circle(2,8) for (j<3)
Circle(8,11) if (>0)
Line(2,9, 2,10) line (-3%j+8,-3%i+7, 21 _ 3.5x
Circle(8,8) -3%j+9,-3%i+7) 6 — <
Line (3,8, 4,8) line (-3%i+7,-3%j+8,
Line (3,11, 4,11) -3%i+7,-3%3j+9)
circle (-3*j+7,-3%i+7)
.ete. ...; 21 lines
Rectangle (1,10,3,11) .
o o o B for (i<4)
SEEE mmmmemmsay LU 6 _ 55
==t Rectangle (4,10,6,11) rectangle (-3+it9,-2¢j+6, 3 '
T -3%i+11,-2%j+7)
.ete. ...; 16 lines
for (i<4)
Line(11,14,13,14,arrow) line (-4%i+13,4,-4%i+13,2,arrow)
Circle (10,10) for (j<3)
% l I@ Line (10,13,10,11, arrow) if (7>0) 15 _ 9 5x
Circle(6,10) circle (-4%i+13,4%j+-3) 6
line (-4*j+10,5,-4%j+12,5,
.. efe. ...; 15 lines arrow)
for (i<3)
line(7,1,5%i+2,3,arrow)
Line(3,10,3,14,arrow) for (j<i+1)
[N Rectangle (11,8,15,10) if (j>0)
- Rectangle (11,14,15,15) line (5%j-1,9,5%i,5,arrow) %6 =1.8x
~ Line(13,10,13,14,arrow) line (6%j+2,5,5%j+2,9,arrow)
rectangle (5%xi,3,5%i+4,5)
.ete. ...; 16 lines rectangle (5%1i,9,5%xi+4,10)
rectangle (2,0,12,1)
Circle(2,8)
O O Rectangle (6,9, 7,10) reflet.:t(y=8)
DOD Circle(8,8) f?r(}<g) 9-18
Rectangle (6,12, 7,13) if(1>0) 5 X

rectangle (3%i-1,2,3%i,3)

O O Rectangle (3,9, 4,10) circle (3%i+1,3%i+1)

.ete. ...; 9lines

Definition: Bias-optimality. A search algorithm is n-bias optimal with respect to a distribution
Ppias[-] if it is guaranteed to find a solution in o after searching for at least time n x %, where
t(o) is the time it takes to verify that o contains a solution to the search problem.

Bias-optimal search over program spaces is known as Levin Search [12]]; an example of a 1-bias
optimal search algorithm is an ideal time-sharing system that allocates Py, [0] of its time to trying o.
We construct a 1-bias optimal search algorithm by identifying Pyiss[0] = mo(c|S) and (o) = t(c|5),
where t(c|S) is how long the synthesizer takes to search o for a program for .S. Intuitively, this
means that the search algorithm explores the entire program space, but spends most of its time in the
regions of the space that the policy judges to be most promising. Concretely, this means that we run
many different program searches in parallel (i.e., run in parallel different instances of the synthesizer,
one for each o), but to allocate compute time to a ¢ in proportion to 7y (c.S).

Now in theory any 7y(-|-) is a bias-optimal searcher. But the actual runtime of the algorithm depends
strongly upon the bias Pp;,s[-]. Our new approach is to learn Py;,s[-] by picking the policy minimizing
the expected bias-optimal time to solve a training corpus, D, of graphics program synthesis problems:

t(alS)

aegélsgl(S) mo(c]S)

Loss(6;D) = Egup +A[I0113 3)

where o € BEST(.9) if a minimum cost program for S is in o.

To generate a training corpus for learning a policy, we synthesized minimum cost programs for
each drawing and for each o, then minimized [3|using gradient descent while annealing a softened
minimum to the hard minimization equation [3} Because we want to learn a policy from only 100
drawings, we parameterize 7 with a low-capacity bilinear model with only 96 real-valued parameters.
Supplement Section 4 further details the parameterization and training of the policy.

Experiment 3: Table |S; Figure [8; Supplement Section 4. We compare synthesis times for our
learned search policy with 4 alternatives: Sketch, which poses the entire problem wholesale to the
Sketch program synthesizer; DC, a DeepCoder—style model that learns to predict which program
components (loops, reflections) are likely to be useful [13]]; End—to-End, which trains a recurrent
neural network to regress directly from images to programs; and an Oracle, a policy which always
picks the quickest to search o also containing a minimum cost program. Our approach improves upon
Sketch by itself, and comes close to the Oracle’s performance. One could never construct this Oracle,
because the agent does not know ahead of time which ¢’s contain minimum cost programs nor does
it know how long each o will take to search. With this learned policy in hand we can synthesize 58%
of programs within a minute.

Table 4: Parameterization of different ways of posing the program synthesis problem. The policy
learns to choose parameters likely to quickly yield a minimal cost program.

Parameter Description Range

Loops? Is the program allowed to loop? {True, False}
Reflects? Is the program allowed to have reflections? {True, False}
Incremental? Solve the problem piece-by-piece or all at once? {True, False}

Maximum depth Bound on the depth of the program syntax tree {1,2,3}

Table 5: Time to synthesize a minimum cost pro-

Model sez/igglglr;e Tlg?ﬁ;ts gram. Sketch: out-of-the-box performance of
Sketch [1]]. DC: Deep—Coder style baseline that

Sketch 274 sec 27% predicts program components, trained like [13]].

DC 187 sec 2% End—to—End: neural net trained to regress directly

End-to-End 63 sec 94% from images to programs, which fails to find valid

Oracle 6 sec 2% programs 94% of the time. Oracle: upper bounds

Ours 28 sec 2% the performance of any bias—optimal search policy.
Ours: evaluated w/ 20-fold cross validation.

sketch DC oracle learned policy (ours)

Imedlan: 274s median: 187s Imedlan: s :medlan: 2895

1
1

1 1 1
Tl Wt il |-

10" 100 10 107 10% 10° oo 109 10 107 107 10% 10° oo 10" 10! 107 10° 10¢ 107 oo 107 100 107 107 10% 100 oo

frequency

time (sec)
Figure 8: Time to synthesize a minimum cost program (compare w/ Table . End—to—End: not

shown because it times out on 96% of drawings, and has its median time (63s) calculated only on
non-timeouts, wheras the other comparisons include timeouts in their median calculation. co =
timeout. Red dashed line is median time.

4 Applications of graphics program synthesis

4.1 Correcting errors made by the neural network

The program synthesizer corrects errors made by the neural
network by favoring specs which lead to more concise or gen-
eral programs. For example, figures with perfectly aligned
objects are preferable, and precise alignment lends itself to
short programs. Concretely, we run the program synthesizer
on the Top-k most likely specs output by the neurally guided
sampler. Then, the system reranks the Top-% by the prior prob-
ability of their programs. The prior probability of a program
is learned by optimizing the parameters of the prior so as to
maximize the likelihood of the ground truth specs; see supple-
ment for details. But, this procedure can only correct errors
when a correct spec is in the Top-k. Our sampler could only do
better on 7/100 drawings by looking at the Top-100 samples
(see Fig. [7), precluding a statistically significant analysis of
how much learning a prior over programs could help correct
errors. But, learning this prior does sometimes help correct
mistakes made by the neural network; see Fig. [0]for a represen-
tative example of the kinds of corrections that it makes. See
Supplement Section 5 for details.

4.2 Extrapolating figures

L0 [

)
Qii%@ %
O

Figure 9: Left: hand drawings. Cen-
ter: interpretations favored by the
deep network. Right: interpretations
favored after learning a prior over
programs. The prior favors simpler
programs, thus (top) continuing the
pattern of not having an arrow is pre-
ferred, or (bottom) continuing the
“binary search tree” is preferred.

Having access to the source code of a graphics program facilitates coherent, high-level image editing.
For example, we could change all of the circles to squares or make all of the lines be dashed, or we
can (automatically) extrapolate figures by increasing the number of times that loops are executed.
Extrapolating repetitive visuals patterns comes naturally to humans, and is a practical application:
imagine hand drawing a repetitive graphical model structure and having our system automatically
induce and extend the pattern. Fig. [I0]shows extrapolations produced by our system.

EQQO
O00O0

Figure 10: Top, white: drawings. Bottom, black: extrapolations automatically produced by our

system.

5 Related work

Program Induction: Our approach to learning to search for programs draws theoretical under-
pinnings from Levin search [[12| [14]] and Schmidhuber’s OOPS model [3]. DeepCoder [13] is a
recent model which, like ours, learns to predict likely program components. Our work differs by
identifying and modeling the trade-off between tractability and probability of success. TerpreT [15]
systematically compares constraint-based program synthesis techniques against gradient-based search
methods, like those used to train Differentiable Neural Computers [[16]. The TerpreT experiments
motivate our use of constraint-based techniques. Neurally Guided Deductive Search (NGDS: [17]) is
a recent neurosymbolic approach; combining our work with ideas from NGDS could be promising.

Deep Learning: Our neural network combines the architectural ideas of Attend-Infer-Repeat [5]
— which learns to decompose an image into its constituent objects — with the training regime and
SMC inference of Neurally Guided Procedural Modeling [4] — which learns to control procedural
graphics programs. The very recent SPIRAL [[18]] system learns to infer procedures for controlling
a ‘pen’ to derender highly diverse natural images, complementing our focus here on more abstract
procedures but less natural images. IM2LATEX [19] and pix2code [20] are recent works that derender
IATEX equations and GUIS, respectively, both recovering a markup-like representation. Our goal is to
go from noisy input to a high-level program, which goes beyond markup languages by supporting
programming constructs like loops and conditionals.

Hand-drawn sketches: Sketch-n-Sketch is a bi-directional editing system where direct manipula-
tions to a program’s output automatically propagate to the program source code [21]]. This work
compliments our own: programs produced by our method could be provided to a Sketch-n-Sketch-like
system as a starting point for further editing. Other systems in the computer graphics literature convert
sketches to procedural representations, e.g. using a convolutional network to match a sketch to the
output of a parametric 3D modeling system in [22] or supporting interactive sketch-based instan-
tiation of procedural primitives in [23] In contrast, we seek to automatically infer a programmatic
representation capturing higher-level visual patterns. The CogSketch system [24] also aims to have a
high-level understanding of hand-drawn figures. Their goal is cognitive modeling, whereas we are
interested in building an automated Al application.

6 Contributions

We have presented a system for inferring graphics programs which generate IATEX-style figures from
hand-drawn images using a combination of learning, stochastic search, and program synthesis. In the
near future, we believe it will be possible to produce professional-looking figures just by drawing
them and then letting an Al write the code. More generally, we believe the problem of inferring
visual programs is a promising direction for research in machine perception.

Acknowledgments

We are grateful for advice from Will Grathwohl and Jiajun Wu on the neural architecture, and for
funding from NSF GRFP, NSF Award #1753684, the MUSE program (DARPA grant FA8750-14-2-
0242), and AFOSR award FA9550-16-1-0012. This material is based upon work supported by the
Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216.

Code, data, and drafts

A longer version of this paper is available at https://arxiv.org/abs/1707.09627. The code
and data are available athttps://github.com/ellisk42/TikZ.

References

[1] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS Department, University of
California, Berkeley, Dec 2008.

[2] Brooks Paige and Frank Wood. Inference networks for sequential monte carlo in graphical models. In
International Conference on Machine Learning, pages 3040-3049, 2016.

[3] Jirgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54(3):211-254, 2004.

https://arxiv.org/abs/1707.09627
https://github.com/ellisk42/TikZ

(4]

(3]

(6]
(71
(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

Daniel Ritchie, Anna Thomas, Pat Hanrahan, and Noah Goodman. Neurally-guided procedural models:
Amortized inference for procedural graphics programs using neural networks. In NIPS, 2016.

SM Eslami, N Heess, and T Weber. Attend, infer, repeat: Fast scene understanding with generative models.
In NIPS, 2016.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In CVPR, 2017.
Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In NIPS, 2015.

Arnaud Doucet, Nando De Freitas, and Neil Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer, 2001.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural image
caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3156-3164, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthesis. ACM
SIGPLAN Notices, 50(10):107-126, 2015.

Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115-116, 1973.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. DeepCoder:
Learning to write programs. arXiv preprint arXiv:1611.01989, November 2016.

Raymond J Solomonoff. Optimum sequential search. 1984.

Alexander L Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan Taylor,
and Daniel Tarlow. Terpret: A probabilistic programming language for program induction. arXiv preprint
arXiv:1608.04428, 2016.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwinska,
Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al. Hybrid computing
using a neural network with dynamic external memory. Nature, 538(7626):471-476, 2016.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gulwani.
Neural-guided deductive search for real-time program synthesis from examples. /CLR, 2018.

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Eslami, and Oriol Vinyals. Synthesizing programs
for images using reinforced adversarial learning. /CML, 2018.

Yuntian Deng, Anssi Kanervisto, Jeffrey Ling, and Alexander M. Rush. Image-to-markup generation with
coarse-to-fine attention. In ICML, 2017.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. CoRR,
abs/1705.07962, 2017.

Brian Hempel and Ravi Chugh. Semi-automated svg programming via direct manipulation. In Proceedings
of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, pages 379-390,
New York, NY, USA, 2016. ACM.

Haibin Huang, Evangelos Kalogerakis, Ersin Yumer, and Radomir Mech. Shape synthesis from sketches
via procedural models and convolutional networks. IEEE transactions on visualization and computer
graphics, 2017.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G. Aliaga, Bedrich Benes, and Adrien Bousseau. Interactive
sketching of urban procedural models. ACM Trans. Graph., 35(4), 2016.

Kenneth Forbus, Jeffrey Usher, Andrew Lovett, Kate Lockwood, and Jon Wetzel. Cogsketch: Sketch

understanding for cognitive science research and for education. Topics in Cognitive Science, 3(4):648-666,
2011.

10

