
A Convexity of divergence

Theorem 7 For any A, V such that AᵀV1 = 0, letting Dexp the Bregman divergence with generator
ϕ?(z)

.
= exp z and KL the generator for KL divergence,

Dexp(Vᵀai‖cKL(xi)) = qi ·DǨL(xi‖ exp(Vᵀai)) + ri ·Dg(xi‖ exp(Vᵀai)),∀i = 1, 2, ...,m ,(20)

with qi
.
= 1/g(xi) and ri

.
= qi ·

∑
j exp (aᵀ

i vj), satisfying ri ≥ dqi.

(Proof in SM, Section B)

We can remark that
1

g(xi)
·
∑
j

exp (aᵀ
i vj) =

∑
j

exp (aᵀ
i vj − xij) x̌ij . (21)

To generalize the notion of geometric average, consider any strictly convex function ϕ : R→ R at
least three times differentiable and with invertible derivative. Define the ϕ-mean of x as

µϕ(x)
.
= ϕ′−1 (Eiϕ

′(xi)) . (22)

We now state a Lemma which will be essentially used for a particular case of ϕ but may be of
independent interest for more general cases, as explained in the following examples.

Lemma 8 Let ϕ convex and at least three times differentiable. Let

φ(x)
.
= − ϕ′′′(x)

(ϕ′′(x))2
. (23)

Then the ϕ′-mean µϕ is convex (resp. concave) iff

φ(µϕ(x)) ≥ (resp. ≤) m ·min
i
φ(xi) ,∀x . (24)

(Proof in SM, Section C)

Example 1 Take for example F ′(x)
.
= lnx (geometric average). In this case, φ(x) = +1 and ineq.

(24) brings 1 ≤ m for the concavity of the mean and shows that g is concave.

Example 2 Consider F ′(x) = −1/x (harmonic average, over R+). In this case, φ(x) = +x, so to
prove the concavity of the mean, we need to show µF (x) ≤ mmini xi, which is equivalent to show∑

i

1

xi
≥ max

i

1

xi
, (25)

and shows the concavity of the mean.

Example 3 Consider F ′ = exp (normalized softmax). In this case, φ(x) = − exp(−x), which
shows that the mean cannot be concave. To show its convexity, we need to show equivalently

1∑
i expxi

≤ exp(−max
i
xi) , (26)

which is equivalent to
∑
i exp(xi −maxj xj) ≥ 1, and because of the non-negativity of the exponen-

tial, shows the convexity of the mean.

B Proof of Theorem 7

First, letting yi
.
= exp(Vᵀai) for any i = 1, 2, ...,m, and vj the j-th row of V (as a column vector),

we get

ϕ? (∇ϕ(y̌i)) =
∑
j

exp (log (exp (aᵀ
i vj))) =

∑
j

exp (aᵀ
i vj) . (27)
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We recall g(x) = (
∏
k xk)1/d, the geometric mean. So,

g(exp(Vᵀai)) = exp

1

d

∑
j

aᵀ
i vj

 = exp((AᵀV1)i) = exp(0) = 1, (28)

because of the constraint AᵀV1 = 0m. Hence, letting yi
.
= exp(Vᵀai) for short, we obtain y̌i = yi.

Also, the dual symmetry of Bregman divergences [8] yields:

Dexp(Vᵀai‖cKL(xi)) = DKL(x̌i‖ exp(Vᵀai)) . (29)

We now use Theorem 2. It comes (letting again yi
.
= exp(Vᵀai) for short) that for any i = 1, 2, ...,m,

g(xi) ·Dexp(Vᵀai‖cKL(xi))

= g(xi) ·DKL(x̌i‖ exp(Vᵀai))

= DǨL

(
xi
∥∥ exp(Vᵀai)

)
+ ϕ? (∇ϕ(y̌i))Dg(xi‖yi)

= DǨL

(
xi
∥∥ exp(Vᵀai)

)
+

∑
j

exp (aᵀ
i vj)

 ·Dg(xi‖ exp(Vᵀai)) , (30)

which brings the statement of the Theorem. The fact that ri ≥ dqi follows from the convexity of exp.

C Proof of Lemma 8

Let µϕ(x)
.
= ϕ′−1((1/m) ·∑i ϕ

′(xi)) the ϕ′-mean of the coordinates of x. Then

∂

∂xi
µϕ(x) =

1

m
· ϕ′′(xi)
ϕ′′(µϕ(x))

, (31)

∂2

∂xi∂xj
µϕ(x) =

1

mϕ′′(µϕ(x))
·
(
δij · ϕ′′′(xi)−

ϕ′′′(µϕ(x))

m(ϕ′′(µϕ(x)))2
· ϕ′′(xi)ϕ′′(xj)

)
(32)

x being fixed, let ỹ the vector defined by ỹi
.
= yi · ϕ′′(xi) and let

φ(x)
.
= − ϕ′′′(x)

(ϕ′′(x))2
. (33)

Let Φ the diagonal matrix with Φii
.
= φ(xi). The Hessian Hµϕ(x) satisfies

yᵀHµϕ(x)y =
1

mϕ′′(µϕ(x))
·
(
φ(µϕ(x))

m
· ỹᵀỹ − ỹᵀΦỹ

)
=

1

mϕ′′(µϕ(x))
· ỹᵀDiag

(
φ(µϕ(x))

m
· 1− φ(x)

)
ỹ (34)

We see that when ϕ′′ is not zero everywhere, ỹ spans the same set as y, so if ϕ is convex, µϕ is
convex iff (φ(µϕ(x))/m) · 1− φ(x) ≥ 0, that is

φ(µϕ(x)) ≥ m · φ(xi) ,∀i , (35)

which is equivalent to the Lemma’s statement.
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D Proof of Lemma 4

We have

ǨL(x) =

(∑
i

xi log xi − xi
)
− 1

d
·
∑
ij

xi log xj , (36)

∂

∂xi
ǨL(x) = log xi −

1

d
·
∑
j

log xj −
1

dxi
·
∑
j

xj (37)

= −1

d
·

∑
j

xj
xi

+ log
xj
xi

 , (38)

∂2

∂xi∂xj
ǨL(x) = −1

d
·
(

1

xi
+

1

xj

)
,∀j 6= i, (39)

∂2

∂x2
i

ǨL(x) =
1

xi
·

1− 1

d
+

1

d
·
∑
j 6=i

xj
xi

 . (40)

We then check that

(Hz)i =
zi
xi

+
1

d
·
∑
j

(
zixj
x2
i

− zj
xj
− zj
xi

)
(41)

and finally

zᵀHz =
∑
i

z2
i

xi
+

1

d

∑
ij

(
z2
i xj
x2
i

− zizj
xj
− zizj

xi

)

=
1

d

∑
ij

(
z2
i xi
x2
i

+
z2
i xj
x2
i

− zizj
xj
− zizj

xi

)

=
1

d

∑
ij

(
z2
i xix

2
j + z2

i x
3
j − zizjx2

ixj − zizjxix2
j

x2
ix

2
j

)

=
1

2d

∑
ij

(
z2
i xix

2
j + z2

i x
3
j + z2

jx
2
ixj + z2

jx
3
i − 2zizjx

2
ixj − 2zizjxix

2
j

x2
ix

2
j

)

=
1

2d

∑
ij

(
z2
i x

2
j (xi + xj) + z2

jx
2
i (xi + xj)− 2zizjxixj(xi + xj)

x2
ix

2
j

)

=
1

2d

∑
ij

(xi + xj) ·
(
zi
xi
− zj
xj

)2

, (42)

as claimed. This also shows the convexity of ǨL(x).

We now show that ǨL◦exp is 1-homogeneous on the subspace span({1})⊥, which means, by Euler’s
Theorem,

ǨL(exp(x)) = exp(x)ᵀ∇ǨL(exp(x)),∀x ∈ span({1})⊥. (43)
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To see this, we write

ǨL(exp(x))− exp(x)ᵀ∇ǨL(exp(x))

=
∑
j

xj exp(xj)− exp(xj)

+
1

d
·
∑
j

(
exp(xj) ·

∑
k

(exp(xk − xj) + (xk − xj))
)

=
∑
j

xj exp(xj)−
∑
j

exp(xj) +
∑
k

exp(xk)︸ ︷︷ ︸
=0

+
1

d
·
∑
j

exp(xj)
∑
k

xk︸ ︷︷ ︸
=0

−
∑
j

exp(xj)xj

=
∑
j

xj exp(xj)−
∑
j

exp(xj)xj

= 0, (44)

where we have used the fact that 1ᵀx = 0.

E Derivations of the unconstrained optimization in (18) and (19)

Consider that X is constant, therefore

`CoDA-PCA(X;A,V) =Dexp(VᵀA ‖ cKL(X))

= 1ᵀ

[
exp(VᵀA)− exp(cKL(X))− (VᵀA− cKL(X)) ◦ exp(cKL(X))

]
1

= 1ᵀ

[
exp(VᵀA)− VᵀA ◦ exp(cKL(X))

]
1 + constant

= 1ᵀ

[
exp(VᵀA)− VᵀA ◦ X̌

]
1 + constant.

Let Y = VᵀA, and we get (18).

By (38), if yi is centered and yᵀ
i 1 = 0, we have

5ǨL(exp(yi)) = −1

d
· [exp(1yᵀ

i − yi1ᵀ) + 1yᵀ
i − yi1ᵀ]1

= −1

d
exp(1yᵀ

i − yi1ᵀ)1 + yi.

Therefore

`S-CODA-PCA(X;A,V) =
∑
i

[
x̌ᵀ
i

1

d
exp(1yᵀ

i − yi1ᵀ)1− x̌ᵀ
i yi

]
=
∑
i

x̌ᵀ
i

[
exp(−yi) exp(yᵀ

i )
1

d
− yi

]
,

which, in matrix form, is (19).

F More Experimental Results

We include another baseline CoDA-PCA∗ that is the non-parametric version of CoDA-PCA optimized
by L-BFGS. Note that CoDA-PCA∗ does not learn an encoding map and therefore cannot provide an
out-of-sample extension.
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The baselines are further assessed based on (symmetric perspective KL divergence; SPKL)
normalizing the geometric average of the input data p and the PCA reconstruction q and get
respectively two positive measures p̌ and q̌, then computing the symmetric KL divergence
1
2

∑
i

(
p̌i log p̌i

q̌i
+ q̌i log q̌i

p̌i

)
; (L2) L2-distance of p̄ and q̄ after the normalizing p and q into the

probability simplex. (Riemannian) the Riemannian distance between the two probabilities p̄ and q̄
defined by the Fisher information metric, given by 2 arccos

(√
p̄
ᵀ√

q̄
)
.

Fig. 3 shows the training and testing errors. A key observation is that CoDA-PCA∗ is slightly better
than CoDA-PCA because the embedding points are free parameters and are not constrained by a neural
network. We also see that clr-AE shows small training errors but does not generalize as well as
CoDA-AE on the testing set.
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Figure 3: Training and testing errors measured by different distances against the number of principal
components. The columns, from left to right, show training errors (Atlas), corresponding testing
errors, training errors (diet swap) and corresponding test errors.
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