
Online Structure Learning for Feed-Forward and
Recurrent Sum-Product Networks

Agastya Kalra∗, Abdullah Rashwan∗, Wilson Hsu, Pascal Poupart
Cheriton School of Computer Science, Waterloo AI Institute, University of Waterloo, Canada

Vector Institute, Toronto, Canada
agastya.kalra@gmail.com,{arashwan,wwhsu,ppoupart}@uwaterloo.ca

Prashant Doshi
Department of Computer Science

University of Georgia, USA
pdoshi@cs.uga.edu

George Trimponias
Huawei Noah’s Ark Lab, Hong Kong

g.trimponias@huawei.com

Abstract

Sum-product networks have recently emerged as an attractive representation due
to their dual view as a special type of deep neural network with clear semantics
and a special type of probabilistic graphical model for which marginal inference is
always tractable. These properties follow from the conditions of completeness and
decomposability, which must be respected by the structure of the network. As a
result, it is not easy to specify a valid sum-product network by hand and therefore
structure learning techniques are typically used in practice. This paper describes
a new online structure learning technique for feed-forward and recurrent SPNs.
The algorithm is demonstrated on real-world datasets with continuous features and
sequence datasets of varying length for which the best network architecture is not
obvious.

1 Introduction

Sum-product networks (SPNs) were introduced as a new type of deep representation [13] equivalent
to arithmetic circuits [3]. They distinguish themselves from other types of neural networks by
several desirable properties: 1) The quantities computed by each node can be clearly interpreted as
(un-normalized) probabilities. 2) SPNs can represent the same discrete distributions as Bayesian and
Markov networks [19] while ensuring that exact inference2 has linear complexity with respect to
the size of the network. 3) SPNs are generative models that naturally handle arbitrary queries with
missing data while allowing the inputs and outputs to vary.

There is a catch: these nice properties arise only when the structure of the network satisfies the
conditions of decomposability and completeness [13]. Hence, it is not easy to specify sum-product
networks by hand. In particular, fully connected networks typically violate those conditions. While
this may seem like a major drawback, the benefit is that researchers have been forced to develop
structure learning techniques to obtain valid SPNs that satisfy those conditions [4, 7, 12, 9, 16, 1, 18,
14, 10]. In deep learning, feature engineering has been replaced by architecture engineering, however
this is a tedious process that many practitioners would like to automate. Hence, there is a need for
scalable structure learning techniques.

∗Equal contribution, first author was selected based on a coin flip
2Most types of inference are tractable except for marginal MAP inference, which is still intractable for SPNs.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

To that effect, we propose a new online structure learning technique for feed-forward and recurrent
SPNs [10]. The approach starts with a network structure that assumes that all features are independent.
This network structure is then updated as a stream of data points is processed. Whenever a non-
negligible correlation is detected between some features, the network structure is updated to capture
this correlation. The approach is evaluated on several large benchmark datasets, including sequence
data of varying length.

2 Background

Poon and Domingos presented SPNs as a new type of deep architecture consisting of a rooted
acyclic directed graph with interior nodes that are sums and products while the leaves are tractable
distributions, including Bernoulli distributions for discrete SPNs and Gaussian distributions for
continuous SPNs. Each edge emanating from sum nodes is labeled with a non-negative weight w. An
SPN encodes a function f(X = x) that takes as input a variable assignment X = x and produces an
output at its root. This function is defined recursively at each node i as follows:

fi(X = x) =


Pr(Xi = xi) if isLeaf(i)∑

j wjfchildj(i)(x) if isSum(i)∏
j fchildj(i)(x) if isProduct(i)

Here, Xi = xi denotes the variable assignment restricted to the variables contained in the leaf i. If
none of the variables in leaf i are instantiated by X = x then Pr(Xi = xi) = Pr(∅) = 1. If leaf i
contains continuous variables, then Pr(Xi = xi) should be interpreted as pdf(Xi=xi).

An SPN is a neural network in the sense that each interior node can be interpreted as computing a
linear combination (for sum node) or non-linear combination (for product node) of its children. An
SPN can also be viewed as encoding a joint distribution over the random variables in its leaves when
the network structure satisfies certain conditions. These conditions are often defined in terms of the
notion of scope.
Definition 1 (Scope). The scope(i) of a node i is the set of variables that are descendants of i.

A sufficient set of conditions to ensure that the SPN encodes a valid joint distribution includes:
Definition 2 (Completeness [2, 13]). An SPN is complete if all children of the same sum node have
the same scope.
Definition 3 (Decomposability [2, 13]). An SPN is decomposable if all children of the same product
node have disjoint scopes.

Decomposability allows us to interpret product nodes as computing factored distributions with respect
to disjoint sets of variables, which ensures that the product is a valid distribution over the union of
the scopes of the children. Similarly, completeness allows us to interpret sum nodes as computing a
mixture of the distributions encoded by the children since they all have the same scope. Each child is
a mixture component with mixture probability proportional to its weight. Hence, in complete and
decomposable SPNs, the sub-SPN rooted at each node can be interpreted as encoding an unnormalized
joint distribution over its scope. We can use the function f to answer inference queries with respect
to the joint distribution encoded by the entire SPN: Marginal queries: Pr(X = x) = froot(X=x)

froot(∅) ;

conditional queries: Pr(X=x|Y=y) = froot(X=x,Y=y)
froot(Y=y) .

Unlike most neural networks that can answer queries with fixed inputs and outputs only, SPNs can
answer conditional inference queries with varying inputs and outputs simply by changing the set of
variables that are queried (outputs) and conditioned on (inputs). Furthermore, SPNs can be used to
generate data by sampling from the joint distributions they encode. This is achieved by a top-down
pass through the network. Starting at the root, each child of a product node is followed, a single child
of a sum node is sampled according to the unnormalized distribution encoded by the weights of the
sum node and a variable assignment is sampled in each leaf that is reached. This is particularly useful
in natural language generation tasks and image completion tasks [13].

Note also that inference queries other than marginal MAP can be answered exactly in linear time with
respect to the size of the network since each query requires two evaluations of the network function f
and each evaluation is performed in a bottom-up pass through the network. This means that SPNs can

2

also be viewed as a special type of tractable probabilistic graphical model, in contrast to Bayesian and
Markov networks for which inference is #P-hard [17]. Any SPN can be converted into an equivalent
bipartite Bayesian network without any exponential blow up, while Bayesian and Markov networks
can be converted into equivalent SPNs at the risk of an exponential blow up [19]. In practice, we do
not convert probabilistic graphical models (PGMs) into SPNs since we typically learn SPNs directly
from data. The tractable nature of SPNs ensures that the resulting distribution permits exact tractable
inference.

Melibari et al. [10] proposed dynamic SPNs (a.k.a. recurrent SPNs) to model sequence data of
variable length. A recurrent SPN consists of a bottom network that feeds into a template network
(repeated as many times as needed) that feeds into a top network. The template network describes
the recurrent part of the network. Inputs to the template network include data features and interface
nodes with the earlier part of the network while the output consists of nodes that interface with the
previous and subsequent part of the network. Melibari et al. [10] describe an invariance property for
template networks that ensures that the resulting recurrent SPN encodes a valid distribution.

2.1 Parameter Learning

The weights of an SPN are its parameters. They can be estimated by maximizing the likelihood
of a dataset (generative training) [13] or the conditional likelihood of some output features given
some input features (discriminative training) by stochastic gradient descent (SGD) [6]. Since SPNs
are generative probabilistic models where the sum nodes can be interpreted as hidden variables
that induce a mixture, the parameters can also be estimated by the Expectation Maximization
schema (EM) [13, 11]. Zhao et al. [21] provides a unifying framework that explains how likelihood
maximization in SPNs corresponds to a signomial optimization problem where SGD is a first order
procedure, sequential monomial approximations are also possible and EM corresponds to a concave-
convex procedure that converges faster than other techniques. Since SPNs are deep architectures,
SGD and EM suffer from vanishing updates and therefore ”hard” variants have been proposed to
remedy this problem [13, 6]. By replacing all sum nodes by max nodes in an SPN, we obtain
a max-product network where the gradient is constant (hard SGD) and latent variables become
deterministic (hard EM). It is also possible to train SPNs in an online fashion based on streaming
data [9, 15, 20, 8]. In particular, it was shown that online Bayesian moment matching [15, 8] and
online collapsed variational Bayes [20] perform much better than SGD and online EM.

2.2 Structure Learning

Since it is difficult to specify network structures for SPNs that satisfy the decomposability and
completeness properties, several automated structure learning techniques have been proposed [4, 7,
12, 9, 16, 1, 18, 14, 10]. The first two structure learning techniques [4, 7] are top down approaches
that alternate between instance clustering to construct sum nodes and variable partitioning to construct
product nodes. We can also combine instance clustering and variable partitioning in one step with
a rank-one submatrix extraction by performing a singular value decomposition [1]. Alternatively,
we can learn the structure of SPNs in a bottom-up fashion by incrementally clustering correlated
variables [12]. These algorithms all learn SPNs with a tree structure and univariate leaves. It is
possible to learn SPNs with multivariate leaves by using a hybrid technique that learns an SPN in a
top down fashion, but stops early and constructs multivariate leaves by fitting a tractable probabilistic
graphical model over the variables in each leaf [16, 18]. It is also possible to merge similar subtrees
into directed acyclic graphs in a post-processing step to reduce the size of the resulting SPN [14].

In the context of recurrent SPNs, Melibari et al. [10] describe a search-and-score structure learning
technique that does a local search over the space of template network structures while using scoring
based on log likelihood computations.

So far, all these structure learning algorithms are batch techniques that assume that the full dataset
is available and can be scanned multiple times. Lee et al. [9] describe an online structure learning
technique that gradually grows a network structure based on mini-batches. The algorithm is a variant
of LearnSPN [7] where the clustering step is modified to use online clustering. As a result, sum
nodes can be extended with more children when the algorithm encounters a mini-batch that exhibits
additional clusters. Product nodes are never modified after their creation. This technique requires

3

large mini-batches to detect the emergence of new clusters and it assumes fixed length data so it is
unable to generate structures for recurrent SPNs.

In this paper, we describe the first online structure learning technique for feed-forward and recurrent
SPNs. It is more accurate and it scales better than the offline search-and-score technique introduced
previously [10]. It also scales better than the technique that uses online clustering [9] while working
with small mini-batches and recurrent SPNs.

3 Online Learning

To simplify the exposition, we assume that the leaf nodes have Gaussian distributions (though we
show results in the experiments with Bernoulli distributions and it is straightforward to generalize to
other distributions). A leaf node may have more than one variable in its scope, in which case it follows
a multivariate Gaussian distribution. Suppose we want to model a probability distribution over a
d-dimensional space. The algorithm starts with a fully factorized joint probability distribution over
all variables, p(x) = p(x1, x2, . . . , xd) = p1(x1)p2(x2) · · · pd(xd). This distribution is represented
by a product node with d children, the ith of which is a univariate distribution over xi. Initially, we
assume that the variables are independent, and the algorithm will update this probability distribution
as new data points are processed.

Given a mini-batch of data points, the algorithm passes the points through the network from the root
to the leaf nodes and updates each node along the way. This update includes two parts: i) updating
the parameters of the SPN, and ii) updating the structure of the network.

3.1 Parameter update

There are two types of parameters in the model: weights on the branches under a sum node, and
parameters for the Gaussian distribution in a leaf node. We use an online version of the hard
EM algorithm to update the network parameters [13]. We prove that the algorithm monotonically
improves the likelihood of the last data point. We also extend it to work for Gaussian leaf nodes. The
pseudocode of this procedure (Alg. 1) is provided in the supplementary material.

Every node in the network has a count, nc, initialized to 1. When a data point is received, the
likelihood of this data point is computed at each node. Then the parameters of the network are
updated in a recursive top-down fashion by starting at the root node. When a sum node is traversed,
its count is increased by 1 and the count of the child with the highest likelihood is increased by 1. In
a feed-forward network, the weight ws,c of a branch between a sum node s and one of its children
c is estimated as ws,c = nc

ns
where ns is the count of the sum node and nc is the count of the child

node. We recursively update the subtree of the child with the highest likelihood.

We recursively update the subtrees rooted at each child of a product node. For Gaussian leaf nodes,
we keep track of the empirical mean vector µ and covariance matrix Σ for the variables in their scope.
When a leaf node with a current count of n receives a batch of m data points x(1), x(2), . . . , x(m),
the empirical mean µ and covariance Σ are updated according to the following equations:

µ′i =
1

n+m

(
nµi +

m∑
k=1

x
(k)
i

)
(1)

Σ′i,j =
1

n+m

[
nΣi,j +

m∑
k=1

(
x
(k)
i − µi

)(
x
(k)
j − µj

)]
− (µ′i − µi)(µ

′
j − µj)

where i and j index the variables in the leaf node’s scope.

The update of these sufficient statistics can be seen as locally maximizing the likelihood of the data.
The empirical mean and covariance of the Gaussian leaves locally increase the likelihood of the
data that reach that leaf. Similarly, the count ratios used to set the weights under a sum node locally
increase the likelihood of the data that reach each child. We prove this result below.

Theorem 1. Let θs be the set of parameters of an SPN s, and let fs(·|θs) be the probability density
function of the SPN. Given an observation x, suppose the parameters are updated to θ′s based on the
running average update procedure, then fs(x|θ′s) ≥ fs(x|θs).

4

Proof. We will prove the theorem by induction. First suppose the SPN is just one leaf node. In
this case, the parameters are the empirical mean and covariance, which is the maximum likelihood
estimator for a Gaussian distribution. Suppose θ consists of the parameters learned using n data
points x(1), . . . , x(n), and θ′ consists of the parameters learned using the same n data points and an
additional observation x. Then we have

fs(x|θ′s)
n∏

i=1

fs(x
(i)|θ′s) ≥ fs(x|θs)

n∏
i=1

fs(x
(i)|θs) ≥ fs(x|θs)

n∏
i=1

fs(x
(i)|θ′s) (2)

Thus we get fs(x|θ′s) ≥ fs(x|θs). Suppose we have an SPN s where each child SPN t satisfies the
property ft(x|θ′t) ≥ ft(x|θt). If the root of s is a product node, then fs(x|θ′s) =

∏
t ft(x|θ′t) ≥∏

t ft(x|θt) = fs(x|θs). Now suppose the root of s is a sum node. Let nt be the count of child t,
and let u = arg maxt ft(x|θt) be the child with the highest count. Then we have

fs(x|θ′s) =
1

n+ 1

(
fu(x|θ′u) +

∑
t

ntft(x|θ′t)

)
≥ 1

n+ 1

(
fu(x|θu) +

∑
t

ntft(x|θt)

)

≥ 1

n+ 1

(∑
t

nt
n
ft(x|θt) +

∑
t

ntft(x|θt)

)
=

1

n

∑
t

ntft(x|θt) = fs(x|θs)

3.2 Structure update

The simple online parameter learning technique described above can be easily extended to enable
online structure learning. In the supplementary material, Alg. 2 describes the pseudocode of the
resulting procedure called oSLRAU (online Structure Learning with Running Average Update).
Similar to leaf nodes, each product node also keeps track of the empirical mean vector and empirical
covariance matrix of the variables in its scope. These are updated in the same way as the leaf nodes.

Initially, when a product node is created using traditional structure learning, all variables in the scope
are assumed independent (see Alg. 3 in the supplementary material). As new data points arrive at a
product node, the covariance matrix is updated, and if the absolute value of the Pearson correlation
coefficient between two variables are above a certain threshold, the algorithm updates the structure so
that the two variables become correlated in the model.

Figure 1: Depiction of how correlations between variables are introduced. Left: original product node with
three children. Middle: combine Child1 and Child2 into a multivariate leaf node (Alg. 4). Right: create a mixture
to model the correlation (Alg. 5).

We correlate two variables in the model by combining the child nodes whose scopes contain the
two variables. The algorithm employs two approaches to combine the two child nodes: a) create
a multivariate leaf node (Alg. 4 in the supplementary material), or b) create a mixture of two
components over the variables (Alg. 5 in the supplementary material). These two processes are
depicted in Figure 1. On the left, a product node with scope x1, . . . , x5 originally has three children.
The product node keeps track of the empirical mean and covariance for these five variables. Suppose
it receives a mini-batch of data and updates the statistics. As a result of this update, x1 and x3 now
have a correlation above the threshold. In the middle of Figure 1, the algorithm combines the two
child nodes that have x1 and x3 in their scope, and turns them into a multivariate leaf node. Since the
product node already keeps track of the mean and covariance of these variables, we can simply use
those statistics as the parameters for the new leaf node.

Another way to correlate x1 and x3 is to create a mixture, as shown in Figure 1(right). The mixture
has two components. The first contains the original children of the product node that contain x1 and
x3. The second component is a new product node, which is again initialized to have a fully factorized

5

distribution over its scope (see Alg. 3 in the supplementary material). The mini-batch of data points
are then passed down the new mixture to update its parameters. Although the children are drawn like
leaf nodes in the diagrams, they can in fact be entire subtrees. Since the process does not involve the
parameters of a child, it works the same way if some of the children are trees instead of single nodes.

The technique chosen to induce a correlation depends on the number of variables in the scope. The
algorithm creates a multivariate leaf node when the combined scope of the two children has a number
of variables that does not exceed some threshold and if the total number of variables in the problem
is greater than this threshold, otherwise it creates a mixture. Since the number of parameters in
multivariate Gaussian leaves grows at a quadratic rate with respect to the number of variables, it is not
advised to consider multivariate leaves with too many variables. In contrast, the mixture construction
increases the number of parameters at a linear rate.

To simplify the structure, if a product node ends up with only one child, it is removed from the
network, and its only child is joined with its parent. Similarly, if a sum node ends up being a child of
another sum node, then the child sum node can be removed, and all its children are promoted one
layer up. We also prune subtrees periodically when the count at a node does not increase for several
mini-batches. This helps to prevent overfitting and to adapt to changes in non-stationary settings.

Note that this structure learning technique does a single pass through the data and therefore is entirely
online. The time and space complexity of updating the structure after each data point is linear in the
size of the network (i.e., # of edges) and quadratic in the number of features (since product nodes
store a covariance matrix that is quadratic in the size of their scope). The algorithm also ensures that
the decomposability and completeness properties are preserved after each update.

3.3 Updates in Recurrent Networks

We can generalize the parameter and structure updates described in the previous sections to handle
recurrent SPNs as follows. We start with a bottom network that has k fully factored distributions.
The template network initially has k interface input product nodes, an intermediate layer of k sum
nodes and an output interface layer of k product nodes. Fig. 2(top) shows an initial template network
when k = 2. The top network consists of a single sum node linked to the output interface layer of the
template network. For the parameter updates, we unroll the recurrent SPN by creating as many copies
of the template network as needed to match the length of a data sequence. Fig. 2(bottom) shows an
unrolled recurrent SPN over 3 time steps. We use a single shared count for each node of the template
network even though template nodes are replicated multiple times. A shared count is incremented
each time a data sequence goes through its associated node in any copy of the template network.
Similarly, the empirical mean and covariance of each leaf in the template network are shared across
all copies of the template network.

Figure 2: Top: A generic template network with interface nodes drawn in red and leaf distributions drawn in
blue. Bottom: A recurrent SPN unrolled over 3 time steps.

6

Structure updates in recurrent networks can also be done by detecting correlations between pairs of
variables that are not already captured by the network. A single shared covariance matrix is estimated
at each product node of the template network. To circumvent the fact that the scope of a product node
will differ in each copy of the template network, we relabel the scope of each input interface node to
a single unique binary latent variable that takes value 1 when a data sequence traverses this node and
0 otherwise. These latent binary variables can be thought of as summarizing the information below
the input interface nodes of each copy of the template network. This ensures that the variables in each
copy of the template network are equivalent and therefore we can maintain a shared covariance matrix
at each product node of the template network. When a significant correlation is detected between the
variables in the scope of two different children of a product node, a mixture is introduced as depicted
in the right part of Fig. 1.

4 Experiments

We compare the performance of oSLRAU with other methods on both simple and larger data sets
with continuous variables. We begin this section by describing the data sets.

4.1 Synthetic Data

As a proof of concept, we test the algorithm on a synthetic dataset. We generate data from a
3-dimensional distribution

p(x1, x2, x3) = [0.25N(x1|1, 1)N(x2|2, 2) + 0.25N(x1|11, 1)N(x2|12, 2)

+ 0.25N(x1|21, 1)N(x2|22, 2) + 0.25N(x1|31, 1)N(x2|32, 2)]N(x3|3, 3)

where N(·|µ, σ2) is the normal distribution with mean µ and variance σ2. Therefore, the first two
dimensions x1 and x2 are generated from a Gaussian mixture with four components, and x3 is
independent of the other two variables.

(a) (b)

Figure 3: Learning the structure from the toy dataset using univariate leaf nodes after (a) 200 data points and (b)
500 data points. Blue dots are the data points from the toy dataset, and the red ellipses show diagonal Gaussian
components learned.

Starting from a fully factorized distribution, we would expect x3 to remain factorized after learning
from data. Furthermore, the algorithm should generate new components along the first two dimensions
as more data points are received since x1 and x2 are correlated. This is indeed observed in Figures 3a
and 3b, which show the structure learned after 200 and 500 data points. The variable x3 remains
factorized regardless of the number of data points seen, whereas more components are created for x1
and x2 as more data points are processed. Bottom charts in Figures 3a and 3b show the data points
along the first two dimensions and the Gaussian components learned. We observe that the algorithm
generates new components to model the correlation between x1 and x2 as it processes more data.

7

4.2 Large Continuous Datasets

We also tested oSLRAU’s combined parameter and structure updates on large real-world datasets with
continuous features (see supplementary material for details about each dataset). Table 1 compares the
average log-likelihood of oSLRAU to that of randomly generated networks and a modified version of
ILSPN [9] that we adapted to Gaussian SPNs. For a fair comparison we generated random networks
that are at least as large as the networks obtained by oSLRAU. Observe that oSLRAU achieves
higher log-likelihood than random networks since it effectively discovers empirical correlations and
generates a structure that captures those correlations. ILSPN ran out of memory for 3 problems where
it generated networks of more than 7.5 Gb. It underperformed oSLRAU on two other problems since
it never modifies its product nodes after creation and its online clustering technique is not suitable for
streaming data as it requires fairly large batch sizes to create new clusters.

Table 1: Average log-likelihood scores with standard error on large real-world data sets. The best results among
the online techniques (random, ILSPN, oSLRAU and RealNVP online) are highlighted in bold. Results for
RealNVP offline are also included for comparison purposes. ”−” indicates that ILSPN exceeded the memory
limit of 7.5 Gb.

Datasets Random ILSPN oSLRAU RealNVP Online RealNVP Offline
Voxforge -33.9 ± 0.3 —- -29.6 ± 0.0 -169.0 ± 0.6 -168.2 ± 0.8
Power -2.83 ± 0.13 -1.85 ± 0.02 -2.46 ± 0.11 -18.70 ± 0.19 -17.85 ± 0.22
Network -5.34 ± 0.03 -4.71 ± 0.16 -4.27 ± 0.04 -10.80 ± 0.02 -7.89 ± 0.05
GasSen -114 ± 2 —- -102 ± 4 -748 ± 99 -443 ± 64
MSD -538.8 ± 0.7 —- -531.4 ± 0.3 -362.4 ± 0.4 -257.1 ± 2.03
GasSenH -21.5 ± 1.3 -182.3 ± 4.5 -15.6 ± 1.2 -44.5 ± 0.1 44.2 ± 0.1

Table 2: Large datasets: comparison of oSLRAU with and without periodic pruning.
log-likelihood time (sec) SPN size (# nodes)

Dataset no pruning pruning no pruning pruning no pruning pruning
Power -2.46 ± 0.11 -2.40 ± 0.18 183 39 23360 5330
Network -4.27 ± 0.02 -4.20 ± 0.09 14 12 7214 5739
GasSen -102 ± 4 -130 ± 3 351 276 5057 1749
MSD -527.7 ± 0.28 -526.8 ± 0.27 74 72 1442 1395
GasSenH -15.6 ± 1.2 -17.7 ± 1.58 12 10 920 467

We also compare oSLRAU to a publicly available implementation of RealNVPwhich is a different
type of generative neural network used for density estimation [5]. Since the benchmarks include
a variety of problems from different domains and it is not clear which network architecture would
work best, we used a default 2-hidden-layer fully connected network. The two layers have the same
size. For a fair comparison, we used a number of nodes per layer that yields approximately the same
number of parameters as the SPNs. Training was done by stochastic gradient descent in TensorFlow
with a step size of 0.01 and mini-batch sizes that vary from 100 to 1500 depending on the size of
the dataset. We report the results for online learning (single iteration) and offline learning (when
validation loss stops decreasing). In this experiment, the correlation threshold was kept constant at
0.1. To determine the maximum number of variables in multivariate leaves, we utilized the following
rule: at most one variable per leaf if the problem has 3 features or less and then increase the maximum
number of variables per leaf up to 4 depending on the number of features. Further analysis on
the effects of varying the maximum number of variables per leaf is included in the supplementary
material. oSLRAU outperformed RealNVP on 5 of the 6 datasets. This can be explained by the
fact that oSLRAU learns a structure that is suited for each problem while RealNVP does not learn
any structure. Note that RealNVP may yield better results by using a different architecture than the
default of 2-hidden layers, however in the absence of domain knowledge this is difficult. Furthermore,
online learning with streaming data precludes an offline search over some hyperparameters such as
the number of layers and nodes in order to refine the architecture. Hence, the results presented in
Table 1 highlight the importance of an online learning technique such as oSLRAU to obtain a suitable
network structure with streaming data in the absence of domain knowledge.

Table 2 reports the training time (seconds) and the size (# of nodes) of the SPNs constructed for each
dataset by oSLRAU with and without periodic pruning. After every 1% of a dataset is processed,
subtrees that have not been updated in the last percent of the dataset are pruned. This helps to mitigate
overfitting while decreasing the size of the SPNs. The experiments were carried out on an Amazon

8

c4.xlarge machine with 4 vCPUs (high frequency Intel Xeon E5-2666 v3 Haswell processors) and
7.5 Gb of RAM. The times are short since oSLRAU does a single pass through the data.

Additional experiments are included in the supplementary material to evaluate the effect of the
hyperparameters. Additional empirical comparisons between oSLRAU and other techniques are also
presented in the supplementary material.

4.3 Nonstationary Generative Learning

Figure 4: Top row: sample images gener-
ated by SPN learned by oSLRAU without
pruning. Bottom: sample images generated
by SPN learned by oSLRAU with pruning
every 6000 images.

We evaluate the effectiveness of the periodic pruning tech-
nique to adapt to changes in a nonstationary environment
by feeding oSLRAU with a stream of 50,000 images from
the MNIST dataset ordered by their label from 0 to 9. The
bottom row of Fig. 4 shows a sample of images generated
by the SPN (14,000 nodes) constructed by oSLRAU with
pruning after every 6000 images. As the last images in the
stream are 8 and 9, oSLRAU pruned parts of its network
related to other digits and it generated mostly 9’s. When
pruning is disabled, the top row of Fig. 4 shows that the
SPN (17,000 nodes) constructed by oSLRAU can generate
a mixture of digits as it learned to generate all digits.

4.4 Sequence Data

We also tested oSLRAU’s ability to learn the structure of
recurrent SPNs. Table 3 reports the average log likelihood
based on 10-fold cross validation with 5 sequence datasets.
The number of sequences, the average length of the sequences and the number of observed variables
is reported under the name of each dataset. We compare oSLRAU to the previous search-and-score
(S&S) technique [10] for recurrent SPNs (RSPNs) with Gaussian leaves as well as HMMs with
mixture of Gaussians emission distributions and recurrent neural networks (RNNs) with LSTM units
and output units that compute the mean of Gaussians. The number of interface nodes in RSPNs,
hidden states in HMMs and LSTM units in RNNs was bounded to 15. Parameter and structure
learning was performed for the RSPNs while only parameter learning was performed for the HMMs
and RNNs. The RNNs were trained by minimizing squared loss, which is mathematically equivalent
to maximizing the data likelihood when we interpret each output as the mean of a univariate Gaussian.
The variance of each Gaussian was optimized by a grid search in [0.01,0.1] in increments of 0.01 and
in [0.1,2] in increments of 0.1. We did this solely for the purpose of reporting the log likelihood of
the test data with RNNs, which would not be possible otherwise. oSLRAU outperformed the other
techniques on 4 of the 5 datasets. It learned better structures than S&S in less time. oSLRAU took
less than 11 minutes per dataset while S&S took 1 day per dataset.

Table 3: Average log-likelihood and standard error based on 10-fold cross validation. (#i,length,#oVars)
indicates the number of data instances, average length of the sequences and number of observed variables per
time step.

Dataset hillValley eegEye libras JapanVowels ozLevel
(#i,length,#oVars) (600,100,1) (14970,14,1) (350,90,1) (270,16,12) (2170,24,2)
HMM 286 ± 6.9 22.9 ± 1.8 -116.5 ± 2.2 -275 ± 13 -34.6 ± 0.3
RNN 205 ± 23 15.2 ± 3.9 -92.9 ± 12.9 -257 ± 35 -15.3 ± 0.8
RSPN+S&S 296 ± 16.1 25.9 ± 2.1 -93.5 ± 7.2 -241 ± 12 -34.4 ± 0.4
RSPN+oSLRAU 299.5 ± 18 36.9 ± 1.4 -83.5 ± 5.4 -231 ± 12 -30.1 ± 0.4

5 Conclusion and Future work

This paper describes a new online structure learning technique for feed-forward and recurrent SPNs.
oSLRAU can learn the structure of SPNs in domains for which it is unclear what might be a good
structure, including sequence datasets of varying length. This algorithm can also scale to large
datasets efficiently. We plan to extend this work by learning the structure of SPNs in an online and
discriminative fashion. Discriminative learning is essential to attain good accuracy in classification.

9

Acknowledgments

This research was funded by Huawei Technologies and NSERC. Prashant Doshi acknowledges
support from NSF grant #IIS-1815598.

References
[1] Adel, Tameem, Balduzzi, David, and Ghodsi, Ali. Learning the structure of sum-product

networks via an svd-based algorithm. In UAI, pp. 32–41, 2015.

[2] Darwiche, Adnan. A logical approach to factoring belief networks. KR, 2:409–420, 2002.

[3] Darwiche, Adnan. A differential approach to inference in Bayesian networks. JACM, 50(3):
280–305, 2003.

[4] Dennis, Aaron and Ventura, Dan. Learning the architecture of sum-product networks using
clustering on variables. In Advances in Neural Information Processing Systems, pp. 2033–2041,
2012.

[5] Dinh, Laurent, Sohl-Dickstein, Jascha, and Bengio, Samy. Density estimation using real nvp.
In International Conference on Learning Representations, 2017.

[6] Gens, Robert and Domingos, Pedro. Discriminative learning of sum-product networks. In NIPS,
pp. 3248–3256, 2012.

[7] Gens, Robert and Domingos, Pedro. Learning the structure of sum-product networks. In ICML,
pp. 873–880, 2013.

[8] Jaini, Priyank, Rashwan, Abdullah, Zhao, Han, Liu, Yue, Banijamali, Ershad, Chen, Zhitang,
and Poupart, Pascal. Online algorithms for sum-product networks with continuous variables. In
Conference on Probabilistic Graphical Models, pp. 228–239, 2016.

[9] Lee, Sang-Woo, Heo, Min-Oh, and Zhang, Byoung-Tak. Online incremental structure learning
of sum–product networks. In International Conference on Neural Information Processing
(ICONIP), pp. 220–227. Springer, 2013.

[10] Melibari, Mazen, Poupart, Pascal, Doshi, Prashant, and Trimponias, George. Dynamic sum
product networks for tractable inference on sequence data. In Conference on Probabilistic
Graphical Models, pp. 345–355, 2016.

[11] Peharz, Robert. Foundations of Sum-Product Networks for Probabilistic Modeling. PhD thesis,
Medical University of Graz, 2015.

[12] Peharz, Robert, Geiger, Bernhard C, and Pernkopf, Franz. Greedy part-wise learning of sum-
product networks. In Machine Learning and Knowledge Discovery in Databases, pp. 612–627.
Springer, 2013.

[13] Poon, Hoifung and Domingos, Pedro. Sum-product networks: A new deep architecture. In UAI,
pp. 2551–2558, 2011.

[14] Rahman, Tahrima and Gogate, Vibhav. Merging strategies for sum-product networks: From
trees to graphs. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, UAI, 2016.

[15] Rashwan, Abdullah, Zhao, Han, and Poupart, Pascal. Online and distributed bayesian moment
matching for parameter learning in sum-product networks. In Artificial Intelligence and
Statistics, pp. 1469–1477, 2016.

[16] Rooshenas, Amirmohammad and Lowd, Daniel. Learning sum-product networks with direct
and indirect variable interactions. In ICML, pp. 710–718, 2014.

[17] Roth, Dan. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302,
1996.

[18] Vergari, Antonio, Di Mauro, Nicola, and Esposito, Floriana. Simplifying, regularizing and
strengthening sum-product network structure learning. In ECML-PKDD, pp. 343–358. 2015.

[19] Zhao, Han, Melibari, Mazen, and Poupart, Pascal. On the relationship between sum-product
networks and bayesian networks. In International Conference on Machine Learning, pp.
116–124, 2015.

10

[20] Zhao, Han, Adel, Tameem, Gordon, Geoff, and Amos, Brandon. Collapsed variational inference
for sum-product networks. In ICML, 2016.

[21] Zhao, Han, Poupart, Pascal, and Gordon, Geoffrey J. A unified approach for learning the
parameters of sum-product networks. In Advances in Neural Information Processing Systems,
pp. 433–441, 2016.

11

