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Abstract

In this paper, we consider online F-measure optimization (OFO). Unlike tra-
ditional performance metrics (e.g., classification error rate), F-measure is non-
decomposable over training examples and is a non-convex function of model
parameters, making it much more difficult to be optimized in an online fashion.
Most existing results of OFO usually suffer from high memory/computational
costs and/or lack statistical consistency guarantee for optimizing F-measure at
the population level. To advance OFO, we propose an efficient online algorithm
based on simultaneously learning a posterior probability of class and learning
an optimal threshold by minimizing a stochastic strongly convex function with
unknown strong convexity parameter. A key component of the proposed method
is a novel stochastic algorithm with low memory and computational costs, which
can enjoy a convergence rate of Õ(1/

√
n) for learning the optimal threshold under

a mild condition on the convergence of the posterior probability, where n is the
number of processed examples. It is provably faster than its predecessor based on a
heuristic for updating the threshold. The experiments verify the efficiency of the
proposed algorithm in comparison with state-of-the-art OFO algorithms.

1 Introduction
A learning algorithm is to optimize a certain performance metric defined over a set or population of
examples. Online learning [18, 28, 4, 10] is a paradigm in which an algorithm alternatively makes
prediction on a received data and then updates the model given the feedback of prediction to optimize
a target performance metric. It has attracted tremendous attention due to its efficiency in handling
large-scale and/or streaming data, and has been actively investigated for decades. While many studies
are devoted to learning with traditional performance metrics (e.g., classification error rate), there
has also been an increasing interest in designing efficient online learning algorithms to maximize F-
measure for tackling large-scale streaming data or by one pass of large-scale batch data [3, 9, 14, 23].
This is because F-measure is more suited for imbalanced classification data because it enforces a
better balance between performance on the rare class and the dominating class. Imbalanced data can
be found in many applications, e.g., medical diagnostics [13], spam email detection [20], malicious
URL detection [27], etc.

Online F-measure optimization is much more challenging than traditional online learning with point-
wise loss functions since F-measure is non-decomposable over training examples and is a non-convex
function of model parameters. Nevertheless, several previous works have made efforts to tackle
this difficult problem [3, 9, 14, 23], which fall into three categories. The first category is based
on minimizing a surrogate loss function or maximizing a surrogate reward function in an online
fashion. This type of approaches usually has large memory costs and/or lacks statistical consistency
for F-measure due to that the consistency/calibration of surrogate loss of F-measure is not clear.
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Table 1: Comparison with Existing Work of Online F-measure Optimization. The comparison is
based on fixing the total number of processed examples to be n, where d is the dimensionality of data,
m > 0 is a parameter of the referred algorithm, and α > 0. Comp. costs is short for computational
costs.

Target of Convergence Analysis Convergence Result Consistency Memory Costs Comp. Costs
[9] Empirical Structural Surrogate Loss O(1/n1/4) No O(

√
nd) O(nd)

[14] Surrogate F-measure O(1/
√
n) No O(d) O(nd)

[23] Cost-sensitive loss/F-measure O(1/
√
n)/O(1/m+ 1/

√
n) Yes (iff m = nα) O(md) O(mnd)

[3] Optimal Threshold/F-measure asymptotic/asymptotic Yes O(d) O(nd)

This work Optimal Threshold/F-measure Õ(1/
√
n)/asymptotic Yes O(d) O(nd)

The second category of approaches leverages the characterization that F-measure optimization is
equivalent to a cost-sensitive loss minimization and uses online learning algorithms for minimizing
a cost-sensitive loss. However, the optimal costs in this characterization depend on the optimal
F-measure, which makes this type of approaches suffer from a large computational cost for tuning or
searching the optimal costs. The third family of methods is based on a result that the optimal classifier
for maximizing the F-measure can be achieved by thresholding the posterior class probability. Then,
the problem reduces to learning the optimal threshold and the posterior probability incrementally.
Online learning of the posterior probability can implemented by minimizing calibrated surrogate loss
functions (e.g., logistic loss). However, the challenge of this type of approach lies at how to learn the
optimal threshold on-the-fly.

In this paper, we address this challenge (online learning of the optimal threshold) in an elegant
way. In particular, we cast the problem of learning the optimal threshold as stochastic strongly convex
optimization. Nevertheless, the existing online gradient descent method with Õ(1/n) convergence
for minimizing strongly convex functions is not directly applicable. The reason is that the strong
convexity parameter is unknown and unbiased stochastic gradient is not available. The signifi-
cance of this work is to address these challenges by a new design of online algorithm and novel high
probability analysis of the proposed algorithm. Our main contributions are summarized below:

• We propose a Fast Online F-measure Optimization (FOFO) with a novel component for learning
the optimal threshold for a probabilistic binary classifier. The proposed algorithm has low memory
and computational costs.

• We prove an Õ(1/
√
n) 2 convergence rate for learning the optimal threshold and the consistency

of F-measure optimization at the population level under a point-wise convergence condition of
learning the posterior probability. It is provably faster than its predecessor [3] that updates the
threshold based on a heuristic.

• We conduct extensive experiments comparing the proposed algorithm with existing algorithms
in the three categories. Experimental results show that FOFO has much better online and testing
performance than other algorithms especially on highly imbalanced datasets.

2 Related Work
This work is motivated by addressing the deficiencies of previous algorithms of OFO and is also built
on existing results for F-measure optimization. In this section, we will highlight them. As mentioned
before previous OFO algorithms can be organized into three categories. In review of related work,
we focus on the F-measure optimization part, though some of them also include contributions for
optimizing other non-decomposable metrics (e.g., AUC, Precision) [9, 14, 23].

Two representative algorithms in the first category are proposed in [9, 14]. In particular, Kar et al. [9]
developed an online gradient descent method for minimizing structural surrogate loss, which was
motivated by a batch-learning method for optimizing the structural surrogate loss [7]. The authors
of [9] established a convergence rate for minimizing the empirical structural surrogate loss in the order
of O(1/n1/4), where n is the total number of processed examples. One deficiency of their algorithm
is the large-memory costs due to that it needs to maintainO(

√
n) examples for computing the gradient

of the structural surrogate loss for each update of the model parameters. Narasimhan et al. [14]
addressed the issue of high-memory cost by optimizing a surrogate F-measure that is defined based
on surrogate reward functions for approximating true-positive and true-negative rate. They leveraged

2The Õ(·) notation hides logarithmic factors. This convergence rate is implied by a convergence rate of
Õ(1/n) for minimizing the involved strongly convex function.
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the pseudo-linear property of the (surrogate) F-measure and developed an alternate-maximization
algorithms for optimizing the surrogate F-measure, which has a stochastic version called STAMP
with a convergence rate of O(1/

√
n). However, their stochastic algorithm is not designed for online

learning where online performance is important. In particular, their algorithm alternates between
two stages with one stage updating the models using received examples and another stage updating
the so-called challenge level using received examples. In contrast, our algorithm simultaneously
updating the probabilistic classifier and its threshold for making predications, making it more suitable
for online learning. Another deficiency of both works [9, 14] is the lack of statistical consistency of
F-measure optimization at the population level.

A related algorithm in the second category of OFO is proposed in [23], which is based on minimizing
cost-sensitive loss. It is motivated by that F-measure maximization is equivalent to a cost-sensitive
error minimization that consists of a weighted sum of false positive and false negative [16]. Neverthe-
less, the optimal weight is dependent on the optimal F-measure and thus is not available. To tackle
the unknown optimal weight, Yan et al. [23] proposed to learn multiple cost-sensitive classifiers
corresponding to multiple settings of the weight. For online prediction, they also maintain and update
selection probabilities of the multiple classifiers. At each iteration, the algorithm selects one classifier
for making prediction and updates all classifiers upon receiving the label information of received
data. As a result, their algorithm suffers from high memory and computational costs. They proved a
convergence result for F-measure optimization by utilizing the fact that cost-sensitive surrogate loss
is calibrated [19]. Nevertheless, the consistency of F-measure optimization requires the number of
maintained classifiers (denoted by m in Table 1) to be very large.

Recently, Busa-Fekete et al. [3] proposed a remarkably simple OFO algorithm, which belongs to
the third category. It is based on a fact that optimal F-measure can be achieved by thresholding the
true posterior probability of positive class [24, 15]. Hence, an online algorithm for updating the
model of the posterior probability and updating the threshold is developed in [3]. Their update for the
threshold is based on a heuristic by setting the threshold as half of the F-measure computed on the
historical examples. This is motivated by fact established in [26] that the optimal threshold for the
true posterior probability is half of the optimal F-measure. However, it is generally not true that for
any probabilistic classifier the optimal threshold is half of its F-measure. As a result, they can only
prove asymptotic convergence (with n→∞) for learning the optimal threshold even using the true
posterior probability at each iteration. In contrast, we overcome this shortcoming by learning the
optimal threshold through solving a strongly convex optimization problem. With careful design and
analysis of the proposed algorithm, we are able to prove a convergence rate of Õ(1/

√
n) for learning

the optimal threshold under a mild condition for learning the posterior class probability.

We note that the consistency of F-measure optimization is an important concern for the design and
analysis of OFO algorithm [15]. It requires that given infinite amount of data, the learned classifier
should achieve the best F-measure at the population level. As a summary, we present a quick
comparison between this work and related studies in Table 1 from various perspectives, including
theoretical convergence results, consistency of F-measure optimization, memory and computational
costs, where linear models are assumed for different algorithms in order to compare the memory and
computational costs. Finally, we emphasize that although there are some batch-learning based F-
measure optimization algorithms [15, 24], the comparison in this paper focuses on online algorithms.

3 Preliminaries and Notations
Let z = (x, y) denote a random data, where x ∈ X represents the feature vector and y ∈ {1, 0}
represents the binary class label. Let Z = X × {1, 0} denote the domain of the data. We assume z
follows an unknown distribution P , and denote the marginal distribution of the feature x by µ(x). We
denote the probability of positive class by π = Pr(y = 1), and the true posterior probability of the
positive class by η(x) = Pr(y = 1|x), and thus we have π =

∫
x∈X η(x)dµ(x). Since we assume

the received examples follow a distribution, in the sequel we use online gradient descent (OGD) and
stochastic gradient descent (SGD) interchangeably.

Let F = {f : X → {1, 0}} be the set of all binary classifiers on X . The F-measure (in particular F1

measure) of f at the population level is defined as

F (f) =
2
∫
X η(x)f(x)dµ(x)∫

X η(x)dµ(x) +
∫
X f(x)dµ(x)

. (1)
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Denote by F∗ = arg maxf∈F F (f). Let G = {g : X → [0, 1]} denote a set of probabilistic classifier
that assigns to any example x a probability that it belongs to the positive class. It induces a family of
thresholded binary classifiersH = {gθ(x) := I[g(x)≥θ]} ⊆ F , where I is an indicator function, and
θ ∈ [0, 1] is a threshold.

It was shown that the optimal binary classifier that maximizes the F-measure at the population level
can be achieved by thresholding the true posterior probability η(x), i.e., ηθ(x) = I[η(x)≥θ] [24, 15].
As a result, we have maxf∈F F (f) = maxθ∈[0,0.5] F (ηθ). This reduces the problem of F-measure
optimization into two sub-problems: learning the posterior probability η(x) and learning the optimal
threshold. The best threshold θ∗ that maximizes F (ηθ) has a relationship with the optimal F-measure,
i.e., θ∗ = F∗/2 [26]. It also implies that the best optimal threshold θ∗ ∈ [0, 0.5].
Definition 1. An algorithm is said to be F-measure consistent if the learned classifier f satisfies
F∗ − F (f)

p−→ 0, as n→∞, where
p−→ denotes convergence in probability.

LetW = [0, 0.5] and B(θ0, r) = {θ : |θ − θ0| ≤ r}. Denote by ΠW [θ] by a projection of θ into the
domainW . Denote by Xθ = {x ∈ X : η(x) ≥ θ} for any θ ∈ [0, 0.5] and by ρθ =

∫
x∈Xθ dµ(x).

4 Fast Online F-measure Optimization Algorithm
From the discussion above, we can cast OFO into two sub-problems, i.e., online learning of the
posterior probability and online learning of the optimal threshold. Let us first discuss the first sub-
problem and then focus on the second sub-problem. For the first sub-problem, we assume that there
exists an online algorithm A that can incrementally learn the posterior probability. To better illustrate
this, let us consider a scenario that the true posterior probability is specified by a generalized linear
model, i.e., with an appropriate feature mapping φ(x) ∈ Rd there exists w∗ ∈ Rd such that

η(x) = Pr(y = 1|x) =
1

1 + exp(−w>∗ φ(x))
. (2)

It is not difficult to show that the model parameter w∗ can be learned by minimizing the expected
logistic loss (see supplement), i.e.,

w∗ ∈ arg min
w∈Rd

L(w) , Ex,y log(1 + exp(−(2y − 1)w>φ(x))). (3)

Therefore, one can use existing online learning algorithms (e.g., SGD [28, 17]) to learn w∗. To this
end, we denote by

wt = A(wt−1,xt, yt), (4)

the update of an online algorithm that updates the model parameter wt−1 iteratively, where t =
1, . . . , n. In the next section, we discuss some choices of the online algorithm A and its implication
for the convergence result. At the t-th iteration (before receiving the t-th example), let η̂t(x) denote
an estimate of the posterior probability. For example of generalized linear model considered above,
η̂t(x) can be computed by

η̂t(x) = 1/(1 + exp(−w̄>t−1φ(x))), (5)

where w̄t−1 is a solution computed based on w0, . . . ,wt−1 that has a convergence guarantee (please
see Assumption 1 and its discussion in next section). It is notable that online learning of the posterior
probability is also used in [3].

Next, we focus on online learning of the optimal threshold θ∗. According to [26], θ∗ is achieved at
the unique root of

q(θ) = πθ − Ex [(η(x)− θ)+] ,

where q(θ) is continuous and strictly increasing, and the function (·)+ is defined as (x)+ = max(x, 0).
Instead, we will cast the problem of learning the optimal threshold θ∗ as the following strongly convex
optimization problem.
Lemma 1. θ∗ is the unique optimizer of the following strongly convex function

min
θ∈[0,0.5]

Q(θ) ,
1

2
Ex

[
(η(x)− θ)2+

]
+

1

2
πθ2. (6)

Indeed, Q(θ) is a σ-strongly convex function with σ = π + minθ∈[0,0.5] ρθ.
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Algorithm 1 FOFO(n)

1: Set w0 = 0, θ̂(0) = 0, m = b 12 log2
2n

log2 n
c − 1, n0 = bn/mc, π̂0 = 0, R0 = 0.5.

2: for k = 1, . . . ,m do

3: Set γk = Rk−1√
10n0

, Rk = Rk−1/2

4:
[
w(k), θ̂(k), π̂(k)

]
= SFO(w(k−1), θ̂(k−1), π̂(k−1), n0, γk, Rk−1, (k − 1)n0)

5: end for

Algorithm 2 SFO(w, θ, π̂, T, γ,R, T0)

1: Initialize θ̄1 = θ1 = θ, π̂T0
= π̂, wT0

= w
2: for τ = 1, . . . , T do
3: Let t = τ + T0 be the global iteration index.
4: Receive an example xt
5: Compute η̂t(xt) according to (5)
6: if η̂t(xt) ≥ θ̄τ then
7: Make a prediction ŷt = 1
8: else
9: Make a prediction ŷt = 0

10: end if
11: Observe the label yt
12: π̂t = 1

t ((t− 1)π̂t−1 + I[yt=1])

13: θτ+1 = ΠW∩B(θ1,R)(θτ − γ∂Q̂t(θτ ))

14: θ̄τ+1 = 1
τ+1 (τ θ̄τ + θτ+1)

15: wt = A(wt−1,xt, yt)
16: end for
17: return wt, θ̄T+1, π̂t

The above lemma can be easily shown by noting that∇Q(θ) = q(θ). The strong convexity of Q(θ)
is also not difficult to prove (see supplement for details). The next lemma shows that if θ is closer to
θ∗ then F (ηθ) is closer to F∗, which further justifies our approach of learning the optimal threshold
by optimizing the strongly convex function Q(θ).

Lemma 2. ∀θ ∈ [0, 0.5], there exists c > 0 such that F∗ − F (ηθ) ≤ c|θ − θ∗|.
The proof of this lemma can be found in the supplement. However, there are several challenges for
minimizing Q(θ) to have a faster convergence. First, even an unbiased stochastic gradient of Q(θ)
is not available due to that η(x) is not given aprior. Only a noisy estimation of η̂t(x) is available
through the historical model parameters. Second, the strongly convex parameter σ ≥ π of Q(θ) is
unknown. Standard SGD method for minimizing a σ-strongly convex function with an Õ(1/(σn))
convergence rate on the objective value requires knowing the strong convexity parameter for setting
the step size. One may use historical examples y1, . . . , yt−1 to obtain a new estimate of π at each
iteration t and use it to set the step size. However, analysis of such an approach is difficult. Another
simple approach is to use a dedicated set of examples to obtain a lower bound of π and then use it to
set the step size. Nevertheless, such an approach could yield a large convergence error because the
lower bound of π could be very small especially when the data is highly imbalanced.

We address these issues by proposing a novel stochastic algorithm that does not require using the
strong convexity parameter to set the step size, and also can tolerate moderate noise in η̂t(x) to enjoy
a fast convergence rate of Õ(1/(σn)) for minimizing Q(θ). We present the Fast Online F-measure
Optimization (FOFO) in Algorithm 1 and Algorithm 2, where π̂t in Step 12 is the estimate of π
up to the t-th iteration, i.e., π̂t =

∑t
τ=1 yτ/t and Q̂t(θ) = 1

2 (η̂t(xt) − θ)2+ + 1
2 π̂tθ

2. It is worth
mentioning that the Step 5 and 15 in Algorithm 2 can be replaced by other online learners of the
posterior probability which are not necessarily restricted to the generalized linear model (2). The main
algorithm FOFO is presented in a way that facilitates the analysis. The updates of FOFO are divided
intom stages, where at each stage a stochastic F-measure optimization method (Algorithm 2) is called
for running n0 iterations. For each received example xt, the prediction ŷt is computed by thresholding
current estimate of posterior probability η̂t(xt) by the current value of θ. At each iteration of a
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stage k, we use the gradient of Q̂t(θ) to update θ with a constant step size γk and project it into
W ∩B(θ1, Rk−1), where θ1 is the initial solution of this stage and Rk−1 is a radius parameter. The
step-size γk and radius parameter Rk−1 are changed according to Step 3 in Algorithm 1. We remark
that the same multi-stage scheme (especially the setting ofm and n0) Algorithm 1 is due to [8], which
was also used in several stochastic optimization algorithms for solving different problems [11, 12].
However, the difference from these studies is that ∂Q̂t(θ) is not an unbiased stochastic gradient of
Q(θ).

5 Convergence and Consistency Results of FOFO

In this section, we further justify the proposed FOFO by presenting a convergence result of FOFO
for learning the optimal threshold θ∗ and a consistency result of FOFO for F-measure optimization.
Omitted proofs can be found in the supplement.

For simplicity of analysis, we let φ(x) = x and w.l.o.g assume that feature vectors are bounded by
a positive number κ, i.e., supx∈X ‖x‖2 ≤ κ. As mentioned in the last section that ∂Q̂t(θ) is not
an unbiased stochastic gradient of Q(θ). Nevertheless, we expect that ∂Q̂t(θ) is getting close to an
unbiased stochastic gradient of Q(θ) as η̂t(x) converges to η(x). To formalize this notion, we will
introduce the following assumption about convergence of the model for the posterior probability.

Assumption 1. Assume there exists an online algorithm A that learns the posterior probability at
a rate of 1/

√
t, i.e., by learning with t examples the error of learned posterior probability η̂t(·) is

maxx∈X |η̂t(x)− η(x)| ≤ O(1/
√
t) with high probability.

Remark: Please note that this is a high-level assumption without imposing any form of the poste-
rior probability. The assumed O(1/

√
t) rate for learning the posterior probability is the minimal

assumption for achieving an O(1/
√
n) rate of the learning the threshold. It is worth mentioning that

estimating the posterior probability can be considered as a special problem of statistical density esti-
mation, which has been studied in the literature with a convergence rate as fast as O(1/t) [25, 6, 21].
We provide a justification here for the considered generalized linear model (2), which is Lipchitz
continuous with respect to w. To this end, it suffices to assume that there exists an algorithm A as
in (4) that produces solutions w̄t converging to w∗ at a rate of O(1/

√
t) with high probability, i.e.,

we have ‖w̄t−w∗‖2 ≤ C′√
t

with high probability, where w̄t is a solution computed from w1, . . . ,wt

and C ′ is a problem-dependent value. This can be justified as following. Note that the objective
function L(w) in (3) is strongly convex for w in a compact domain if the data covariance matrix is
nonsingular [1]. Thus SGD method for strongly convex function using a suffix-averaging solution
w̄t = (w(1−α)t+1 + . . .+wt)/(αt) with α ∈ (0, 1) can have an O(log(1/δ)/t) convergence rate for
minimizing L(w), i.e., L(w̄t)− L(w∗) ≤ O(log(1/δ)/t) [17], which implies ‖w̄t −w∗‖2 ≤ C′√

t

with a high probability 1− δ for δ ∈ (0, 1) and C ′ = O(
√

log(1/δ)). When the convariance matrix
is not singular, by Corollary 7 of [22], a quadratic growth condition is satisfied and we can still get the
O(1/t) convergence for minimizing L(w) via accelerated stochastic subgradient method proposed
in [22]. Even though the strong convexity parameter of L(w) is not exploited, the stochastic approxi-
mation algorithm proposed in [2] with a constant step size also has an O(1/t) convergence rate of an
averged solution w̄t for minimizing L(w) with a large probability (e.g., 0.99). These results would
limply an O(1/

√
t) convergence for ‖w̄t −w∗‖ for an optimal solution w∗ ∈ arg minw∈W L(w).

In the following results, we will assume that maxx∈X |η̂t(x)− η(x)| ≤ O(
√

log(1/δ)/t) holds with
a high probability 1− δ. The results can be extended to the case that it holds with a large constant
probability.

We first state the convergence result of one stage of FOFO, i.e., SFO.

Theorem 2 (Convergence Result of SFO). Suppose Assumption 1 holds with high probability
1 − δ in the sense that maxx∈X |η̂t(x) − η(x)| ≤ Cκ

√
log(1/δ)/

√
t. If |θ1 − θ∗| ≤ R, running

Algorithm 2 for T -iterations with γ = R√
10T

, we have with probability at least 1− δ,

Q(θ̄T )−Q(θ∗) ≤
2
√

10R+R(20 + 4Cκ)
√

ln(12T/δ)√
T

.
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Remark: The above result indicates the FOFO has at least an O(1/
√
n) convergence for optimizing

Q(θ). The next theorem establishes a faster convergence Õ(1/n) by utilizing the above result and
the multi-stage scheme of FOFO.
Theorem 3 (Convergence Result of FOFO). Given δ ∈ (0, 1), under the same condition in Theo-
rem 2 and n is sufficiently large such that n > 100. Then with probability at least 1− δ,

Q(θ̂m)−Q(θ∗) ≤ Õ
(

log( 1
δ )

σn

)
.

Remark: Since Q(θ) is σ-strongly convex, the above result implies that |θ̂m − θ∗| ≤ Õ(1/(σ
√
n)).

Finally, by the convergence of θ̂m and η̂n(x), we can establish the consistency of FOFO for F-measure
optimization by using Proposition 13 in [15].
Theorem 4 (Consistency of F-measure Optimization). Suppose Assumption 1 holds, then FOFO
is F-measure consistent, i.e., the final binary classifier [η̂n(x) ≥ θ̂m] is F-measure consistent.

We would like to mention that for establishing the consistency of FOFO for F-measure optimization a
weaker assumption about the convergence of η̂t can be used. As long as maxx∈X |η̂t(x)− η(x)| ≤
O(1/tα) for some α > 0, a convergence result can be established for θ̂m, which implies the
consistency of FOFO for F-measure optimization by the Proposition 13 in [15].

Extension to Other Metrics. Before ending this section, we would like to mention that the proposed
method can be extended to other non-decomposable metrics such as Jaccard similarity coefficient
(JAC) and Fβ measure. We present more details in the supplement for interested readers.

6 Experiments
We present some experimental results in this section. We will compare with four baselines including
online learning with logistic loss using 0.5 for thresholding the posterior probability (referred as LR),
STAMP [14], OMCSL [23], and OFO [3]. The last three are representative algorithms from the three
categories. For LR, OFO and FOFO, we use the same SGD for learning the posterior probability by
minimizing the logistic loss. To be fair, we implement the STAMP algorithm with a logistic loss
based reward function, and also use logistic loss for OMCSL.

We evaluate the performance on 25 binary classification tasks from seven benchmark datasets
(covtype, webspam, a9a, ijcnn1, w8a, sensorless, protein). All the datasets involved are downloaded
from the LIBSVM repository [5]. It is notable that covtype, sensorless and protein are multi-class
datasets. We construct binary tasks following the scheme one vs others denoted by “X vs o" below.
Each dataset is divided into three parts (1:1:1) for online training, online validation and offline testing.
The validation data is used to select the best parameters by running the considered algorithms and
selecting the best parameters according to the final F-measure. In particular, for FOFO, OFO, and
LR, we tune the initial step parameter for learning the posterior probability in the range 2[−4:1:4].
For STAMP and OMCSL, the stepsize parameter is also tuned in 2[−8:1:4]. For OMCSL, we use 10
settings for the weights and learn 10 classifiers online. For each data, we repeat the experiments 10
times by running on 10 random shuffled data and report the average and variance. We will report
online performance (evaluation of predictions on historical examples) on online training data, and
offline performance by evaluating the final models on the testing data.

Due to limitation of space, we only report part of the results (complete results are included in the
supplement). The online performance (F-score vs iterations) is plotted in Figure 1 and 2 for covtype
datasets and other datasets. The F-measure vs running time s plotted in Figure 3 and 4 and the offline
testing performance are reported in the supplement. We can first consider the results on covtype.
From (a) to (f) in Figure 1 where p = x% denotes the percentage of positive examples, we organize
the data in the order of increasing imbalance. We can see that as data becomes more imbalanced, the
improvement of our algorithm FOFO over baselines becomes larger. On the datasets that are more
balanced (covtype 2 vs o, 1 vs o), the difference between FOFO and OFO is small, and they both
outperforms other baselines. When the datasets become highly imbalanced (covtype 6 vs o, 5 vs
o), the baseline LR becomes extremely worse, and the margin of FOFO over OFO becomes larger.
The comparison between FOFO and OFO verifies that the proposed method for learning the optimal
threshold converges faster as they share the same component for learning the posterior probability.
The comparison between FOFO and other baselines verify that the proposed method is better than
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Figure 1: Online Performance of F-measure for covtype dataset
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Figure 2: Online Performance of F-measure for other datasets

other categories of algorithms. The results on other datasets in Figure 2 also demonstrate that FOFO
is faster than OFO and other baselines especially for highly imbalanced data. The running time
results in Figure 3 and 4 also verify that the proposed FOFO algorithm is the most efficient.

7 Conclusions
In this paper, we proposed a fast online F-measure optimization algorithm with low memory and
computational costs by learning the optimal threshold for a probabilistic classifier. A novel stochastic
algorithm was proposed for learning the optimal threshold. We prove that the proposed algorithm
for learning of the optimal threshold has a convergence rate Õ(1/

√
n), and the proposed algorithm

enjoys F-measure consistency at the population level. Extensive experimental results comparing
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Figure 3: Online F-measure vs Running Time for covtype dataset
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Figure 4: Online F-measure vs Running Time for other datasets

with state-of-the-art online F-measure optimization algorithms also demonstrate the efficiency of the
proposed algorithm, especially on highly imbalanced datasets.
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