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Abstract

While recent developments in autonomous vehicle (AV) technology highlight
substantial progress, we lack tools for rigorous and scalable testing. Real-world
testing, the de facto evaluation environment, places the public in danger, and, due
to the rare nature of accidents, will require billions of miles in order to statistically
validate performance claims. We implement a simulation framework that can test
an entire modern autonomous driving system, including, in particular, systems
that employ deep-learning perception and control algorithms. Using adaptive
importance-sampling methods to accelerate rare-event probability evaluation, we
estimate the probability of an accident under a base distribution governing standard
traffic behavior. We demonstrate our framework on a highway scenario, acceler-
ating system evaluation by 2-20 times over naive Monte Carlo sampling methods
and 10-300P times (where P is the number of processors) over real-world testing.

1 Introduction

Recent breakthroughs in deep learning have accelerated the development of autonomous vehicles
(AVs); many research prototypes now operate on real roads alongside human drivers. While advances
in computer-vision techniques have made human-level performance possible on narrow perception
tasks such as object recognition, several fatal accidents involving AVs underscore the importance of
testing whether the perception and control pipeline—when considered as a whole system—can safely
interact with humans. Unfortunately, testing AVs in real environments, the most straightforward
validation framework for system-level input-output behavior, requires prohibitive amounts of time
due to the rare nature of serious accidents [49]. Concretely, a recent study [29] argues that AVs need
to drive “hundreds of millions of miles and, under some scenarios, hundreds of billions of miles
to create enough data to clearly demonstrate their safety.” Alteratively, formally verifying an AV
algorithm’s “correctness” [34, 2, 47, 37] is difficult since all driving policies are subject to crashes
caused by other drivers [49]. It is unreasonable to ask that the policy be safe under all scenarios.
Unfortunately, ruling out scenarios where the AV should not be blamed is a task subject to logical
inconsistency, combinatorial growth in specification complexity, and subjective assignment of fault.

Motivated by the challenges underlying real-world testing and formal verification, we consider
a probabilistic paradigm—which we call a risk-based framework—where the goal is to evaluate
the probability of an accident under a base distribution representing standard traffic behavior. By
assigning learned probability values to environmental states and agent behaviors, our risk-based
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Figure 1. Multi-lane highway driving on I-80: (left) real image, (right) rendered image from simulator

framework considers performance of the AV’s policy under a data-driven model of the world. To
efficiently evaluate the probability of an accident, we implement a photo-realistic and physics-based
simulator that provides the AV with perceptual inputs (e.g. video and range data) and traffic conditions
(e.g. other cars and pedestrians). The simulator allows parallelized, faster-than-real-time evaluations
in varying environments (e.g. weather, geographic locations, and aggressiveness of other cars).

Formally, we let P0 denote the base distribution that models standard traffic behavior and X ∼ P0

be a realization of the simulation (e.g. weather conditions and driving policies of other agents). For
an objective function f : X → R that measures “safety”—so that low values of f(x) correspond to
dangerous scenarios—our goal is to evaluate the probability of a dangerous event

pγ := P0(f(X) ≤ γ) (1)

for some threshold γ. Our risk-based framework is agnostic to the complexity of the ego-policy
and views it as a black-box module. Such an approach allows, in particular, deep-learning based
perception systems that make formal verification methods intractable.

An essential component of this approach is to estimate the base distribution P0 from data; we use
public traffic data collected by the US Department of Transportation [36]. While such datasets do
not offer insights into how AVs interact with human agents—this is precisely why we design our
simulator—they illustrate the range of standard human driving behavior that the base distribution
P0 must model. We use imitation learning [45, 41, 42, 22, 6] to learn a generative model for the
behavior (policy) of environment vehicles; unlike traditional imitation learning, we train an ensemble
of models to characterize a distribution of human-like driving policies.

As serious accidents are rare (pγ is small), we view this as a rare-event simulation [4] problem; naive
Monte Carlo sampling methods require prohibitively many simulation rollouts to generate dangerous
scenarios and estimate pγ . To accelerate safety evaluation, we use adaptive importance-sampling
methods to learn alternative distributions Pθ that generate accidents more frequently. Specifically,
we use the cross-entropy algorithm [44] to iteratively approximate the optimal importance sampling
distribution. In contrast to simple classical settings [44, 55] which allow analytic updates to Pθ,
our high-dimensional search space requires solving convex optimization problems in each iteration
(Section 2). To address numerical instabilities of importance sampling estimators in high dimensions,
we carefully design search spaces and perform computations in logarithmic scale. Our implementation
produces 2-20 times as many rare events as naive Monte Carlo methods, independent of the complexity
of the ego-policy.

In addition to accelerating evaluation of pγ , learning a distribution Pθ that frequently generates
realistic dangerous scenarios Xi ∼ Pθ is useful for engineering purposes. The importance-sampling
distribution Pθ not only efficiently samples dangerous scenarios, but also ranks them according to
their likelihoods under the base distribution P0. This capability enables a deeper understanding of
failure modes and prioritizes their importance to improving the ego-policy.

As a system, our simulator allows fully distributed rollouts, making our approach orders of magni-
tude cheaper, faster, and safer than real-world testing. Using the asynchronous messaging library
ZeroMQ [21], our implementation is fully-distributed among available CPUs and GPUs; our rollouts
are up to 30P times faster than real time, where P is the number of processors. Combined with the
cross-entropy method’s speedup, we achieve 10-300P speedup over real-world testing.

In what follows, we describe components of our open-source toolchain, a photo-realistic simulator
equipped with our data-driven risk-based framework and cross-entropy search techniques. The
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toolchain can test an AV as a whole system, simulating the driving policy of the ego-vehicle by
viewing it as a black-box model. The use of adaptive-importance sampling methods motivates a unique
simulator architecture (Section 3) which allows real-time updates of the policies of environment
vehicles. In Section 4, we test our toolchain by considering an end-to-end deep-learning-based
ego-policy [9] in a multi-agent highway scenario. Figure 1 shows one configuration of this scenario
in the real world along with rendered images from the simulator, which uses Unreal Engine 4 [17].
Our experiments show that we accelerate the assessment of rare-event probabilities with respect to
naive Monte Carlo methods as well as real-world testing. We believe our open-source framework is a
step towards a rigorous yet scalable platform for evaluating AV systems, with the broader goal of
understanding how to reliably deploy deep-learning systems in safety-critical applications.

2 Rare-event simulation

To motivate our risk-based framework, we first argue that formally verifying correctness of a AV
system is infeasible due to the challenge of defining “correctness.” Consider a scenario where an
AV commits a traffic violation to avoid collision with an out-of-control truck approaching from
behind. If the ego-vehicle decides to avoid collision by running through a red light with no further
ramifications, is it “correct” to do so? The “correctness” of the policy depends on the extent to
which the traffic violation endangers nearby humans and whether any element of the “correctness”
specification explicitly forbids such actions. That is, “correctness” as a binary output is a concept
defined by its exceptions, many elements of which are subject to individual valuations [10].

Instead of trying to verify correctness, we begin with a continuous measure of safety f : X → R,
where X is space of traffic conditions and behaviors of other vehicles. The prototypical example
in this paper is the minimum time-to-collision (TTC) (see Appendix A for its definition) to other
environmental agents over a simulation rollout. Rather than requiring safety for all x ∈ X , we
relax the deterministic verification problem into a probabilistic one where we are concerned with
the probability under standard traffic conditions that f(X) goes below a safety threshold. Given a
distribution P0 on X , our goal is to estimate the rare event probability pγ := P0(f(X) ≤ γ) based
on simulated rollouts f(X1), . . . , f(Xn). As accidents are rare and pγ is near 0, we treat this as a
rare-event simulation problem; see [11, 4, Chapter VI] for an overview of this topic.

First, we briefly illustrate the well-known difficulty of naive Monte Carlo simulation when pγ is

small. From a sample Xi
iid∼ P0, the naive Monte Carlo estimate is p̂N,γ := 1

N

∑N
i=1 1 {f(Xi) ≤ γ}.

As pγ is small, we use relative accuracy to measure our performance, and the central limit theorem
implies the relative accuracy is approximately∣∣∣∣ p̂N,γpγ

− 1

∣∣∣∣ dist
≈

√
1− pγ
Npγ

|Z|+ o(1/
√
N) for Z ∼ N (0, 1).

For small pγ , we require a sample of size N & 1/(pγε
2) to achieve ε-relative accuracy, and if f(X)

is light-tailed, the sample size must grow exponentially in γ.

Cross-entropy method As an alternative to a naive Monte Carlo estimator, we consider (adap-
tive) importance sampling [4], and we use a model-based optimization procedure to find a good
importance-sampling distribution. The optimal importance-sampling distribution for estimating
pγ has the conditional density p?(x) = 1 {f(x) ≤ γ} p0(x)/pγ , where p0 is the density func-
tion of P0: as p0(x)/p?(x) = pγ for all x satisfying 1 {f(x) ≤ γ}, the estimate p̂?N,γ :=
1
N

∑N
i=1

p0(Xi)
p?(Xi)

1 {f(Xi) ≤ γ} is exact. This sampling scheme is, unfortunately, de facto impossible,
because we do not know pγ . Instead, we use a parameterized importance sampler Pθ and employ an
iterative model-based search method to modify θ so that Pθ approximates P ?.

The cross-entropy method [44] iteratively tries to find θ? ∈ argminθ∈ΘDkl (P ?||Pθ), the Kullback-
Leibler projection of P ? onto the class of parameterized distributions P = {Pθ}θ∈Θ. Over iterations
k, we maintain a surrogate distribution qk(x) ∝ 1 {f(x) ≤ γk} p0(x) where γk ≥ γ is a (potentially
random) proxy for the rare-event threshold γ, and we use samples from Pθ to update θ as an
approximate projection of Q onto P . The motivation underlying this approach is to update θ so
that Pθ upweights regions of X with low objective value (i.e. unsafe) f(x). We fix a quantile level
ρ ∈ (0, 1)—usually we choose ρ ∈ [0.01, 0.2]—and use the ρ-quantile of f(X) where X ∼ Pθk
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Algorithm 1 Cross-Entropy Method

1: Input: Quantile ρ ∈ (0, 1), Stepsizes {αk}k∈N, Sample sizes {Nk}k∈N, Number of iterations K
2: Initialize: θ0 ∈ Θ
3: for k = 0, 1, 2, . . . ,K − 1 do
4: Sample Xk,1, . . . , Xk,Nk

iid∼ Pθk
5: Set γk as the minimum of γ and the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk)
6: θk+1 = argmaxθ∈Θ

{
αkθ

>Dk+1 + (1− αk)θ>∇A(θk)−A(θ)
}

as γk, our proxy for the rare event threshold γ (see [23] for alternatives). We have the additional
challenge that the ρ-quantile of f(X) is unknown, so we approximate it using i.i.d. samplesXi ∼ Pθk .
Compared to applications of the cross-entropy method [44, 55] that focus on low-dimensional
problems permitting analytic updates to θ, our high-dimensional search space requires solving convex
optimization problems in each iteration. To address numerical challenges in computing likelihood
ratios in high-dimensions, our implementation carefully constrains the search space and we compute
likelihoods in logarithmic scale.

We now rigorously describe the algorithmic details. First, we use natural exponential families as our
class of importance samplers P .
Definition 1. The family of density functions {pθ}θ∈Θ, defined with respect to base measure µ, is a
natural exponential family if there exists a sufficient statistic Γ such that pθ(x) = exp(θ>Γ(x)−A(θ))
where A(θ) = log

∫
X exp(θ>Γ(x))dµ(x) is the log partition function and Θ := {θ | A(θ) <∞}.

Given this family, we consider idealized updates to the parameter vector θk at iteration k, where we
compute projections of a mixture of Qk and Pθk onto P

θk+1 = argmin
θ∈Θ

Dkl (αkQk + (1− αk)Pθk ||Pθ)

= argmax
θ∈Θ

{αkEQk [log pθ(X)] + (1− αk)Eθk [log pθ(X)]}

= argmax
θ∈Θ

{
αkθ

>EQk [Γ(X)] + (1− αk)θ>∇A(θk)−A(θ)
}
. (2)

The term EQk [Γ(X)] is unknown in practice, so we use a sampled estimate. For Xk,1, . . . , Xk,Nk
iid∼

Pθk , let γk be the ρ-quantile of f(Xk,1), . . . , f(Xk,Nk) and define

Dk+1 :=
1

Nk

Nk∑
i=1

qk(Xk,i)

pθk(Xk,i)
Γ(Xk,i) =

1

Nk

Nk∑
i=1

p0(Xk,i)

pθk(Xk,i)
1 {f(Xk,i) ≤ γk}Γ(Xk,i). (3)

Using the estimate Dk+1 in place of EQk [Γ(X)] in the idealized update (2), we obtain Algorithm 1.
To select the final importance sampling distribution from Algorithm 1, we choose θk with the
lowest ρ-quantile of f(Xk,i). We observe that this choice consistently improves performance over
taking the last iterate or Polyak averaging. Letting θce denote the parameters for the importance
sampling distribution learned by the cross-entropy method, we sample Xi

iid∼ Pθce and use p̂N,γ :=
1
N

∑N
i=1

p0(Xi)
pθce (Xi)

1 {f(Xi) ≤ γ} as our final importance-sampling estimator for pγ .

In the context of our rare-event simulator, we use a combination of Beta and Normal distributions
for Pθ. The sufficient statistics Γ include (i) the parameters of the generative model of behaviors
that our imitation-learning schemes produce and (ii) the initial poses and velocities of other vehicles,
pedestrians, and obstacles in the simulation. Given a current parameter θ and realization from the
model distribution Pθ, our simulator then (i) sets the parameters of the generative model for vehicle
policies and draws policies from this model, and (ii) chooses random poses and velocities for the
simulation. Our simulator is one of the largest-scale applications of cross-entropy methods.

3 Simulation framework

Two key considerations in our risk-based framework influence design choices for our simulation
toolchain: (1) learning the base distribution P0 of nominal traffic behavior via data-driven modeling,
and (2) testing the AV as a whole system. We now describe how our toolchain achieves these goals.
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3.1 Data-driven generative modeling

While our risk-based framework (cf. Section 2) is a concise, unambiguous measure of system safety,
the rare-event probability pγ is only meaningful insofar as the base distribution P0 of road conditions
and the behaviors of other (human) drivers is estimable. Thus, to implement our risk-based framework,
we first learn a base distribution P0 of nominal traffic behavior. Using the highway traffic dataset
NGSim [36], we train policies of human drivers via imitation learning [45, 41, 42, 22, 6]. Our data
consists of videos of highway traffic [36], and our goal is to create models that imitate human driving
behavior even in scenarios distinct from those in the data. We employ an ensemble of generative
adversarial imitation learning (GAIL) [22] models to learn P0. Our approach is motivated by the
observation that reducing an imitation-learning problem to supervised learning—where we simply
use expert data to predict actions given vehicle states—suffers from poor performance in regions
of the state space not encountered in data [41, 42]. Reinforcement-learning techniques have been
observed to improve generalization performance, as the imitation agent is able to explore regions of
the state space in simulation during training that do not necessarily occur in the expert data traces.

Generically, GAIL is a minimax game between two functions: a discriminator Dφ and a generator
Gξ (with parameters φ and ξ respectively). The discriminator takes in a state-action pair (s, u)
and outputs the probability that the pair came from real data, P(real data). The generator takes in
a state s and outputs a conditional distribution Gξ(s) := P(u | s) of the action u to take given
state s. In our context, Gξ(·) is then the (learned) policy of a human driver given environmental
inputs s. Training the generator weights ξ occurs in a reinforcement-learning paradigm with reward
− log(1−Dφ(s,Gξ(s))). We use the model-based variant of GAIL (MGAIL) [6] which renders this
reward fully differentiable with respect to ξ over a simulation rollout, allowing efficient model training.
GAIL has been validated by Kuefler et al. [33] to realistically mimic human-like driving behavior
from the NGSim dataset across multiple metrics. These include the similarity of low-level actions
(speeds, accelerations, turn-rates, jerks, and time-to-collision), as well as higher-level behaviors (lane
change rate, collision rate, hard-brake rate, etc). See Appendix C for a reference to an example video
of the learned model driving in a scenario alongside data traces from human drivers.

Our importance sampling and cross-entropy methods use not just a single instance of model parame-
ters ξ, but rather a distribution over them to form a generative model of human driving behavior. To
model this distribution, we use a (multivariate normal) parametric bootstrap over a trained ensemble
of generators ξi, i = 1, . . . ,m. Our models ξi are high-dimensional (ξ ∈ Rd, d > m) as they
characterize the weights of large neural networks, so we employ the graphical lasso [15] to fit the
inverse covariance matrix for our ensemble. This approach to modeling uncertainty in neural-network
weights is similar to the bootstrap approach of Osband et al. [38]. Other approaches include using
dropout for inference [16] and variational methods [18, 8, 31].

While several open source driving simulators have been proposed [14, 48, 39], our problem formula-
tion requires unique features to allow sampling from a continuous distribution of driving policies for
environmental agents. Conditional on each sample of model parameters ξ, the simulator constructs
a (random) rollout of vehicle behaviors according to Gξ. Unlike other existing simulators, ours is
designed to efficiently execute and update these policies as new samples ξ are drawn for each rollout.

3.2 System architecture

The second key characteristic of our framework is that it enables black-box testing the AV as a whole
system. Flaws in complex systems routinely occur at poorly specified interfaces between components,
as interactions between processes can induce unexpected behavior. Consequently, solely testing
subcomponents of an AV control pipeline separately is insufficient [1]. Moreover, it is increasingly
common for manufacturers to utilize software and hardware artifacts for which they do not have
any whitebox model [19, 12]. We provide a concise but extensible language-agnostic interface to
our benchmark world model so that common AV sensors such as cameras and lidar can provide the
necessary inputs to induce vehicle actuation commands.

Our simulator is a distributed, modular framework, which is necessary to support the inclusion
of new AV systems and updates to the environment-vehicle policies. A benefit of this design is
that simulation rollouts are simple to parallelize. In particular, we allow instantiation of multiple
simulations simultaneously, without requiring that each include the entire set of components. For
example, a desktop may support only one instance of Unreal Engine but could be capable of simulating

5



10 physics simulations in parallel; it would be impossible to fully utilize the compute resource with
a monolithic executable wrapping all engines together. Our architecture enables instances of the
components to be distributed on heterogeneous GPU compute clusters while maintaining the ability to
perform meaningful analysis locally on commodity desktops. In Appendix A, we detail our scenario
specification, which describes how Algorithm 1 maps onto our distributed architecture.

4 Experiments

In this section, we demonstrate our risk-based framework on a multi-agent highway scenario. As the
rare-event probability of interest pγ gets smaller, the cross-entropy method learns to sample more
rare events compared to naive Monte Carlo sampling; we empirically observe that the cross-entropy
method produces 2-20 times as many rare events as its naive counterpart. Our findings hold across
different ego-vehicle policies, base distributions P0, and scenarios.

To highlight the modularity of our simulator, we evaluate the rare-event probability pγ on two
different ego-vehicle policies. The first is an instantiation of an imitation learning (non-vision) policy
which uses lidar as its primary perceptual input. Secondly, we investigate a vision-based controller
(vision policy), where the ego-vehicle drives with an end-to-end highway autopilot network [9],
taking as input a rendered image from the simulator (and lidar observations) and outputting actuation
commands. See Appendix B for a summary of network architectures used.

We consider a scenario consisting of six agents, five of which are considered part of the environment.
The environment vehicles’ policies follow the distribution learned in Section 3.1. All vehicles are
constrained to start within a set of possible initial configurations consisting of pose and velocity,
and each vehicle has a goal of reaching the end of the approximately 2 km stretch of road. Fig. 1
shows one such configuration of the scenario, along with rendered images from the simulator. We
create scene geometry based on surveyors’ records and photogrammetric reconstructions of satellite
imagery of the portion of I-80 in Emeryville, California where the traffic data was collected [36].

Simulation parameters We detail our postulated base distribution P0. Lettingm denote the number
of vehicles, we consider the random tuple X = (S, T,W, V, ξ) as our simulation parameter where
the pair (S, T ) ∈ Rm×2

+ indicates the two-dimensional positioning of each vehicle in their respective
lanes (in meters), W the orientation of each vehicle (in degrees), and V the initial velocity of each
vehicle (in meters per second). We use ξ ∈ R404 to denote the weights of the last layer of the neural
network trained to imitate human-like driving behavior. Specifically, we set S ∼ 40Beta(2, 2) + 80
with respect to the starting point of the road, T ∼ 0.5Beta(2, 2) − 0.25 with respect to the lane’s
center, W ∼ 7.2Beta(2, 2) − 3.6 with respect to facing forward, and V ∼ 10Beta(2, 2) + 10. We
assume ξ ∼ N (µ0,Σ0), with the mean and covariance matrices learned via the ensemble approach
outlined in Section 3.1. The neural network whose last layer is parameterized by ξ describes the
policy of environment vehicles; it takes as input the state of the vehicle and lidar observations of the
surrounding environment (see Appendix B for more details). Throughout this section, we define our
measure of safety f : X → R as the minimum time-to-collision (TTC) over the simulation rollout.
We calculate TTC from the center of mass of the ego vehicle; if the ego-vehicle’s body crashes into
obstacles, we end the simulation before the TTC can further decrease (see Appendix A for details).

Cross-entropy method Throughout our experiments, we impose constraints on the space of
importance samplers (adversarial distributions) for feasibility. Numerical stability considerations
predominantly drive our hyperparameter choices. For model parameters ξ, we also constrain the
search space to ensure that generative models Gξ maintain reasonably realistic human-like policies
(recall Sec. 3.1). For S, T,W , and V , we let {Beta(α, β) : α, β ∈ [1.5, 7]} be the model space over
which the cross-entropy method searches, scaled and centered appropriately to match the scale of the
respective base distributions. We restrict the search space of distributions over ξ ∈ R404 by searching
over {N (µ,Σ0) : ‖µ− µ0‖∞ ≤ .01}, where (µ0,Σ0) are the parameters of the base (bootstrap)
distribution. For our importance sampling distribution Pθ, we use products of the above marginal
distributions. These restrictions on the search space mitigate numerical instabilities in computing
likelihood ratios within our optimization routines, which is important for our high-dimensional
problems.

We first illustrate the dependence of the cross-entropy method on its hyperparameters. We choose
to use a non-vision ego-vehicle policy as a test bed for hyperparameter tuning, since this allows us
to take advantage of the fastest simulation speeds for our experiments. We focus on the effects (in
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Figure 2. The ratio of (a) number of rare events and (b) variance of estimator for pγ between cross-
entropy method and naive MC sampling for the non-vision ego policy. Rarity is inversely proportional
to γ, and, as expected, we see the best performance for our method over naive MC at small γ.

Search Algorithm γtest = 0.14 γtest = 0.15 γtest = 0.19 γtest = 0.20

Naive 1300K (12.4±3.1)e-6 (80.6±7.91)e-6 (133±3.2)e-5 (186±3.79)e-5
Cross-entropy 100K (19.8±8.88)e-6 (66.1 ± 15)e-6 (108± 9.51)e-5 (164 ± 14)e-5

Naive 100K (20±14.1)e-6 (100± 31.6)e-6 (132±11.5)e-5 (185±13.6)e-5

Table 1. Estimate of rare-event probability pγ (non-vision ego policy) with standard errors. For the
cross-entropy method, we show results for the learned importance sampling distribution with ρ = 0.01.

Algorithm 1) of varying the most influential hyperparameter, ρ ∈ (0, 1], which is the quantile level
determining the rarity of the observations used to compute the importance sampler θk. Intuitively, as ρ
approaches 0, the cross-entropy method learns importance samplers Pθ that up-weight unsafe regions
of X with lower f(x), increasing the frequency of sampling rare events (events with f(X) ≤ γ).
In order to avoid overfitting θk as ρ → 0, we need to increase Nk as ρ decreases. Our choice of
Nk is borne out of computational constraints as it is the biggest factor that determines the run-time
of the cross-entropy method. Consistent with prior works [44, 24], we observe empirically that
ρ ∈ [0.01, 0.2] is a good range for the values of Nk deemed feasible for our computational budget
(Nk = 1000 ∼ 5000). We fix the number of iterations at K = 100, number of samples taken per
iteration at Nk = 5000, step size for updates at αk = 0.8, and γ = 0.14. As we see below, we
consistently observe that the cross-entropy method learns to sample significantly more rare events,
despite the high-dimensional nature (d ≈ 500) of the problem.

To evaluate the learned parameters, we draw n = 105 samples from the importance sampling
distribution to form an estimate of pγ . In Figure 2, we vary ρ and report the relative performance of
the cross-entropy method compared to naive Monte Carlo sampling. Even though we set γ = 0.14 in
Algorithm 1, we evaluate the performance of all models with respect to multiple threshold levels γtest.
We note that as ρ approaches 0, the cross-entropy method learns to frequently sample increasingly
rare events; the cross-entropy method yields 3-10 times as many dangerous scenarios, and achieves
2-16 times variance reduction depending on the threshold level γtest. In Table 1, we contrast the
estimates provided by naive Monte Carlo and the importance sampling estimator provided by the
cross-entropy method with ρ = 0.01; to form a baseline estimate, we run naive Monte Carlo with
1.3 · 106 samples. For a given number of samples, the cross-entropy method with ρ = 0.01 provides
more precise estimates for the rare-event probability pγ ≈ 10−5 over naive Monte Carlo.

We now leverage the tuned hyperparameter (ρ = 0.01) for our main experiment: evaluating the
probability of a dangerous event for the vision-based ego policy. We find that the hyperparameters
for the cross-entropy method generalize, allowing us to produce good importance samplers for a
very different policy without further tuning. Based on our computational budget (with our current
implementation, vision-based simulations run about 15 times slower than simulations with only
non-vision policies), we choose K = 20 and Nk = 1000 for the cross-entropy method to learn a
good importance sampling distribution for the vision-based policy (although we also observe similar
behavior for Nk as small as 100). In Figure 3, we illustrate again that the cross-entropy method learns
to sample dangerous scenarios more frequently (Figure 3a)—up to 18 times that of naive Monte
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Figure 3. The ratio of (a) number of rare events and (b) variance of estimator for pγ between cross-
entropy method and naive MC sampling for the vision-based ego policy.

Search Algorithm γtest = 0.22 γtest = 0.23 γtest = 0.24 γtest = 0.25

Cross-entropy 50K (5.87±1.82)e-5 (13.0± 2.94)e-5 (19.0 ± 3.14)e-5 (4.52 ± 1.35)e-4
Naive 50K (11.3±4.60)e-5 (20.6±6.22)e-5 (43.2±9.00)e-5 (6.75±1.13)e-4

Table 2. Estimate of rare-event probability pγ (non-vision ego policy) with standard errors. For the
cross-entropy method, we show results for the learned importance sampling distribution with ρ = 0.01.

Carlo—and produces importance sampling estimators with lower variance (Figure 3b). As a result,
our estimator in Table 2 is better calibrated compared to that computed from naive Monte Carlo.

Qualitative analysis We provide a qualitative interpretation for the learned parameters of the
importance sampler. For initial velocities, angles, and positioning of vehicles, the importance sampler
shifts environmental vehicles to box in the ego-vehicle and increases the speeds of trailing vehicles
by 20%, making accidents more frequent. We also observe that the learned distribution for initial
conditions have variance 50% smaller than that of the base distribution, implying concentration
around adversarial conditions. Perturbing the policy weights ξ for GAIL increases the frequency of
risky high-level behaviors (lane-change rate, hard-brake rate, etc.). An interesting consequence of
using our definition of TTC from the center of the ego vehicle (cf. Appendix A) as a measure of
safety is that dangerous events f(X) ≤ γtest (for small γtest) include frequent sideswiping behavior,
as such accidents result in smaller TTC values than front- or rear-end collisions. See Appendix C
for a reference to supplementary videos that exhibit the range of behavior across many levels γtest.
The modularity of our simulation framework easily allows us to modify the safety objective to an
alternative definition of TTC or even include more sophisticated notions of safety, e.g. temporal-logic
specifications or implementations of responsibility-sensitive safety (RSS) [49, 40].

5 Related work and conclusions

Given the complexity of AV software and hardware components, it is unlikely that any single method
will serve as an oracle for certification. Many existing tools are complementary to our risk-based
framework. In this section, we compare and contrast representative results in testing, verification, and
simulation.

AV testing generally consists of three paradigms. The first, largely attributable to regulatory efforts,
uses a finite set of basic competencies (e.g. the Euro NCAP Test Protocol [46]); while this method-
ology is successful in designing safety features such as airbags and seat-belts, the non-adaptive
nature of static testing is less effective in complex software systems found in AVs. Alternatively,
real-world testing—deployment of vehicles with human oversight—exposes the vehicle to a wider
variety of unpredictable test conditions. However, as we outlined above, these methods pose a danger
to the public and require prohibitive number of driving hours due to the rare nature of accidents [29].
Simulation-based falsification (in our context, simply finding any crash) has also been successfully
utilized [51]; this approach does not maintain a link to the likelihood of the occurrence of a particular
event, which we believe to be key in acting to prioritize and correct AV behavior.

8



Formal verification methods [34, 2, 47, 37] have emerged as a candidate to reduce the intractability
of empirical validation. A verification procedure considers whether the system can ever violate
a specification and returns either a proof that there is no such execution or a counterexample.
Verification procedures require a white-box description of the system (although it may be abstract),
as well as a mathematically precise specification. Due to the impossibility of certifying safety in all
scenarios, these approaches [49] require further specifications that assign blame in the case of a crash.
Such assignment of blame is impossible to completely characterize and relies on subjective notions of
fault. Our risk-based framework allows one to circumvent this difficulty by only using a measure of
safety that does not assign blame (e.g. TTC) and replacing the specifications that assign blame with a
probabilistic notion of how likely the accident is. While this approach requires a learned model of the
world P0—a highly nontrivial statistical task in itself—the adaptive importance sampling techniques
we employ can still efficiently identify dangerous scenarios even when P0 is not completely accurate.
Conceptually, we view verification and our framework as complementary; they form powerful tools
that can evaluate safety before deploying a fleet for real-world testing.

Even given a consistent and complete notion of blame, verification remains highly intractable from
a computational standpoint. Efficient algorithms only exist for restricted classes of systems in the
domain of AVs, and they are fundamentally difficult to scale. Specifically, AVs—unlike previous
successful applications of verification methods to application domains such as microprocessors [5]—
include both continuous and discrete dynamics. This class of dynamics falls within the purview of
hybrid systems [35], for which exhaustive verification is largely undecidable [20].

Verifying individual components of the perception pipeline, even as standalone systems, is a nascent,
active area of research (see [3, 13, 7] and many others). Current subsystem verification techniques
for deep neural networks [28, 30, 50] do not scale to state-of-the-art models and largely investigate
the robustness of the network with respect to small perturbations of a single sample. There are two
key assumptions in these works; the label of the input is unchanged within the radius of allowable
perturbations, and the resulting expansion of the test set covers a meaningful portion of possible
inputs to the network. Unfortunately, for realistic cases in AVs it is likely that perturbations to
the state of the world which in turn generates an image should change the label. Furthermore, the
combinatorial nature of scenario configurations casts serious doubt on any claims of coverage.

In our risk-based framework, we replace the complex system specifications required for formal
verification methods with a model P0 that we learn via imitation-learning techniques. Generative
adversarial imitation learning (GAIL) was first introduced by Ho and Ermon [22] as a way to directly
learn policies from data and has since been applied to model human driving behavior by Kuefler et al.
[33]. Model-based GAIL (MGAIL) is the specific variant of GAIL that we employ; introduced by
Baram et al. [6], MGAIL’s generative model is fully differentiable, allowing efficient model training
with standard stochastic approximation methods.

The cross-entropy method was introduced by Rubinstein [43] and has attracted interest in many rare-
event simulation scenarios [44, 32]. More broadly, it can be thought of as a model-based optimization
method [24–26, 53, 27, 56]. With respect to assessing safety of AVs, the cross-entropy method has
recently been applied in simple lane-changing and car-following scenarios in two dimensions [54, 55].
Our work significantly extends these works by implementing a photo-realistic simulator that can
assess the deep-learning based perception pipeline along with the control framework. We leave the
development of rare-event simulation methods that scale better with dimension as a future work.

To summarize, a fundamental tradeoff emerges when comparing the requirements of our risk-based
framework to other testing paradigms, such as real-world testing or formal verification. Real-world
testing endangers the public but is still in some sense a gold standard. Verified subsystems provide
evidence that the AV should drive safely even if the estimated distribution shifts, but verification
techniques are limited by computational intractability as well as the need for both white-box models
and the completeness of specifications that assign blame (e.g. [49]). In turn, our risk-based framework
is most useful when the base distribution P0 is accurate, but even when P0 is misspecified, our
adaptive importance sampling techniques can still efficiently identify dangerous scenarios, especially
those that may be missed by verification methods assigning blame. Our framework offers significant
speedups over real-world testing and allows efficient evaluation of black-box AV input/output behavior,
providing a powerful tool to aid in the design of safe AVs.
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