
A Proofs

Proof of Theorem 3. Let A = DwX . In O(nd log d + poly(d)) time, find an `1-well-conditioned
basis [11] U ∈ Rn×d of A, such that

∀β ∈ Rd : ‖β‖1 ≤ ‖Uβ‖1 ≤ poly(d)‖β‖1.
Then µ(U) and µ(A) are the same since U and A span the same columnspace. By linearity it suffices
to optimize over unit-`1 vectors β. If we minimize ‖(Uβ)−‖1 over unit-`1 vectors β, and t is the
minimum value, then µ is at most poly(d)/t, and at least 1/t by the well-conditioned basis property,
so we just need to find t, which can be done with the following linear program:

min
∑n

i=1
bi

s. t. ∀i ∈ [n] : (Uβ)i = ai − bi
∀i ∈ [d] : βi = ci − di∑d

i=1
ci + di ≥ 1

∀i ∈ [n] : ai, bi ≥ 0

∀i ∈ [d] : ci, di ≥ 0

Note that
∑d
i=1 ci + di ≥ 1 ensures ‖β‖1 ≥ 1, but to minimize the objective function, one will

always have ‖β‖1. Further, if both ai and bi are positive for some i, they can both be reduced,
reducing the objective function. So

∑n
i=1 bi exactly corresponds to the minimum over β ∈ Rd of

‖(Uβ)−‖1.

Proof of Theorem 4. Assume we had a streaming algorithm using o(n/ log n) space. We construct
the following protocol for INDEX: Consider an instance of INDEX, i.e., Alice has a string x ∈ {0, 1}n
and Bob has an index i ∈ [n]. We transform the instance into an instance for logistic regression.
For each xj = 1, Alice adds a point pj = (cos( jn ), sin( jn )). Note that all of these points have unit
Euclidean norm and hence any single point may be linearly separated from the others. All of Alice’s
points have label 1. Alice summarizes the point set by running the streaming algorithm and sends a
message containing the working memory of the streaming algorithm to Bob. Bob now adds the point
pi = (1− δ) · (cos( in ), sin( in )) for small enough δ > 0 with label −1. From the contents of Alice’s
message and pi, Bob now obtains a solution to the logistic regression instance. Clearly, if Alice added
pi and hence xi = 1 then the optimal solution will have cost at least ln(2), since there will be at least
one misclassification. If, on the other hand, Alice did not add pi and hence xi = 0, then the two
point sets are linearly separable and the cost tends to 0. Distinguishing between these two cases, i.e.
approximating the cost of logistic regression beyond a factor lim

x→0

ln(2)
x solves the INDEX problem.

To conclude the theorem, let us consider the space required to encode the points added by Alice. For
the reduction to work, it is only important that any point added by Alice can be linearly separated
from the others. This can be achieved by using O(log n) bits per point, i.e., the space of Alice’s
point set is at most n′ ∈ O(n log n). The space bound now follows from the lower bound of
Ω(n) ⊆ Ω(n′/ log n) bits due to [30] for the INDEX problem.

Proof of Corollary 5. If we had a coreset construction with o(n/ log n) points, we have a protocol
for INDEX: Alice computes a coreset for her point set defined in the proof of Theorem 4 and sends
it to Bob. Bob computes an optimal solution on the union of the coreset and his point. This solves
INDEX using o(n) communication, which contradicts the lower bound of [30]. So Alice’s coreset
cannot exist.

Proof of Lemma 10. (cf. [27]) For all G ⊆ Fclog, we have

|{G ∩R | R ∈ ranges(Fclog)}| = |{rangeG(β, r) | β ∈ Rd, r ∈ R≥0}|

Note that g is invertible and monotone. Also note that g−1 maps R≥0 surjectively into R. For all
β ∈ Rd, r ∈ R≥0 we thus have

rangeG(β, r) = {c · gi ∈ G | c · gi(β) ≥ r}

11



= {c · gi ∈ G | c · g(xiβ) ≥ r} = {c · gi ∈ G | xiβ ≥ g−1(r/c)}.

Now note that {c · gi ∈ G | xiβ ≥ g−1(r/c)} corresponds to the set of points that is shattered by the
affine hyperplane classifier xi 7→ 1{xiβ−g−1(r/c)≥0}. We can conclude that∣∣{rangeG(β, r) | β ∈ Rd, r ∈ R≥0}

∣∣ =
∣∣{{gi ∈ G | xiβ − s ≥ 0} | β ∈ Rd, s ∈ R}

∣∣
which means that the VC dimension of RFclog is d+1 since the VC dimension of the set of hyperplane
classifiers is d+ 1 [29, 42].

Proof of Lemma 11. We partition the functions into t disjoint classes having equal weights. Let Fi =
{wj ·gj ∈ Flog | wj = vi}, for i ∈ [t]. For the sake of contradiction, suppose ∆(RFlog ) > t · (d+1).
Then there exists a set G of size |G| > t · (d + 1) that is shattered by the ranges of RFlog . Now
consider the sets Fi∩G, for i ∈ [t]. Due to the disjointness property, each set Fi∩Gmust be shattered
by the ranges induced by Fi. But at least one of them must be as large as |G|t > t·(d+1)

t = d + 1,
which contradicts Lemma 10. Thus ∆(RFlog ) ≤ t · (d+ 1) ∈ O(dt) follows.

Proof of Lemma 12. Let DwX = UR, where U is an orthonormal basis for the columnspace of
DwX . It follows from 0.5 ≤ xiβ and monotonicity of g that

wig(xiβ) = wig

(
wixiβ

wi

)
= wig

(
UiRβ

wi

)
≤ wig

(
‖Ui‖2‖Rβ‖2

wi

)
= wig

(
‖Ui‖2‖URβ‖2

wi

)
= wig

(
‖Ui‖2‖DwXβ‖2

wi

)
≤ wi

2

wi
‖Ui‖2‖DwXβ‖2 ≤ 2‖Ui‖2‖DwXβ‖1

≤ 2‖Ui‖2(1 + µ)‖(DwXβ)+‖1 = 2‖Ui‖2(1 + µ)
∑

j:wjxjβ≥0

wj |xjβ|

≤ 2‖Ui‖2(1 + µ)
∑

j:xjβ≥0

wjg(xjβ) ≤ 2‖Ui‖2(1 + µ)fw(Xβ).

Proof of Lemma 13. Let K− = {j ∈ [n] | xjβ ≤ −2} and K+ = {j ∈ [n] | xjβ > −2}. Note that
g(−2) > 1/10 and g(xiβ) ≤ g(0.5) < 1. Also,

∑
j∈K− wj +

∑
j∈K+ wj =W.

Thus if
∑
j∈K+ wj ≥ 1

2W then

fw(Xβ) =
∑n

i=1
wjg(xjβ) ≥

∑
j∈[n] wj

20
≥ W

20wi
· wig(xiβ).

If on the other hand
∑
j∈K+ wj <

1
2W then

∑
j∈K− wj ≥

1
2W . Thus

fw(Xβ) ≥ ‖(DwXβ)+‖1 ≥ ‖(DwXβ)−‖1/µ ≥

(
2 ·
∑
j∈[n] wj

2

)/
µ ≥ W

µwi
· wig(xiβ).

Proof of Lemma 14. From Lemma 12 and Lemma 13 we have for each i

ςi = sup
β

wig(xiβ)

fw(Xβ)
≤ 2(1 + µ)‖Ui‖2 + (20 + µ)

wi
W
≤ (20 + 2µ)

(
‖Ui‖2 +

wi
W

)
From this, the second claim follows via the Cauchy-Schwarz inequality and using the fact that the
Frobenius norm satisfies ‖U‖F =

√∑
i∈[n],j∈[d] |Uij |2 =

√
d due to orthonormality of U . We have

S =
∑n

i=1
ςi ≤ (20 + 2µ)

∑n

i=1

(
‖Ui‖2 +

wi
W

)
≤ 22µ(

√
n‖U‖F + 1) ≤ 44µ

√
nd .

Proof of Theorem 15. The algorithm computes the QR-decomposition DwX = QR of DwX . Note
that Q is an orthonormal basis for the columnspace of DwX . We would like to use the upper bounds
on the sensitivities from Lemma 14. Namely, to sample the input points proportional to the sampling
probabilities si∑n

j=1 sj
= ‖Qi‖2+wi/W∑n

j=1(‖Qj‖2+wj/W) . However, to keep control of the VC dimension of

12



the involved range space, we modify them to obtain upper bounds s′i such that each value s′i/wi
corresponds to si/wi but is rounded up to the closest power of two. It thus holds si ≤ s′i ≤ 2si for all
i ∈ [n]. The input points are sampled proportional to the sampling probabilities pi = s′i/

∑n
j=1 s

′
j .

From Lemma 14 we know that S′ =
∑n
j=1 s

′
j ≤ 2S ∈ O(µ

√
nd).

In the proof of Theorem 9, the VC dimension bound is applied to a set of functions which are
reweighted by S′wi

s′ik
. We denote this set of functions Flog . Now note that the sensitivities satisfy

2

wmin
≥ 2

wi
≥ s′i
wi
≥ si
wi
≥ sup

β

g(xiβ)∑n
j=1 wjg(xjβ)

β=0

≥ 1∑n
j=1 wj

≥ 1

nwmax
. (2)

Also note that k and S′ are fixed values. Since the values s′i/wi are scaled to powers of two, by (2)
there can be at most O(log nwmax

wmin
) ⊆ O(log(ωn)) distinct values of S

′wi
s′ik

. Putting this into Lemma
11, we have ∆(RFlog ) ∈ O(d log(ωn)).

Putting all these pieces into Theorem 9 for error parameter ε ∈ (0, 1/2) and failure probability
η = n−c, we have that a reweighted random sample of size

k ∈ O
(
S′

ε2

(
∆(RFlog ) logS′ + log

(
1

η

)))
⊆ O

(
µ
√
nd

ε2

(
d log(µ

√
nd) log(ωn) + log (nc)

))

⊆ O
(
µ
√
n

ε2
d3/2 log(µnd) log(ωn)

)
is a (1± ε) coreset with probability 1− 1/nc as claimed.

It remains to prove the claims regarding streaming and running time. We can compute the QR-
decomposition of DwX in time O(nd2), see [25]. Once Q is available, we can inspect it row-by-row
computing ‖Qi‖2 +wi/W and give it as input together with xi to k independent copies of a weighted
reservoir sampler [9], which takes O(nnz(X)) time to collect all sampled non-zero entries. This
gives a total running time of O(nd2) since the computations are dominated by the QR-decomposition.

We argue how to implement the first step in one streaming pass over the data in timeO(nnz(X) log n+
poly(d)). Using the sketching techniques of [12], cf. [43], we can obtain a provably constant
approximation of the square root of the leverage scores ‖Qi‖2 with constant probability [18]. This
means that the total sensitivity bound S grows only by a small constant factor and does not affect
the asymptotic analysis presented above. The idea is to first sketch the data matrix X ∈ Rn×d to
a significantly smaller matrix X̃ ∈ Rn′×d, where n′ ∈ O(d2). This takes only O(nnz(X) log n +
poly(d) log n) time, where the poly(d) and log n factors are only needed to amplify the success
probability from constant to 1

nc [43]. Performing the QR-decomposition X̃ = Q̃R̃ takes O(n′d2) ⊆
O(d4) time.

Now, to compute a fast approximation to the row norms, we use a Johnson-Lindenstrauss transform,
i.e., a matrix G ∈ Rd×m,m ∈ O(log n), whose entries are i.i.d. Gij ∼ N(0, 1

m ) [28]. We compute
the approximation to the row norms used in our sampling probabilities in a second pass over the
data, as ‖Ũi‖2 = ‖Xi(R̃

−1G)‖2, for i ∈ [n]. As we do so, we can feed these augmented with the
corresponding weight directly to the reservoir sampler. The latter is a streaming algorithm itself and
updates its sample in constant time. The matrix product R̃−1G takes at most O(d2 log n) time, and
the streaming pass can be done in O(nnz(X) log n).

This sums up to two passes over the data and a running time ofO(nnz(X) log n+poly(d) log n).

Proof of Lemma 16. Fix an arbitrary G ⊆ F`1 . Let Ω = Rd × R≥0. We attempt to bound the
quantity

|{G ∩R |R ∈ ranges(F`1)}|
= |{rangeG(β, r) | β ∈ Rd, r ∈ R≥0}|

13



= |
⋃

(β,r)∈Ω

{{hi ∈ G | hi(β) ≥ r}}|

= |
⋃

(β,r)∈Ω

{{hi ∈ G | wixiβ ≥ r ∨ −wixiβ ≥ r}}|

≤

∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{hi ∈ G | wixiβ ≥ r}}

∣∣∣∣∣∣ ·
∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{hi ∈ G | −wixiβ ≥ r}}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

(β,r)∈Ω

{{hi ∈ G | wixiβ ≥ r}}

∣∣∣∣∣∣
2

. (3)

The inequality holds, since each non-empty set in the collection on the LHS satisfies either of the
conditions of the sets in the collections on the RHS, or both, and is thus the union of two of those
sets, one from each collection. It can thus comprise at most all unions obtained from combining any
two of these sets. The last equality holds since for each fixed β we also union over −β as we reach
over all β ∈ Rd. The two sets are thus equal.

Now note that each set {hi ∈ G | wixiβ ≥ r} equals the set of weighted points that is shattered
by the affine hyperplane classifier wixi 7→ 1{wixiβ−r≥0}. Note that the VC dimension of the set of
hyperplane classifiers is d+ 1 [29, 42]. To conclude the claimed bound on ∆(RF`1 ) it is sufficient to
show that the above term (3) is bounded strictly below 2|G| for |G| = 10(d+ 1). By a bound given
in [7, 29] we have for this particular choice

(3) ≤
∣∣{{hi ∈ G | wixiβ − r ≥ 0} | β ∈ Rd, r ∈ R}

∣∣2 ≤ ( e|G|
d+ 1

)2(d+1)

< 22(d+1) log(30) ≤ 22(d+1)5 = 2|G|

which implies that ∆(RF`1 ) < 10(d+ 1).

Proof of Lemma 17. Consider any β ∈ Rd. Let DwX = UR where U is an orthonormal basis for
the columnspace of DwX . As in Lemma 12 we have for each index i

|wixiβ| = |UiRβ| ≤ ‖Ui‖2‖Rβ‖2 = ‖Ui‖2‖DwXβ‖2 ≤ ‖Ui‖2‖DwXβ‖1 (4)

The sensitivity for the `1 norm function of xiβ is thus

sup
β∈Rd\{0}

wi|xiβ|
‖DwXβ‖1

≤ ‖Ui‖2.

Note that our upper bounds on the sensitivities satisfy si ≥ ‖Ui‖2. Thus also S =
∑n
i=1 si ≥∑n

i=1 ‖Ui‖2 holds. In particular, these values are exceeded by more than a factor of µ + 1. Also,
by Lemma 16, we have a bound of O(d) on the VC dimension of the class of functions F`1 . Now,
rescaling the error probability parameter δ that we put into Theorem 9 by a factor of 1

2 , and union
bound over the two sets of functions Flog, and F`1 , the sample in Theorem 15 satisfies at the same
time the claims of Theorem 15 with parameter ε and of this lemma with parameter ε′ ≤ ε/

√
µ+ 1

by folding the additional factor of µ+ 1 into ε.

Proof of Lemma 18. For brevity of presentation let X ′ = DwX . First note that combining the choice
of the parameter ε/

√
µ+ 1 with Lemma 17 we have for all β ∈ Rd

(1− ε′) ‖X ′β‖1 ≤ ‖TX ′β‖1 ≤ (1 + ε′) ‖X ′β‖1,
where ε′ ≤ ε

µ+1 . Note that since the weights are non-negative, sampling and reweighting does
not change the sign of the entries. This implies for η+ = |‖(TX ′β)+‖1 − ‖(X ′β)+‖1| and η− =
|‖(TX ′β)−‖1−‖(X ′β)−‖1| that max{η+, η−} ≤ η+ +η− = |‖TX ′β‖1−‖X ′β‖1| ≤ ε′‖X ′β‖1.
From this and ‖X ′β‖1 = ‖(X ′β)+‖1 + ‖(X ′β)−‖1 ≤ (µ + 1) min{‖(X ′β)+‖1, ‖(X ′β)−‖1} it
follows for any β ∈ Rd

‖(TX ′β)+‖1
‖(TX ′β)−‖1

≤ ‖(X
′β)+‖1 + ε′‖X ′β‖1

‖(X ′β)−‖1 − ε′‖X ′β‖1
≤ ‖(X

′β)+‖1 + ε′(µ+ 1)‖(X ′β)+‖1
‖(X ′β)−‖1 − ε′(µ+ 1)‖(X ′β)−‖1

14



≤ ‖(X
′β)+‖1(1 + ε)

‖(X ′β)−‖1(1− ε)
≤ µ 1 + ε

1− ε
≤ (1 + 4ε)µ .

The claim follows by folding the constant 1
4 into ε.

Proof of Theorem 19. Recall, due to Lemma 18, the µ′-complexity at the i-th recursion level is upper
bounded by µ(1 + ε)i. We thus apply Theorem 15 recursively l = log log n times with parameter
εi = ε

2l
√
µ+1(1+ε)i

for i ∈ {0 . . . l−1}. First we bound the approximation ratio, which is the product
of the single stages. We have

l−1∏
i=0

(1 + εi) ≤
l−1∏
i=0

(
1 +

ε

(1 + ε)i2l
√
µ

)
≤
(

1 +
ε

2l
√
µ

)l
≤ exp

(
ε

2
√
µ

)
≤ 1 +

ε
√
µ
.

Also
l−1∏
i=0

(1− εi) ≥
l−1∏
i=0

(
1− ε

(1 + ε)i2l
√
µ

)
≥

l−1∏
i=0

(
1− ε

2l
√
µ

)
≥ 1−

l−1∑
i=0

ε

2l
√
µ
≥ 1− ε

2
√
µ
.

Initially all weights are equal to one. So in the first application of Theorem 15 we have ω = 1. This
value might grow as the weights are reassigned. However, from Inequality (2) and the discussion
below it follows, that the value of ω can grow only by a factor of 2n in each recursive iteration. So it
remains bounded by ω ≤ (2n)log logn in all levels of our recursion. Its contribution to the lower order
terms given in Theorem 15 is thus bounded by O

(
log((2n)1+log logn))

)
⊆ O (log n log log n) .

The size of the data set at recursion level i+ 1 satisfies

ni+1 ≤
√
ni ·

Cl2(1 + ε)2iµ2

ε2
d3/2 log((1 + ε)iµnd) log n log log n

≤
√
ni ·

Cl24iµ2

ε2
d3/2 log(2iµnd) log n log log n

for some constant C > 1. Solving the recursion until we reach n0 = n we get the following bound
on nl. We use that for our choice l = log log n we have 2l = log n and n2−l = 2

logn

2l = 2.

nl ≤ n2−l
l∏
i=0

(
C · l

24iµ2

ε2
d3/2 log(2iµnd) log n log log n

) 1

2i

≤ 2

l∏
i=0

4
i

2i

l∏
i=0

(
C · l

2µ2

ε2
d3/2 log(2lµnd) log n log log n

) 1

2i

≤ 2

l∏
i=0

4
i

2i

l∏
i=0

(
2C · l

2µ2

ε2
d3/2 log(µnd) log n log log n

) 1

2i

≤ 2 · 4
l∑
i=0

i

2i

(
2C · l

2µ2

ε2
d3/2 log(µnd) log n log log n

) l∑
i=0

1

2i

≤ 2 · 42

(
2C · l

2µ2

ε2
d3/2 log(µnd) log n log log n

)2

≤ 2 · 16 · 4C2 · l
4µ4

ε4
d3 log2(µnd) log2 n (log log n)2

We conclude that for some constant C ′ > C

nl ≤ C ′ ·
l4µ4

ε4
d3 log2(µnd) log2 n (log log n)2 ≤ C ′ · µ

4

ε4
d3 log2(µnd) log2 n (log log n)6.

To reduce this even further, note that in the final iteration we do not need to preserve the µ-complexity.
We can thus apply Theorem 15 with the original approximation parameter ε to obtain a coreset as
claimed of size

k ∈ O
(√

nl ·
µ

ε2
d3/2 log(µnd) log(ωn)

)
15



⊆ O
(
µ2

ε2
d3/2 log(µnd) log n (log log n)3 · µ

ε2
d3/2 log(µnd) log n (log log n)

)
⊆ O

(
µ3

ε4
d3 log2(µnd) log2 n (log log n)4

)
.

It remains to bound the failure probability. Note that we use a log n factor in the sampling sizes
at all stages rather than log ni. The failure probability at each stage is thus bounded by 1

nc′
for

c′ = c+ 1 > 2 by adjusting constants. We can thus take a union bound over the stages to get an error
probability of at most

l · 1

nc′
=

log log n

nc′
≤ 1

nc′−1
≤ 1

nc
.

Now recall from Theorem 15 the two pass streaming algorithm whose running time was dominated by
O(nnz(X) log ni + poly(d) log ni). We can thus bound the running time of the recursive algorithm
for sufficiently large C > 1 by

C(nnz(X) + poly(d))
∑l−1

i=0
log ni ≤ C(nnz(X) + poly(d)) log n log log n

∈ O((nnz(X) + poly(d)) log n log log n).

Regarding the number of passes, note that for any η > 0, after log( 1
η ) recursion steps, the leading

term in the size of the coreset is as low as n2
− log 1

η
= nη , after which we may arguably assume, that

the coreset fits into memory. The algorithm thus takes 2 log( 1
η ) streaming passes over the data before

it turns to an internal memory algorithm.

16



B Material for the experimental section

Table 1: Absolute values of the negative log-likelihood L(βopt) at the optimal value βopt and mean
running time topt in seconds from the optimization task on the full data sets.

DATA SET L(βopt) topt

WEBB SPAM 69,534.49 1,051.72
COVERTYPE 270,585.34 218.22
KDD CUP ’99 301,023.24 136.06

WEBB SPAM COVERTYPE KDD CUP ’99

2500 5000 7500 10000 12500 15000 17500
sample size

0.01

0.02

0.03

0.04

0.05

0.06

m
ea

n
re

la
ti

ve
ru

nn
in

g
ti

m
e

QR

Uniform

k-Means

5000 10000 15000 20000 25000 30000
sample size

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
m

ea
n

re
la

ti
ve

ru
nn

in
g

ti
m

e
QR

Uniform

k-Means

5000 10000 15000 20000 25000
sample size

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

m
ea

n
re

la
ti

ve
ru

nn
in

g
ti

m
e

QR

Uniform

k-Means

2500 5000 7500 10000 12500 15000 17500
sample size

0.0

0.1

0.2

0.3

0.4

0.5

st
d.

de
v.

of
re

la
ti

ve
lo

g-
lik

el
ih

o
o

d
er

ro
r QR

Uniform

k-Means

5000 10000 15000 20000 25000 30000
sample size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

st
d.

de
v.

of
re

la
ti

ve
lo

g-
lik

el
ih

o
o

d
er

ro
r QR

Uniform

k-Means

5000 10000 15000 20000 25000
sample size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

st
d.

de
v.

of
re

la
ti

ve
lo

g-
lik

el
ih

o
o

d
er

ro
r QR

Uniform

k-Means

2500 5000 7500 10000 12500 15000 17500
sample size

0.002

0.004

0.006

0.008

st
d.

de
v.

of
re

la
ti

ve
ru

nn
in

g
ti

m
e

QR

Uniform

k-Means

5000 10000 15000 20000 25000 30000
sample size

0.000

0.005

0.010

0.015

0.020

0.025

st
d.

de
v.

of
re

la
ti

ve
ru

nn
in

g
ti

m
e

QR

Uniform

k-Means

5000 10000 15000 20000 25000
sample size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

st
d.

de
v.

of
re

la
ti

ve
ru

nn
in

g
ti

m
e

QR

Uniform

k-Means

Figure 2: Each column shows the results for one data set comprising thirty different coreset sizes
(depending on the individual size of the data sets). The plotted values are means and standard
deviations taken over twenty independent repetitions of each experiment. The plots show the mean
relative running times (upper row), the standard deviations of the relative log-likelihood errors (middle
row) and standard deviations of the relative running times (lower row) of the three subsampling
distributions, uniform sampling (blue), our QR derived distribution (red), and the k-means based
distribution (green). All values are relative to the corresponding running times respectively optimal
log-likelihood values of the optimization task on the full data set, see Table 1 (lower is better).

17



C Discussion of uniform sampling

As we have discussed in the lower bounds section 3, uniform sampling cannot help to build coresets
of sublinear size for worst case instances. Actually this also holds for other techniques for solving
logistic regression that rely on uniform subsampling, such as stochastic gradient descent (SGD).

We support this claim via a little experiment and some theoretical discussion on the following data set
X of size m = 2n+ 2 in one dimension (plus intercept): The −1 class consists of one point at −n
and n points at 1, while class +1 consists of one point at +n and n points at −1. By symmetry of
`1-norms, it is straightforward to check that the data is µ-complex for µ = 1, and the optimal solution
is β̂ = 0, which corresponds to f(Xβ̂) =

∑m
i=1 ln(1 + exp(0)) = m ln(2) < m. Our algorithms

will thus find a coreset of sublinear size such that the optimal solution has a value of at most (1 + ε)m
with high probability.

A uniform sample of sublinear size misses the two points at−n and n, since the probability to sample
one of these is 1

n+1 . However, finding these points is crucial, since otherwise the remaining data is
separable, which leads to a large β. Adding penalization is not a remedy. Figure 3 shows the results
of running 1 000 independent repetitions of sklearn.linear_model.SGDClassifier in Python
for logistic regression, with `22-penalty enabled, on the data set with n = 50 000. The boxplots show
the resulting coefficients for the intercept β0 and for the single dimension β1. One might argue that
the intercept term is close to β̂0 = 0, but for β1, half of the values lie above the median of 107.06
(red line) and still a quarter lies even above the upper quartile of 492.35 (upper boundary of the box).

Note that assuming β0 = 0 and β1 � (1 + ε), we have f(Xβ) > 2nβ1 � (1 + ε)m, since by
construction

f(Xβ) =
∑m

i=1
ln(1 + exp(−yi(β0 + xiβ1)))

≥ 2n · ln(1 + exp(β0 + β1))

≥ 2nβ1.

This implies that the approximation ratio is f(Xβ)

f(Xβ̂)
≥ 2nβ1

m = 2nβ1

2n+2

n→∞−→ β1, which turned out very
large in the experiment above, cf. Figure 3.

β0 β1

0

200

400

600

800

1000

Figure 3: Boxplots of the solutions β = (β0, β1) for logistic regression found by SGD in 1 000

independent runs on the considered data set X . The optimal solution is β̂ = (0, 0). It can be seen
that while the intercept term β0 is reasonably close to 0, the majority of runs result in considerably
large values of β1, which leads to a bad approximation ratio.

18


	Proofs
	Material for the experimental section
	Discussion of uniform sampling

