
Supplementary Material:
“Evolutionary Stochastic Gradient Descent for

Optimization of Deep Neural Networks"

Xiaodong Cui, Wei Zhang, Zoltán Tüske and Michael Picheny
IBM Research AI

IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

{cuix, weiz, picheny}@us.ibm.com, {Zoltan.Tuske}@ibm.com

Theorem 1. Let Ψµ be a population with µ individuals {θj}µj=1. Suppose Ψµ evolves according to
the ESGD algorithm given in Algorithm 1 with back-off and m-elitist. Then for each generation k,

J
(k)
m̄:µ ≤ J

(k−1)
m̄:µ , k ≥ 1

Proof. Given the parent population at the k-th generation, Ψ
(k)
µ = {θ(k)

1 , · · · , θ(k)
µ }, consider the

SGD step of ESGD. Let θ(k)
j,s denote the individual j after epoch s. If

Rn(θ
(k)
j,s ) > Rn(θ

(k)
j,s−1), s ≥ 1

the individual will back off to the previous update

θ
(k)
j,s = θ

(k)
j,s−1

Thus we have
Rn(θ

(k)
j,Ks

) ≤ Rn(θ
(k)
j,0 )

Let

J̃
(k)
m̄:µ,s =

1

m

m∑
j=1

R(θ
(k)
j:µ,s)

be the m-elitist average fitness of the population after s SGD epochs in generation k. It follows that
after the SGD step,

J̃
(k)
m̄:µ,Ks

≤ J̃ (k)
m̄:µ,0 = J

(k−1)
m̄:µ (1)

where the equation

J̃
(k)
m̄:µ,0 = J

(k−1)
m̄:µ (2)

is due to the fact that the starting parent population of SGD of generation k is the population after the
generation k−1.

Now consider the evolution step, since the m-elitist is conducted on Ψ
(k)
µ+λ = Ψ

(k)
µ

⋃
Ψ

(k)
λ , it is

obvious that
J

(k)
m̄:µ ≤ J̃

(k)
m̄:µ,Ks

(3)

where J (k)
m̄:µ is the m-elitist average fitness after the evolution step in generation k.

From Eq.1 and Eq.3, we have

J
(k)
m̄:µ ≤ J

(k−1)
m̄:µ , for k ≥ 1 (4)

This completes the proof.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



1 Details on speech recognition experiments

The optimizers being considered for ESGD are SGD and ADAM. For SGD, randomized hyper-
parameters are learning rate, momentum and nesterov acceleration. Specifically, there is a 20%
chance not using momentum and 80% chance using it. When using the momentum, there is a 50%
chance using the nesterov acceleration. The momentum is randomly selected from [0.1, 0.9]. The
learning rate is also randomly selected from a range [ak, bk] depending on the generation k. The
upper and lower bounds of the range are annealed over generations starting from the initial range
[a0, b0]. For ADAM, β1 = 0.9 and β2 = 0.999 are fixed and only the learning rate is randomized.
The selection strategy of learning rate is analogous to that of SGD except starting with a distinct initial
range. For ESGD, the mutation strength σk (i.e. the variance of the Gaussian noise perturbation)
is also annealed over generations. Tables 1 and 2 give the hyper-parameter settings for the ESGD
experiments on BN50 and SWB300.

Table 1: Hyper-parameters of ESGD for BN50

SGD ADAM
µ 100 100
λ 400 400
ρ 2 2
Ks 1 1
Kv 1 1
a0 1e-4 1e-4
b0 2e-3 1e-3
γ 0.9 0.9
ak γka0 γka0

bk γkb0 γkb0
momentum [0.1, 0.9] [0.1, 0.9]
σ0 0.01 0.01
σk

1
kσ0

1
kσ0

Table 2: Hyper-parameters of ESGD for SWB300

SGD ADAM
µ 100 100
λ 400 400
ρ 2 2
Ks 1 1
Kv 1 1
a0 1e-2 5e-5
b0 3e-2 1e-3
γ 0.9 0.9
ak γka0 γka0

bk γkb0 γkb0
momentum [0.1, 0.9] [0.1, 0.9]
σ0 0.01 0.01
σk

1
kσ0

1
kσ0

2 Details on image recognition experiments

In the CIFAR10 experiment, training-data transformation takes three steps: (1) color normalization,
(2) horizontal flip, and (3) random cropping. Test-data transformation is done via color normalization.

Initially, we mixed ADAM optimizer and SGD optimizer with a 20/80 ratio. While this setup enabled
ESGD to yield significantly better evaluation loss, it however generated less accurate models due
to the apparent Adam’s poor generalization on CIFAR dataset. This phenomenon is consistent with

2



what is reported in [1, 2] that adaptive gradient methods, such like ADAM, suffer from generalization
problem on CIFAR10. We also experimented with different probability of turning on Nesterov
momentum acceleration, setting different momentum range, yet we did not observe noticeable
improvement over baseline. Eventually, we found the configuration that consistently works the best
is the following setup: Multiply base learning rate 1 with a number randomly sampled between 0.9
and 1.1. Always turn on Nesterov momentum and set it to be 0.9. When SGD yields a worse model
(in terms of fitness score), always roll back to the model from the previous generation. The elitist
parameter m is set to be 60% of the population and number of parents is 2. The mutation strength is
set to be 1

k × 0.01, where k is the generation number. We summarize this setup in Table 3.

Table 3: Hyper-parameters of ESGD for CIFAR10

SGD
µ 128
λ 768
ρ 2
Ks 20
Kv 1
ak 0.9
bk 1.1
momentum 0.9
σ0 0.01
σk

1
kσ0

3 Details on language modeling experiments

The Penn Treebank dataset is defined as a subsection of the Wall Street Journal corpus. Its prepro-
cessed version contains roughly one million running words, a vocabulary of 10k words, and well
defined training, validation, and test sets. Our model is based on [3]: the embedding layer of the model
contained 655 nodes, and the size of a single LSTM hidden layer is equal to the embedding size. The
model uses various dropout techniques: hidden activation, weight/embedding, variational, fraternal
dropout [3, 4, 5, 6]. In contrast to the other experimental setups, picking an optimizer also includes
the randomization of the following hyper-parameters during population based training (ESGD or
population baseline): embedding, hidden activation, LSTM weight dropout ratios, mini batch size,
patience, weight decay, dropout model (expectation linear dropout (ELD), fraternal dropout (FD),
Π- (PD) or standard single output model). Population size, number of offsprings, SGD variant and
ADAM optimizer, momentum, and learning rate intervals were chosen similar to the ASR setup. The
population size was fixed to 100, elitism to 60% of the population and 400 offsprings were generated
before the selection step. The ESGD ran for 15 generations and each SGD step performed 20 epochs
before carrying out the evolutionary step. Furthermore, in case of unsuccessful SGD step, the backing
off was deactivated by 0.3 probability. The parameters and their range are shown in Table 4. The first
population was initialized by mutation of baseline model. In addition, the baseline was specifically
added to the population before the evolutionary step.

4 Examples on complementary optimizers

Table 5 gives the selected optimizers together with their hyper-parameters for each generation of
ESGD in BN50 and SWB300.

1Base learning rate is 0.1 for the first 80 epochs, 0.01 for another 41 epochs, and 0.001 for the remaining
epochs

3



Table 4: Hyper-parameters of ESGD for Penn Treebank

SGD ADAM
µ 100
λ 400
ρ {1,2}
Ks 20
Kv 1
a0 1 1e-6
b0 60 1e-3
γ 0.33
ak γka0

bk γkb0
pmomentum 0.8
pNesterov 0.5 0
momentum [0.1, 0.9]
σ0 [0.01, 0.15]
σk

1
kσ0

1
kσ0

fitness smoothing 0.5
dropoutembedding [0.05, 0.2]
dropouthidden [0.1, 0.65]
dropoutLSTM weights [0.1, 0.65]
modeldropout {FD,ELD,PM,Standard}
patience [3, 10]
weight decay [0, 1.2e-5]
pbackoff 0.7
mini batch [20, 64]

Table 5: The optimizers selected by the best candidate in the population over generations in ESGD in
BN50 DNNs and SWB300 LSTMs.

generation optimizer
BN50 DNN SWB300 LSTM

1 adam, lr=2.68e-4 adam, lr=5.39e-4
2 adam, lr=1.10e-4 adam, lr=4.61e-5
3 adam, lr=1.87e-4 adam, lr=9.65e-5
4 sgd, nesterov=F, lr=3.61e-4, momentum=0 sgd, nesterov=F, lr=9.92e-3, momentum=0.21
5 adam, lr=9.07e-5 sgd, nesterov=T, lr=6.60e-3, momentum=0.35
6 adam, lr=1.04e-4 adam, lr=4.48e-5
7 sgd, nesterov=F, lr=5.20e-4, momentum=0 sgd, nesterov=T, lr=5.60e-3, momentum=0.11
8 sgd, nesterov=T, lr=1.00e-4, momentum=0.44 sgd, nesterov=T, lr=5.15e-3, momentum=0.49
9 adam, lr=6.45e-5 adam, lr=3.20e-5
10 adam, lr=7.51e-5 adam, lr=2.05e-5
11 adam, lr=4.51e-5 adam, lr=1.97e-5
12 sgd, nesterov=F, lr=4.19e-5, momentum=0 adam, lr=2.98e-5
13 sgd, nesterov=F, lr=6.17e-5, momentum=0.25 adam, lr=1.94e-5
14 sgd, nesterov=F, lr=6.73e-5, momentum=0.45 adam, lr=1.33e-5
15 sgd, nesterov=F, lr=1.00e-4, momentum=0 adam, lr=1.45e-5

References
[1] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht. The marginal value of adaptive

gradient methods in machine learning. In Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017,
Long Beach, CA, USA, pages 4151–4161, 2017.

[2] N. Keskar and R. Socher. Improving generalization performance by switching from adam to
SGD. The Sixth International Conference on Learning Representations (ICLR 2018), 2018.

4



[3] K. Zolna, D. Arpit, D. Suhubdy, and Y. Bengio. Fraternal dropout. In International Conference
on Learning Representations (ICLR), 2018.

[4] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A
simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[5] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Regularization of neural networks using
dropconnect. In International Conference on Machine Learning (ICML), volume 28, pages
1058–1066, 2013.

[6] Y. Gal and Z. Ghahramani. A theoretically grounded application of dropout in recurrent neural
networks. In International Conference on Neural Information Processing Systems (NIPS),
NIPS’16, pages 1027–1035, 2016.

5


	Details on speech recognition experiments
	Details on image recognition experiments
	Details on language modeling experiments
	Examples on complementary optimizers

