A Smoother Way to Train
Structured Prediction Models

Krishna Pillutla, Vincent Roulet, Sham M. Kakade, Zaid Harchaoui
Paul G. Allen School of Computer Science & Engineering and Department of Statistics
University of Washington
nameQuw.edu

Abstract

We present a framework to train a structured prediction model by performing
smoothing on the inference algorithm it builds upon. Smoothing overcomes the
non-smoothness inherent to the maximum margin structured prediction objective,
and paves the way for the use of fast primal gradient-based optimization algorithms.
We illustrate the proposed framework by developing a novel primal incremental
optimization algorithm for the structural support vector machine. The proposed
algorithm blends an extrapolation scheme for acceleration and an adaptive smooth-
ing scheme and builds upon the stochastic variance-reduced gradient algorithm.
We establish its worst-case global complexity bound and study several practical
variants. We present experimental results on two real-world problems, namely
named entity recognition and visual object localization. The experimental results
show that the proposed framework allows us to build upon efficient inference
algorithms to develop large-scale optimization algorithms for structured prediction
which can achieve competitive performance on the two real-world problems.

1 Introduction

Consider the optimization problem arising when training structural support vector machines:
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where each f(%) is the structural hinge loss. Structural support vector machines were designed for
prediction problems where outputs are discrete data structures such as sequences or trees [59, 65].

Batch nonsmooth optimization algorithms such as cutting plane methods are appropriate for problems
with small or moderate sample sizes [65, 21]. Stochastic nonsmooth optimization algorithms such as
stochastic subgradient methods can tackle problems with large sample sizes [49, 57]. However both
families of methods achieve the typical worst-case complexity bounds of nonsmooth optimization
algorithms and cannot easily leverage a possible hidden smoothness of the objective.

Furthermore, as significant progress is being made on incremental smooth optimization algorithms
for training unstructured prediction models [36], we would like to transfer such advances and design
faster optimization algorithms to train structured prediction models. Indeed if each term in the
finite-sum were L-smooth !, incremental optimization algorithms such as MISO [37], SAG [33, 53],
SAGA [10], SDCA [55], and SVRG [23] could leverage the finite-sum structure of the objective (1)
and achieve faster convergence than batch algorithms on large-scale problems.

"We say f is L-smooth with respect to ||-|| when V f exists everywhere and is L-Lipschitz with respect to
||-|l. Smoothness and strong convexity are taken to be with respect to || - ||2 unless stated otherwise.
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Incremental optimization algorithms can be further accelerated, either on a case-by-case basis [56,
14, 1, 9] or using the Catalyst acceleration scheme [35, 36], to achieve near-optimal convergence
rates [67]. Accelerated incremental optimization algorithms demonstrate stable and fast convergence
behavior on a wide range of problems, in particular for ill-conditioned ones.

We introduce a general framework that allows us to bring the power of accelerated incremental
optimization algorithms to the realm of structured prediction problems. To illustrate our framework,
we focus on the problem of training a structural support vector machine (SSVM). The same ideas can
be applied to other structured prediction models to obtain faster training algorithms.

We seek primal optimization algorithms, as opposed to saddle-point or primal-dual optimization
algorithms, in order to be able to tackle structured prediction models with affine mappings such as
SSVM as well as deep structured prediction models with nonlinear mappings. We show how to shade
off the inherent non-smoothness of the objective while still being able to rely on efficient inference
algorithms.

Smooth inference oracles. We introduce a notion of smooth inference oracles that gracefully fits
the framework of black-box first-order optimization. While the exp inference oracle reveals the
relationship between max-margin and probabilistic structured prediction models, the top-K inference
oracle can be efficiently computed using simple modifications of efficient inference algorithms in
many cases of interest.

Incremental optimization algorithms. We present a new algorithm built on top of SVRG, blending
an extrapolation scheme for acceleration and an adaptive smoothing scheme. We establish the worst-
case complexity bounds of the proposed algorithm and demonstrate its effectiveness compared to
competing algorithms on two tasks, namely named entity recognition and visual object localization.

The code is publicly available on the authors’ websites. All the proofs are provided in [48].

2 Smoothing Inference for Structured Prediction

Given an input & € X of arbitrary structure, e.g. a sentence, a structured prediction model outputs its
prediction as a structured object y € ), such as a parse tree, where the set of all outputs ) may be
finite yet often large. The score function ¢, parameterized by w € R, quantifies the compatibility
of an input & and an output y as ¢(x, y; w). It is assumed to decompose onto the structure at hand
such that the inference problem y*(x; w) € argmax, ¢y ¢(x, y; w) can be solved efficiently by a
combinatorial optimization algorithm. Training a structured prediction model then amounts to finding
the best score function such that the inference procedure provides correct predictions.

Structural hinge loss. The standard formulation uses a feature map ¢ : X x ) — R4 such that score
functions are linear in w, i.e. ¢(x,y;w) = ®(x, y) " w. The structural hinge loss, an extension of
binary and multi-class hinge losses, considers a majorizing surrogate of a given loss function ¢ such
as the Hamming loss, that measures the error incurred by predicting y*(x; w) on a sample (x, y) as
{(y,y*(x;w)). For an input-output pair (x;, y;), the structural hinge loss is defined as

FO(w) = max {¢(xi, y'; w) + Uyi, ¥')} — ¢(ai, yi; w) = max ¢ (y'; w) 2)
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where ¥;(y; w) = ¢(xi, y'sw) + £(y;,y) — 6(xi, yisw) = a,w + by is the augmented
score function, an affine function of w. The loss £ is also assumed to decompose onto the structure so
that the maximization in (2), also known as loss augmented inference, is no harder than the inference
problem consisting in computing y*(x; w). The learning problem (1) is the minimization of the
structural hinge losses on the training data (z;, y;)?_; with a regularization penalty. We shall refer to
a generic term f(w) = max,cy ¥ (y’; w) in the finite-sum from now on.

Smoothing strategy. To smooth the structural hinge loss, we decompose it as the composition of
the max function with a linear mapping. The former can then be easily smoothed through its dual
formulation to obtain a smooth surrogate of (2). Formally, define the mapping g and the max function
h respectively as

g {Rd —R™ .{Rm —R
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where m = |)|. The structural hinge loss can now be expressed as f = h o g.



(a) Non-smooth. (b) 6% smoothing. (c) Entropy smoothing.

Figure 1: Viterbi trellis for a chain graph with four nodes and three labels.

The max function can be written as h(z) = max;cp;,) 2; = MaXyecam-1 z " u where A~ is the
probability simplex in R™. Its simplicity allows us to analytically compute its infimal convolution
with a smooth function [2]. The smoothing /., of h by a strongly convex function w with smoothing
coefficient 1+ > 0 is defined as

hpw(z) == maxyeam—1 {2 u — pw(u)},
whose gradient is the maximizer of the above expression. The smooth approximation of the structural
hinge loss is then given by f,., := h,.,0g. This smoothing technique was introduced by Nesterov [43]

who showed that if w is 1-strongly convex with respect to || - ||, then f is (|| A[|3 ,/p)-smooth?,
and approximates f for any w as

it am s w(u) < F(w) = fuu(w) < g maxgean s w(u).

Smoothing variants. We focus on the negative entropy and the squared Euclidean norm as choices
for w, denoted respectively

—H(u):=Y", u; logu; and Bu) = 1(lul3-1).
The gradient of their corresponding smooth counterparts can be computed respectively by the softmax
and the orthogonal projection onto the simplex, i.e.

Vh_um(z) = [% o ad Vhus(2) = projana(z/u).

The gradient of the smooth surrogate f,,., can be written using the chain rule. This involves computing
Vg along all m = || of its components, which may be intractable. However, for the E% smoothing,
the gradient thzg (2) is given by the projection of z/u onto the simplex, which selects a small
number, denoted K /,,, of its largest coordinates. We shall approximate this projection by fixing K
independently of z/u and defining

h z) = a {zT u— pla(u } ,
wic(2) = max | zqu— pb(u)
as an approximation of hM% (z), where z[g] € R denote the K largest components of z. If

K., < K this approximation is exact and for fixed z, this holds for small enough p, as shown
in [48]. The resulting surrogate is denoted f, x = h, Kk ©g.

Smooth inference oracles. We define a smooth inference oracle as a first-order oracle for a smooth
counterpart of the structural hinge loss. Recall that a first-order oracle for a function f is a numerical
routine which, given a point w € dom(f), returns the function value f(w) and a (sub)gradient
v € Jf(w). We define three variants of a smooth inference oracle: i) the max oracle; ii) the exp
oracle; iii) the top- K oracle. The max oracle corresponds to the usual inference oracle in maximum
margin structured prediction, while the exp oracle and the the top- K oracle correspond resp. to the
entropy-based and £3-based smoothing.

Figure 1 illustrates the notion on a chain structured output. The inference problem is non-smooth
and a small change in w might lead to a radical change in the best scoring path as shown in Fig. 1a.
The ¢3-based smooth inference amounts to picking some number of the top scoring paths. Notice the
sparsity pattern in Fig. 1b. The entropy-based smooth inference amounts to weighting all paths, with
a higher weight for top scoring paths as shown in Fig. 1c.

AL =max{uT Aw [ul <1, [w] <1}

































