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Abstract

Tensor decompositions are fundamental tools for multiway data analysis. Existing
approaches, however, ignore the valuable temporal information along with data,
or simply discretize them into time steps so that important temporal patterns are
easily missed. Moreover, most methods are limited to multilinear decomposition
forms, and hence are unable to capture intricate, nonlinear relationships in data. To
address these issues, we formulate event-tensors, to preserve the complete tempo-
ral information for multiway data, and propose a novel Bayesian nonparametric
decomposition model. Our model can (1) fully exploit the time stamps to capture
the critical, causal/triggering effects between the interaction events, (2) flexibly
estimate the complex relationships between the entities in tensor modes, and (3)
uncover hidden structures from their temporal interactions. For scalable inference,
we develop a doubly stochastic variational Expectation-Maximization algorithm to
conduct an online decomposition. Evaluations on both synthetic and real-world
datasets show that our model not only improves upon the predictive performance
of existing methods, but also discovers interesting clusters underlying the data.

1 Introduction

Tensors represent the high-order interactions between entities in multiway data. Such interactions are
ubiquitous in real-world applications. For instance, in online shopping, users purchase commodities
under different web contexts — these interactions can be represented by a three mode tensor (user,
commodity, web context). To analyze tensor data, we use decomposition approaches — where we
jointly estimate a set of latent factors for each entity, and the mapping between the latent factors
and tensor entry values. The latent factors can reveal hidden structures of the entities, such as
clusters/communities; the mapping characterizes the entities’ relationships (in terms of their factor
representations), and can be used to predict missing entry values.

Despite the wide success of existing tensor decomposition algorithms (Tucker, 1966; Harshman,
1970; Kang et al., 2012; Choi and Vishwanathan, 2014), most methods assume a simple multilinear
decomposition form, which might be insufficient to estimate intricate, nonlinear relationships in data.
More important, most methods ignore the valuable temporal information along with data or exploit
them in a relatively coarse way. For instance, the time stamp of each interaction is usually abandoned
and only their counts are used for count tensor decomposition (Chi and Kolda, 2012; Hansen et al.,
2015; Hu et al., 2015b). More elegant approaches (Xiong et al., 2010; Schein et al., 2015, 2016)
discretize the time stamps into steps, e.g., weeks/months, and use a set of time factors to represent
each step. The tensor is hence augmented with a time mode. The decomposition may further use
Markov assumptions to encourage smooth transitions between the time factors (Xiong et al., 2010).
However, in each time step, the occurrences of the interactions are treated independently. Hence,
important temporal patterns, such as causal/triggering effects in adjacent interactions, cannot be well
modeled or captured.
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To address these issues, we first formulate a new data abstraction, event-tensor, to preserve all the time
stamps for multiway data. In an event-tensor, each entry comprises a sequence of interaction events
rather than a numerical value. Second, we propose a powerful Bayesian nonparametric model to
decompose event-tensors (Section 3). We hybridize latent Gaussian processes and Hawkes processes
to capture various excitation effects among the observed interaction events, and the underlying
complex relationships between the entities that participated in the events. Furthermore, we design
a novel triggering function that enables discovering clusters of entities (or latent factors) in terms
of excitation strengths. Besides, the triggering function allows us to flexibly specify the triggering
range (say, via domain knowledge) to better capture local excitations and to control the trade-off to
the computational cost. Finally, to handle data where both the tensor entries and interaction events
are many, we derive a fully decomposed variational model evidence lower bound by using Poisson
process superposition theorem and the variational sparse Gaussian process framework (Titsias, 2009).
Based on the bound, we develop a doubly stochastic variational Expectation-Maximization algorithm
to fulfill a scalable, online decomposition (Section 4).

For evaluation, we examined our model in both predictive performance and structure discovery. On
three real-world datasets, our model often largely improves upon the prediction accuracy of the
existing methods that use Poisson processes and/or time factors to incorporate temporal information.
Simulation shows the latent factors estimated by our model clearly reflect the ground-truth clusters
while by the competing methods do not. We further examined the structures discovered by our model
on the real-world datasets and found many interesting patterns, such as groups of 911 accidents
with strong associations, locations of townships that are apt to have consecutive accidents, and UFO
shapes that are more likely to be sighted together (Section 6).

2 Background
Tensor Decomposition. We denote a K-mode tensor byM∈ Rd1×...×dK , where dk is the dimen-
sion of k-th mode, corresponding to dk entities (e.g., users or items). The entry value at location
i = (i1, . . . , iK) is denoted by mi. Given a tensorW ∈ Rr1×...×rK , and a matrix U ∈ Rs×t, we
can multiplyW by U at mode k when rk = t. The result is a new tensor of size r1 × . . .× rk−1 ×
s× rk+1× . . .× rK . Each entry is computed by (W×k U)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKujik .

For decomposition, we introduce K latent factor matrices, U = {U(1), . . . ,U(K)}, to represent the
entities in each tensor mode — each U(k)(j, :) are the latent factors of the j-th entity in mode k.

The classical Tucker decomposition (Tucker, 1966) incorporates a small core tensorW ∈ Rr1×...×rK ,
and assumes M = W ×1 U(1) ×2 . . . ×K U(K). We can simplify Tucker decomposition, by
restricting r1 = . . . = rK andW to be diagonal. Then we reduce to CANDECOMP/PARAFAC (CP)
decomposition (Harshman, 1970). While many other decomposition methods have been proposed
e.g., (Chu and Ghahramani, 2009; Kang et al., 2012; Choi and Vishwanathan, 2014), most of them
are still based on the Tucker/CP forms. However, the multilinear assumptions might be insufficient to
capture intricate, highly nonlinear relationships in data.

Recently, several Bayesian nonparametric tensor decomposition models (Xu et al., 2012; Zhe et al.,
2016b) are proposed, which are flexible to capture various nonlinear relationships in data. For
example, Zhe et al. (2016b) considered each entry value mi as a function of the corresponding latent
factors, i.e.,mi = f([U(1)(i1, :), . . . ,U

(K)(iK , :)]), and placed a Gaussian process (GP) (Rasmussen
and Williams, 2006) prior over f(·), to automatically infer the (possible) nonlinearity of f(·). These
methods often improve the CP/Tucker decompositions by a large margin in missing value prediction.

Decomposition with Temporal Information. Practical tensors often come with temporal informa-
tion, namely the time stamps of those interactions. For example, from a file access log, we can extract
not only a three-mode (user, action, file) tensor, but also the time stamps for each user taking the
action to access a file. To use the temporal information in the decomposition, many methods discard
the time stamps, use a Poisson (process) likelihood to model the interaction frequency mi in each
entry i, p(mi) ∝ e−λiTλmi

i (Chi and Kolda, 2012; Hu et al., 2015b), and perform the Tucker/CP
decomposition over {λi} or {log(λi)}. More refined approaches (Xiong et al., 2010; Schein et al.,
2015, 2016) first discretize the time stamps into several steps, such as months/weeks, and augment
the original tensor with a time mode. Then a time factor matrix T are estimated in the decomposition.
While the interactions from different time steps are modeled with distinct time factors, the ones in
the same interval are considered independently (given the latent factors), say, being modeled by
Poisson likelihoods (Schein et al., 2015, 2016). A Markov assumption might be used to encourage
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the smoothness between the time factors. For example, Xiong et al. (2010) assigned a conditional
Gaussian prior over each T(k, :), p

(
T(k, :)|T(k − 1, :)

)
= N

(
T(k, :)|T(k − 1, :), σ2I

)
.

3 Model
Despite the success of existing approaches in exploiting temporal information, they entirely drop the
time stamps and hence are unable to capture the important, triggering or causal effects between the
interactions. The triggering effects are common in real-world applications. For example, the event
that user A purchased commodity B may excite A’s friend C to purchase B as well. The triggering
effects are usually local and decay fast with time; dropping the time stamps and considering the event
occurrences independently make us unable to model/capture these effects.

To address these issues, and hence to further capture the complex relationships and important
structures underlying the interaction events, we formulate a new data abstraction, event-tensor,
to preserve all the time stamps. We then propose a powerful Bayesian nonparametric model to
decompose the event-tensors, discussed as follows.

3.1 Event-Tensor Formulation

First, let us look at the definition of event-tensors. To preserve the complete temporal information in
decomposition, we relax the definition that tensors must be multidimensional arrays of numerical
values. Instead, we define that each entry is a sequence of events, i.e., mi = {s1

i , . . . , s
ni

i } where each
ski (1 ≤ k ≤ ni) is a time stamp when the interaction happened, and ni the count of the events. Note
that, different entries correspond to distinct types of interaction events, since the involved entities (or
latent factors) are different. We name this tensor as an event-tensor. Given the observed entries {mi},
we can flatten their event sequences to obtain a single sequence S = [(s1, i1), . . . (sN , iN )] where
s1 ≤ . . . ≤ sN are all the time stamps, and each ik is the entry index for the event sk(1 ≤ k ≤ N) .

3.2 Nonparametric Event-Tensor Decomposition

Now, we consider a probabilistic model for event-tensor decomposition. While Poisson processes
(PPs) have many nice properties and are often good choices of modeling events (Schein et al., 2015),
they assume event occurences are independent (i.e., independent increments), and hence are unable
to capture the influences of the events on each other. To overcome this limit, we use a much more
expressive point process, Hawkes process (Hawkes, 1971), for events modeling in tensor entries.
Given an event sequence {t1, . . . tn}, the Hawkes process defines the event rate λ as a function of
time t, λ(t) = λ0 +

∑
ti<t

h(t− ti), where λ0 is the base rate (or background rate), and h(∆t) is the
triggering function, which describes the strength of a preceding event triggering a new event at time t.
Note that the strength usually decays with time. For example, a commonly used triggering function is
h(∆t) = β exp(−∆t

τ ), which expresses an exponential decay over time. The joint probability of the
sequence {t1, . . . tn} is p({t1, . . . tn}) = e−

∫ T
0
λ(t)

∏n
j=1 λ(tj), where T is the total time span.

In our model, for each observed entry i we use a Hawkes process to sample the interaction sequence
mi. As in section 3.1, we denote the flattened single event sequence over all the observed entries by
S = [(s1, i1), . . . , (sN , iN )]. For the process in entry i, we define the rate function as

λi(t) = λ0
i +

∑
sn<t

hin→i(t− sn) (1)

where λ0
i is the base rate and hin→i(∆t) is the triggering function.

Now, let us present the detailed design for the base rate and triggering function. First, to capture
the (complex) relationships between the entities underlying the events in entry i, we assume the
background rate λ0

i , is a (possible) nonlinear function of the corresponding latent factors, xi =

[U(1)(i1, :), . . . ,U
(K)(iK , :)]. To ensure the positiveness of λ0

i , we sample a latent function f(xi)

and take λ0
i = ef(xi). We place a Gaussian process (GP) prior over f(·). Hence, the latent function

values f for all the observed entries follow a multivariate Gaussian distribution,

p(f |U) = N
(
f |0, c(X,X)

)
(2)

where each row of the input matrix X corresponds to one entry, and are the concatenation of the
corresponding latent factors; c(·, ·) is the covariance function, and can be some nonlinear or/and
periodical kernels.
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Second, to capture various excitation effects and the underlying structures of the entities, we design
the triggering function as the following form:

hin→i(t− sn) = k(xin ,xi)h0(t− sn) (3)

where k(·, ·) is a kernel function, xin and xi are the concatenated latent factors for entries in and
i, respectively; h0(·) is the base triggering function which we will explain later. In our design,
the excitation strength between the two types of interactions, in and i, is determined by the close-
ness/similarity between the associated entities. The closeness is measured by the kernel function of
their latent factors. Such design enables our model to discover the grouping structures hidden in the
triggering effects — entities in the same group/community more strongly excite each other to interact
with other modes’ entities from the same group, e.g., “purchasing the same brand of products" and
“watching the same types of movies".

Next, we design a local base triggering function, to better capture the locality of the triggering effects,

h0(t− sn) = 1(sn ∈ At)βe−
1
τ (t−sn) (4)

whereAt is the set of possible triggering events to time t. By settingAt, we can specify the appropriate
range of triggering effects through domain knowledge, or the best trade-off to the computational
efficiency. In our model, we define At as the collection of preceding events nearest to time t in the
time window ∆max, At = {sj |sj ∈ Pt(Cmax), t − ∆max ≤ sj ≤ t} where Pt(Cmax) are Cmax

preceding events nearest to t.

Finally, given the observed entries {mi}, based on (1) and (2), the joint probability of our model is

p({mi, fi}|U) = N
(
f |0, c(X,X)

)∏
i
e−

∫ T
0
λi(t)dt

∏ni

j=1
λi(s

n
i ) (5)

where mi = {s1
i , . . . , s

ni

i } and fi is the latent function value for entry i, used in our definition of the
base rate, λ0

i = efi .

4 Algorithm
4.1 Decomposable Variational Lower Bound
Exact inference of our model is computationally infeasible for large data, because the GP term in (5)
is required to compute the covariance matrix c(X,X) and its inverse, which intertwine all the latent
factors — when the number of observed entries is large, the computation is infeasible. Furthermore,
the log joint probability of our model involves many log-summation terms, {log(λi(s

n
i ))}— these

terms further couples the latent factors (see (3)) and the base triggering function parameters, β and τ
(see (4)), making the computation even less efficient.

To tackle these problems, we first consider the standard variational sparse GP framework (Titsias,
2009). We introduce Q pseudo inputs B and targets g. Note that Q is much smaller than the
number of tensor entries. We assume g and f are sampled from the same Gaussian process, and
hence they jointly follow a multivariate Gaussian distribution, p(f ,g) = N ([g; f ]|0,C) where
C = [c(B,B), c(B,X); c(X,B), c(X,X)] and c(X,B) is the cross-covariance between X and B.
We then augment our model with the pseudo target g, p(f ,g, {mi}|U) = p(g)p(f |g)p({mi}|f ,U).
Following (Titsias, 2009), we introduce a variational distribution q(g) and apply Jensen’s inequity
to obtain log

(
p({mi}|U)

)
≥ Eq(g) log(p(g)

q(g) ) + Eq(g) log
(
Ep(f |g)p({mi}|f ,U)

)
. Next, we apply

Jensen’s inequality again for the second term to switch the order of logarithm and the expecta-
tion, so as to obtain a lower bound decomposed over tensor entries, log

(
Ep(f |g)p({mi}|f ,U)

)
≥

Ep(f |g) log
(
p({mi}|f ,U)

)
=
∑

i Ep(fi|g) log
(
p(mi|fi,U)

)
. Note that p(fi|g) is scalar conditional

Gaussian distribution. However, this step is infeasible, because the expectations are not analyti-
cal — each base rate efi is trapped in a set of the log-summation terms, i.e., log

(
p(mi|fi,U)

)
=

−efiT +
∑ni

j=1 log(efi + aj) + a0 where a0, {aj} are the terms irrelevant to fi. This stems from
the additive form of the Hawkes process rate function (see (1)). The expectation w.r.t a Gaussian
distribution is not analytical.

To solve this problem, we exploit Poisson process super-position theorem (Cinlar and Agnew, 1968)
to further augment our model with event cause variables. Thereby the base rate can be decoupled
from the log-summation terms, and we can derive a tractable and decomposable bound.

Specifically, by the super-position theorem, each additive component in the rate function (1) can be
considered as an independent Poisson process. The Hawkes process is equivalent to the union of
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these Poisson processes — each event is sampled from one of these processes. Therefore, it is natural
to introduce a latent cause variable z for each event: z = 0 if the event is caused by the base rate;
z = n if the event is caused by a preceding event sn.

For clearer description, let us consider the flattened single event sequence S = [(s1, i1), . . . , (sN , iN )]
over all the observed tensor entries. Note that this is an equivalent representation of our observed
data {mi}. For each event sj(1 ≤ j ≤ N), we introduce a latent cause variable zj . Thanks to our
local triggering function (4), we can use domain knowledge to determine an appropriate range of the
cause, i.e., zj ∈ {0} ∪ Āsj where Āsj are the indices of the events in Asj . Note that short ranges are
helpful to capture local excitations and to reduce the computation cost in model estimation. Given the
latent cause variables, {zj}Nj=1, we can partition the whole sequence S into multiple Poisson process
sequences. The probability of our model augmented with the latent cause variables is then derived by

p({sj , ij , zj}Nj=1|f) =
∏
i∈O

p({sn|in = i, zn = 0}|λ0
i )

N∏
j=1

∏
i∈O

p
(
{sn|in = i, zn = j}|hij→i(t− sj)

)
=
∏
i∈O

N∏
j=1

e
−

∫ T
sj
hij→i(t−sj)dt

N∏
j=1

∏
n∈Āsj

hin→ij (sj − sn)1(zj=n)
∏
i∈O

e−T ·e
fi+fi

(∑N
j=1 1(ij=i,zj=0)

)
where λ0

i = efi , O are the indices for all the observed entries, and 1(·) is the indicator function.
As we can see, the latent function values f are now decoupled into individual exponential terms.
Although e−T ·e

fi looks nontrivial, we are still able to follow (Titsias, 2009) to derive an analytical
variational bound (given in the below).

To infer the posterior distributions of the latent causes z = [z1, . . . zN ], we further introduce a varia-
tional posterior q(z) with the mean-field form, q(z) =

∏N
j=1 q(zj). Using the standard frameworks

for variational sparse GP and mean-field approximations, we finally derive a tractable variational
model evidence lower bound,

L = −
N∑
j=1

∑
i∈O

∫ T

sj

hij→i(t− sj)dt+

N∑
j=1

Eq(g)Ep(fij |g)

(
Eq(zj)

(
1(zj = 0)

)
fij −

T

nij
efij
)

+

N∑
j=1

∑
n∈Āsj

Eq(zj)
(
1(zj = n)) log

(
hij→i(sj − sn)

)
+ Eq(g)

(
log

p(g)

q(g)

)
(6)

where q(g) is the variational posterior of the pseudo targets in sparse GP. We assume q(g) =
N (g|µ,Σ), and each q(zj) is a multinomial distribution. As we can see, the variational lower bound
is decomposed over each event — this additive structure enables us to develop a scalable stochastic
inference algorithm, presented as follows.

4.2 Doubly Stochastic Variational Expectation-Maximization Inference

Given the variational lower bound (6), our model inference amounts to maximizing this bound. While
the standard variational Expectation-Maximization (EM) algorithm is available, this batch inference
paradigm can be very inefficient when the observed events are many, because each E-M iteration
requires to pass all the events. Moreover, the batch inference is not suitable for dynamic event-tensors,
where the events are collected in real-time. It is therefore natural to design a stochastic inference
algorithm, where we sample a mini-batch of events at a time and perform a local variational EM
update: in the E step, we update the variational posteriors for the latent causes variables, {q(zj)}. In
the M step, we update the latent factors and all the other parameters with stochastic gradient accent.

However, this stochastic inference following the standard recipe may still be inefficient when the
tensor entries are many as well. The reason is that our bound has a double summation term,∑N
j=1

∑
i∈O

∫ T
sj
hij→i(t− sj)dt. While each time we only need to handle a mini-batch of events,

for each event we have to process all the tensor entries in the inner summation. Consider that a small
tensor of size 100× 100× 100 can have up to 1 million observed entries. The computation can be
extremely expensive.

To deal with both large numbers of events and tensor entries, we further develop a doubly stochastic
variational EM algorithm. Specifically, we randomly partition both the events and the tensor entries
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into mini-batches, {Nk} and {Ml}, according to which we arrange our variational bound as

L = Eq(g)

(
log

p(g)

q(g)

)
+
∑
k

|Nk|
N

∑
j∈Nk

φsj ,Āsj
N

|Nk|
+
∑
k

∑
l

|Nk|
N

|Ml|
M

∑
j∈Nk

∑
i∈Ml

ψsj ,i,ij
N

|Nk|
M

|Ml|

where |·| is the size of the mini-batch,M is the number of observed entries, ψsj ,i,ij = −
∫ T
sj
hij→i(t−

sj)dt, and φsj ,Āsj = Eq(g)Ep(fij |g)

(
Eq(zj)

(
1(zj = 0)

)
fij − T

nij
efij
)

+
∑
n∈Āsj

Eq(zj)
(
1(zj =

n)) log
(
hij→i(sj − sn)

)
. Then, the bound can be considered as an expectation of a stochastic

objective, L = Ep(k),p(l)(L̃k,l), where p(k) = |Nk|
N , p(l) = |Ml|

M , and

L̃k,l = Eq(g)

(
log

p(g)

q(g)

)
+
∑
j∈Nk

φsj ,Āsj
N

|Nk|
+
∑
j∈Nk

∑
i∈Ml

ψsj ,i,ij
N

|Nk|
M

|Ml|
.

We can therefore develop a doubly-stochastic EM algorithm to maximize L. Each time, we sample
two mini-batches,Nk andMl, one for the events and the other for the tensor entries. We then optimize
the stochastic objective, L̃k,l, with one E-M iteration. In the E step, we optimize the variational
posteriors of the latent causes {q(zj)} associated with the events in Nk; in the M step, we update

all the other parameters θ with stochastic gradient accent, θ ← θ + η
∂L̃k,l
∂θ , where η is the step size.

Here θ include the latent factors U , the base triggering function parameters β and τ , the pseudo inputs
B, the kernel parameters, and the mean and covariance of q(g). The detailed updating equations are
listed in the supplementary material. Note that we cannot update q(g) in the E-step because we do
not have an analytical updating formula. We repeat this process until convergence or the maximum
number of batches have been processed.

4.3 Algorithm Complexity

The time complexity of our algorithm is O(Q3Eb + EbVb) where Eb and Vb are mini-batch sizes
for events and tensor entries, respectively. Since Q � N,M is constant, the time complexity is
proportional to the sizes of the mini-batches. The space complexity is O(

∑K
k=1 dkrk +Q2), which

is to store all the latent factors, and covariance of q(g) and all the other parameters.

5 Related Works
Many excellent works have been proposed for tensor decomposition (Shashua and Hazan, 2005;
Chu and Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011; Hoff, 2011; Kang et al., 2012;
Yang and Dunson, 2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015a; Rai et al.,
2015). Most of them are based on the classical, multilinear Tucker (Tucker, 1966) or CP (Harshman,
1970) decompositions. Recently, several nonparametric decomposition methods (Xu et al., 2012;
Zhe et al., 2015, 2016a,b) were developed to capture nonlinear relationships in data, and have shown
excellent predictive performance. However, most methods ignore the temporal information, or simply
integrate them into count tensors (Chi and Kolda, 2012; Hansen et al., 2015; Hu et al., 2015b). The
latter approaches usually use Poisson processes to model events, and ignore the temporal influences
among those events. More elegant, temporal decomposition approaches (Xiong et al., 2010; Schein
et al., 2015, 2016) introduce extra time factors to capture refined temporal patterns. However, since
they discretize the time stamps into steps, they still lose information and are unable to capture fine-
grained, triggering effects within the events. To address these problems, we formulated event-tensors
to keep the complete temporal information, and proposed a powerful nonparametric event-tensor
decomposition model by hybridizing latent GPs and Hawkes processes. Our model can be further
extended for more general, temporal high-order relation data analysis (DuBois and Smyth, 2010;
DuBois et al., 2013).

Due to the great flexibility, Hawkes processes (HPs) have been an important tool for discovering
latent structures/relationships within general types of events, including reciprocal relationship on
graphs (Blundell et al., 2012), latent network structures (Linderman and Adams, 2014), temporal
clustering of documents (Du et al., 2015), network structures and topics in text-based cascades (He
et al., 2015), user activity levels (Wang et al., 2017), etc. Moreover, many works have been developed
for general HP modeling and inference (Zhou et al., 2013; Xu et al., 2016, 2017). Different from
these methods, our doubly stochastic variational EM inference is designed for a hybrid of latent GP
and HP model (on event-tensors).
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6 Experiment
6.1 Predictive Performance
Datasets. To examine the predictive performance, we used three real-world datasets, Article(www.
kaggle.com/gspmoreira/articles-sharing-reading-from-cit-deskdrop/
data), UFO(www.kaggle.com/NUFORC/ufo-sightings/data) and 911(www.kaggle.
com/mchirico/montcoalert/data). The Article data are 12 month logs (03/2016 - 02/2017)
of CI&T’s Internal Communication platform (DeskDrop), which record users’ operations on the
shared articles, such as LIKE, FOLLOW and BOOKMARK. We extracted a three mode event-tensor
(user, operation, session id), of size 1895 × 5 × 2987. There are 50, 938 entries observed to have
events. The length of the longest event sequence in all the entries is 76. The total number of events is
72, 312. The UFO data consist of reported UFO sightings over the last century in the world, from
which we extracted a two mode event-tensor (UFO shape, city), of size 28× 19, 408, with 45, 045
entries observed to have sighting events. The longest event sequence length is 113. There are in total
77,747 events. The 911 data record the emergency (911) calls from 2015-12-10 to 2017-04-10 in
Montgomery County, PA. We focused on the Emergence Medical Service (EMS) calls and extracted
a two mode event-tensor (EMS title, township), which is 72× 69. There are 2, 494 entries observed to
have events. The length of the longest event sequence is 545. The total number of events are 59,270.

Competing methods. We compared our approach with the following typical methods to incorporate
the temporal information into tensor decomposition. (1) CP-PTF — the Poisson process (PP) tensor
factorization model using CP to decompose event rates. Similar to our approach, the CP form is
applied in the log-domain to ensure the positiveness of the rates. We have investigated alternative
methods (Chi and Kolda, 2012) where the latent factors are constrained to be nonnegative and so CP
is directly applied over the rates. There was tiny difference in predictive performance. (2) CPT-PTF —
where, similar to (Schein et al., 2015), we discretized the time stamps into multiple steps, augmented
the tensor with a time mode to represent the time steps, and used PPs to model the event rate in the
each step and CP to decompose the rates. As in (Xiong et al., 2010), we assigned conditional priors
over the time factors to encourage their smooth transitions. In addition, we implemented (3) GP-PTF,
the PP tensor factorization using GPs to model the event rates as a (nonlinear) function of the latent
factors. This is the same strategy as we used to model the base rates of the HPs in our approach. For
a fair comparison, we ran all the competing methods with standard stochastic inference, where each
time, a mini-batch of tensor entries are sampled and the latent factors are updated with the stochastic
gradient ascent. For GP-PTF, we used the same variational sparse GP framework as in our approach.

Parameter settings. We varied the number of latent factors from {1, 2, 5, 8}. For both GP-PTF
and our method, we used the ARD kernel and set the number of pseudo inputs to 100. For a fair
comparison, all the methods were initialized with the same latent factors, which were drawn element-
wisely from the uniform distribution in [0, 1]. For training, we used the first 50K, 40K and 40K
events in Article, UFO and 911 respectively, and the remaining 22.3K, 19.3K and 30.4K events for
testing. For CPT-PTF, we varied the number of time steps from {5, 10, 20, 30}. For our approach, to
examine different settings of the triggering range, we fixed the maximum number of triggering events
Cmax to 300 and varied the maximum triggering time window ∆max from {1, 2, 3} hours for Article
and 911, and {1, 3, 5} days for UFO. The mini-batch sizes of tensor entries (for all the methods),
and events (for our method only) are both set to 100. We used AdaDelta (Zeiler, 2012) to adjust
the step-size for the stochastic gradient ascent, and ran 100 epochs for each method. To remove the
vibration of the prediction accuracy (due to the stochastic updates) from evaluation, we computed the
test log likelihood after each epoch, and then reported the largest one as the prediction result.

Results. As shown in Fig. 1a-c, our approach outperforms all the competing methods, and in many
cases improves them by a large margin. Note that the second best approach is always GP-PTF,
implying complex, nonlinear relationships within the events. Furthermore, our improvement over
GP-PTF demonstrates the advantage of using HPs to capture the (local) triggering effects between the
events. To examine the dynamic behaviors of our doubly stochastic algorithm, we reported the test
log likelihoods after each epoch in Article and 911 when the factor number was set to 8. As shown in
Fig. 1d-e, the predictive performance of our algorithm kept improving and tended to converge at last.
The running time is provided in the supplementary material.

6.2 Latent Structure Discovery
Next, we examined the capability of our model in discovering latent structures. We first simu-
lated a small 10 × 10 × 10 event-tensor with highly nonlinear hidden relationships between the
latent factors, and the factors in each mode form 2 clusters (see the details in the supplementary
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Figure 1: The prediction performance on the three real-world datasets (a-c) and along with running time (d-e).
CPT-PTF-{5, 10, 20, 30} correspond to CPT-PTF using {5, 10, 20, 30} time steps. Ours-Win-{1, 2, 3} are our
methods using three triggering time windows.

(a) CP-PTF (b) GP-PTF (c) Ours
Figure 2: The estimated latent factors in
synthetic data.

material). We ran CP-PTF, GP-PTF and our approach for
50 epochs to estimate the latent factors. The results of the
second mode are reported in Figure 2. The markers (and
the colors) of the points (i.e., latent factors) exhibit their
ground-truth classes. As we can see, CP-PTF obtained
factors with mixed classes and unclear structures (Fig.
2a), GP-PTF with clearer cluster structures but mistaken
groups (Fig. 2b). Our approach recovered both the clear
cluster structures and correct factor groups (Fig. 2c).

(a) EMS titles (b) UFO shapes

(c) Townships
Figure 3: Structures reflected from the latent
factors learned by our model on 911 on UFO.
In (c), the clusters of townships are shown in
the actual map.

In addition, we examined the structures discovered by our
model from real-world applications. To this end, we used
k-means plus BIC to cluster our estimated latent factors for
911 and UFO datasets (see Sec. 2.3 of the supplementary
material for more details). We obtained 6 groups of EMS
titles and 10 groups of townships for 911, as shown in
Figure 3a and c. We obtained 4 groups of UFO shapes,
as shown in Figure 3b. Due to the space limit, we do not
report the clusters of UFO sighting cities (19K cities).

As we can see, the estimated latent factors for both 911 and
UFO datasets reflect clear cluster structures, which may
imply interesting patterns. First, we found that the clusters
of EMS titles often contain accidents/events with strong
associations. For example, Cluster 1 in Fig. 3a consist of
{SHOOTING, AMPUTATION and S/B AT HELICOPTER
LANDING} — after SHOOTING or accidental AMPU-
TATION, the urgent rescue may require HELICOPTER
supports. For another example, Cluster 2 are about dis-
ease symptoms, and include SEIZURES, CVA/STROKE,
OVERDOSE, ABDOMINAL PAINS, etc. It is known
that STOKE is a common cause of SEIZURE (De Reuck,
2009) — in the aftermath of a stroke, the seizure is often
experienced. Likewise, it is common that after OVERDOSES, people may feel ABDOMINAL
PAINS. The detailed EMS titles in each cluster are listed in Table 1 of the supplementary material.
Furthermore, from Figure 3c, we can see the cluster of townships tend to neighbor each other. This is
reasonable, since one accident is more likely to cause subsequent accidents in adjacent geolocations.
For example, a severe road accident may cause a traffic jam in a nearby town.

Second, we investigated the clusters of UFO shapes on UFO data (Fig. 3b). We found these clusters
correspond to different appearance patterns. For example, Cluster 1 contain more three-dimensional
looks, including cone, cylinder, egg, pyramid, etc, while Cluster 2 comprise thinner/flatter shapes,
such as disk and cigar. Cluster 3 are {fireball, flash} and Cluster 4 are more about formation flying,
such as cross, delta and round. The details are in Table 2 of the supplementary material. Generally, it
reflects UFOs with similar looks are more likely to be sighted together/successively in a short time.

7 Conclusion
We proposed a nonparametric event-tensor decomposition model to capture the complex relationships
and temporal dependencies in tensor data with time stamps. We developed a doubly stochastic
variational EM algorithm for scalable inference. Our model has shown effectiveness on several
real-world datasets. In the future, we will investigate more and larger scale applications.
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