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Abstract

We consider the problem of anomaly detection in images, and present a new
detection technique. Given a sample of images, all known to belong to a “normal”
class (e.g., dogs), we show how to train a deep neural model that can detect
out-of-distribution images (i.e., non-dog objects). The main idea behind our
scheme is to train a multi-class model to discriminate between dozens of geometric
transformations applied on all the given images. The auxiliary expertise learned
by the model generates feature detectors that effectively identify, at test time,
anomalous images based on the softmax activation statistics of the model when
applied on transformed images. We present extensive experiments using the
proposed detector, which indicate that our technique consistently improves all
known algorithms by a wide margin.

1 Introduction

Future machine learning applications such as self-driving cars or domestic robots will, inevitably,
encounter various kinds of risks including statistical uncertainties. To be usable, these applications
should be as robust as possible to such risks. One such risk is exposure to statistical errors or
inconsistencies due to distributional divergences or noisy observations. The well-known problem
of anomaly/novelty detection highlights some of these risks, and its resolution is of the utmost
importance to mission critical machine learning applications. While anomaly detection has long
been considered in the literature, conclusive understanding of this problem in the context of deep
neural models is sorely lacking. For example, in machine vision applications, presently available
novelty detection methods can suffer from poor performance in some problems, as demonstrated by
our experiments.

In the basic anomaly detection problem, we have a sample from a “normal” class of instances,
emerging from some distribution, and the goal is to construct a classifier capable of detecting out-
of-distribution “abnormal” instances [5].1 There are quite a few variants of this basic anomaly
detection problem. For example, in the positive and unlabeled version, we are given a sample from
the “normal” class, as well as an unlabeled sample that is contaminated with abnormal instances.
This contaminated-sample variant turns out to be easier than the pure version of the problem (in the
sense that better performance can be achieved) [2]. In the present paper, we focus on the basic (and
harder) version of anomaly detection, and consider only machine vision applications for which deep
models (e.g., convolutional neural networks) are essential.

There are a few works that tackle the basic, pure-sample-anomaly detection problem in the context
of images. The most successful results among these are reported for methods that rely on one of

1Unless otherwise mentioned, the use of the adjective “normal” is unrelated to the Gaussian distribution.
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the following two general schemes. The first scheme consists of methods that analyze errors in
reconstruction, which is based either on autoencoders or generative adversarial models (GANs)
trained over the normal class. In the former case, reconstruction deficiency of a test point indicates
abnormality. In the latter, the reconstruction error of a test instance is estimated using optimization to
find the approximate inverse of the generator. The second class of methods utilizes an autoencoder
trained over the normal class to generate a low-dimensional embedding. To identify anomalies,
one uses classical methods over this embedding, such as low-density rejection [8, 9] or single-class
SVM [29, 30]. A more advanced variant of this approach combines these two steps (encoding and
then detection) using an appropriate cost function, which is used to train a single neural model that
performs both procedures [27].

In this paper we consider a completely different approach that bypasses reconstruction (as in au-
toencoders or GANs) altogether. The proposed method is based on the observation that learning to
discriminate between many types of geometric transformations applied to normal images, encourages
learning of features that are useful for detecting novelties. Thus, we train a multi-class neural classifier
over a self-labeled dataset, which is created from the normal instances and their transformed versions,
obtained by applying numerous geometric transformations. At test time, this discriminative model is
applied on transformed instances of the test example, and the distribution of softmax response values
of the “normal” train images is used for effective detection of novelties. The intuition behind our
method is that by training the classifier to distinguish between transformed images, it must learn
salient geometrical features, some of which are likely to be unique to the single class.

We present extensive experiments of the proposed method and compare it to several state-of-the-art
methods for pure anomaly detection. We evaluate performance using a one-vs-all scheme over
several image datasets such as CIFAR-100, which (to the best of our knowledge) have never been
considered before in this setting. Our results overwhelmingly indicate that the proposed method
achieves dramatic improvements over the best available methods. For example, on the CIFAR-10
dataset (10 different experiments), we improved the top performing baseline AUROC by 32% on
average. In the CatsVsDogs dataset, we improve the top performing baseline AUROC by 67%.

2 Related Work

The literature related to anomaly detection is extensive and beyond the scope of this paper (see,
e.g., [5, 42] for wider scope surveys). Our focus is on anomaly detection in the context of images
and deep learning. In this scope, most published works rely, implicitly or explicitly, on some form
of (unsupervised) reconstruction learning. These methods can be roughly categorized into two
approaches.

Reconstruction-based anomaly score. These methods assume that anomalies possess different
visual attributes than their non-anomalous counterparts, so it will be difficult to compress and
reconstruct them based on a reconstruction scheme optimized for single-class data. Motivated by
this assumption, the anomaly score for a new sample is given by the quality of the reconstructed
image, which is usually measured by the `2 distance between the original and reconstructed image.
Classic methods belonging to this category include Principal Component Analysis (PCA) [18], and
Robust-PCA [4]. In the context of deep learning, various forms of deep autoencoders are the main tool
used for reconstruction-based anomaly scoring. Xia et al. [37] use a convolutional autoencoder with
a regularizing term that encourages outlier samples to have a large reconstruction error. Variational
autoencoder is used by An and Cho [1], where they estimate the reconstruction probability through
Monte-Carlo sampling, from which they extract an anomaly score. Another related method, which
scores an unseen sample based on the ability of the model to generate a similar one, uses Generative
Adversarial Networks (GANS) [16]. Schlegl et al. [28] use this approach on optical coherence
tomography images of the retina. Deecke et al. [7] employ a variation of this model called ADGAN,
reporting slightly superior results on CIFAR-10 [21] and MNIST [22].

Reconstruction-based representation learning. Many conventional anomaly detection methods
use a low-density rejection principle [8]. Given data, the density at each point is estimated, and new
samples are deemed anomalous when they lie in a low-density region. Examples of such methods
are kernel density estimation (KDE) [25], and Robust-KDE [19]. This approach is known to be
problematic when handling high-dimensional data due to the curse of dimensionality. To mitigate
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this problem, practitioners often use a two-step approach of learning a compact representation of
the data, and then applying density estimation methods on the lower-dimensional representation [4].
More advanced techniques combine these two steps and aim to learn a representation that facilitates
the density estimation task. Zhai et al. [41] utilize an energy-based model in the form of a regularized
autoencoder in order to map each sample to an energy score, which is the estimated negative log-
probability of the sample under the data distribution. Zong et al. [43] uses the representation layer of
an autoencoder in order to estimate parameters of a Gaussian mixture model.

There are few approaches that tackled the anomaly detection problem without resorting to some form
of reconstruction. A recent example was published by Ruff et al. [27], who have developed a deep
one-class SVM model. The model consists of a deep neural network whose weights are optimized
using a loss function resembling the SVDD [30] objective.

3 Problem Statement

In this paper, we consider the problem of anomaly detection in images. Let X be the space of all
“natural” images, and let X ⊆ X be the set of images defined as normal. Given a sample S ⊆ X ,
and a type-II error constraint (rate of normal samples that were classified as anomalies), we would
like to learn the best possible (in terms of type-I error) classifier hS(x) : X → {0, 1}, where
hS(x) = 1 ⇔ x ∈ X , which satisfies the constraint. Images that are not in X are referred to as
anomalies or novelties.

To control the trade-off between type-I and type-II errors when classifying, a common practice is to
learn a scoring (ranking) function nS(x) : X → R, such that higher scores indicate that samples are
more likely to be in X . Once such a scoring function has been learned, a classifier can be constructed
from it by specifying an anomaly threshold (λ):

hλS(x) =

{
1 nS(x) ≥ λ
0 nS(x) < λ.

As many related works [28, 31, 17], in this paper we also focus only on learning the scoring function
nS(x), and completely ignore the constrained binary decision problem. A useful (and common
practice) performance metric to measure the quality of the trade-off of a given scoring function is the
area under the Receiver Operating Characteristic (ROC) curve, which we denote here as AUROC.
When prior knowledge on the proportion of anomalies is available, the area under the precision-recall
curve (AUPR) metric might be preferred [6]. We also report on performance in term of this metric in
the supplementary material.

4 Discriminative Learning of an Anomaly Scoring Function Using
Geometric Transformations

As noted above, we aim to learn a scoring function nS (as described in Section 3) in a discriminative
fashion. To this end, we create a self-labeled dataset of images from our initial training set S, by
using a class of geometric transformations T . The created dataset, denoted ST , is generated by
applying each geometric transformation in T on all images in S, where we label each transformed
image with the index of the transformation that was applied on it. This process creates a self-labeled
multi-class dataset (with |T | classes) whose cardinality is |T ||S|. After the creation of ST , we train a
multi-class image classifier whose objective is to predict, for each image, the index of its generating
transformation in T . At inference time, given an unseen image x, we decide whether it belongs to
the normal class by first applying each transformation on it, and then applying the classifier on each
of the |T | transformed images. Each such application results in a softmax response vector of size
|T |. The final normality score is defined using the combined log-likelihood of these vectors under an
estimated distribution of “normal” softmax vectors (see details below).

4.1 Creating and Learning the Self-Labeled Dataset

Let T = {T0, T1, . . . , Tk−1} be a set of geometric transformations, where for each 1 ≤ i ≤ k−1, Ti :
X → X , and T0(x) = x is the identity transformation. The set T is a hyperparameter of our method,
on which we elaborate in Section 6. The self-labeled set ST is defined as

ST , {(Tj(x), j) : x ∈ S, Tj ∈ T } .
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Thus, for any x ∈ S, j is the label of Tj(x). We use this set to straightforwardly learn a deep
k-class classification model, fθ, which we train over the self-labeled dataset ST using the standard
cross-entropy loss function. To this end, any useful classification architecture and optimization
method can be employed for this task.

4.2 Dirichlet Normality Score

We now define our normality score function nS(x). Fix a set of geometric transformations T =
{T0, T1, . . . , Tk−1}, and assume that a k-class classification model fθ has been trained on the self-
labeled set ST (as described above). For any image x, let y(x) , softmax (fθ (x)), i.e., the vector of
softmax responses of the classifier fθ applied on x. To construct our normality score we define:

nS(x) ,
k−1∑
i=0

log p(y(Ti(x))|Ti),

which is the combined log-likelihood of a transformed image conditioned on each of the applied
transformations in T , under a naïve (typically incorrect) assumption that all of these conditional
distributions are independent. We approximate each conditional distribution to be y(Ti(x))|Ti ∼
Dir(αi), where αi ∈ Rk+, x ∼ pX(x), i ∼ Uni(0, k − 1), and pX(x) is the real data probability
distribution of “normal” samples. Our choice of the Dirichlet distribution is motivated by two reasons.
First, it is a common choice for distribution approximation when samples (i.e., y) reside in the
unit k − 1 simplex. Second, there are efficient methods for numerically estimating the maximum
likelihood parameters [24, 34]. We denote the estimation by α̃i. Using the estimated Dirichlet
parameters, the normality score of an image x is:

nS(x) =

k−1∑
i=0

log Γ(

k−1∑
j=0

[α̃i]j)−
k−1∑
j=0

log Γ([α̃i]j) +

k−1∑
j=0

([α̃i]j − 1) logy(Ti(x))j

 .
Since all α̃i are constant w.r.t x, we can ignore the first two terms in the parenthesis and redefine a
simplified normality score, which is equivalent in its normality ordering:

nS(x) =

k−1∑
i=0

k−1∑
j=0

([α̃i]j − 1) logy(Ti(x))j =

k−1∑
i=0

(α̃i − 1) · logy(Ti(x)).

As demonstrated in our experiments, this score tightly captures normality in the sense that for two
images x1 and x2, nS(x1) > nS(x2) tend to imply that x1 is “more normal” than x2. For each
i ∈ {0, . . . , k−1}, we estimate α̃i using the fixed point iteration method described in [24], combined
with the initialization step proposed by Wicker et al. [34]. Each vector α̃i is estimated based on the
set Si = {y(Ti(x))|x ∈ S}. We note that the use of an independent image set for estimating α̃i may
improve performance. A full and detailed algorithm is available in the supplementary material.

A simplified version of the proposed normality score was used during preliminary stages of this
research: n̂S(x) , 1

k

∑k−1
j=0 [y (Tj(x))]j . This simple score function eliminates the need for the

Dirichlet parameter estimation, is easy to implement, and still achieves excellent results that are only
slightly worse than the above Dirichlet score.

5 Experimental Results

In this section, we describe our experimental setup and evaluation method, the baseline algorithms
we use for comparison purposes, the datasets, and the implementation details of our technique
(architecture used and geometric transformations applied). We then present extensive experiments
on the described publicly available datasets, demonstrating the effectiveness of our scoring function.
Finally, we show that our method is also effective at identifying out-of-distribution samples in labeled
multi-class datasets.

5.1 Baseline Methods

We compare our method to state-of-the-art deep learning approaches as well as a few classic methods.
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One-Class SVM. The one-class support vector machine (OC-SVM) is a classic and popular kernel-
based method for novelty detection [29, 30]. It is typically employed with an RBF kernel, and learns
a collection of closed sets in the input space, containing most of the training samples. Samples
residing outside of these enclosures are deemed anomalous. Following [41, 7], we use this model on
raw input (i.e., a flattened array of the pixels comprising an image), as well as on a low-dimensional
representation obtained by taking the bottleneck layer of a trained convolutional autoencoder. We
name these models RAW-OC-SVM and CAE-OC-SVM, respectively. It is very important to
note that in both these variants of OC-SVM, we provide the OC-SVM with an unfair significant
advantage by optimizing its hyperparameters in hindsight; i.e., the OC-SVM hyperparameters (ν and
γ) were optimized to maximize AUROC and taken to be the best performing values among those in
the parameter grid: ν ∈ {0.1, 0.2, . . . , 0.9}, γ ∈ {2−7, 2−6, . . . , 22}. Note that the hyperparameter
optimization procedure has been provided with a two-class classification problem. There are, in
fact, methods for optimizing these parameters without hindsight knowledge [33, 3]. These methods
are likely to degrade the performance of the OC-SVM models. The convolutional autoencoder is
chosen to have a similar architecture to that of DCGAN [26], where the encoder is adapted from the
discriminator, and the decoder is adapted from the generator.

In addition, we compare our method to a recently published, end-to-end variant of OC-SVM called
One-Class Deep SVDD [27]. This model, which we name E2E-OC-SVM, uses an objective similar
to that of the classic SVDD [30] to optimize the weights of a deep architecture. However, there are
constraints on the used architecture, such as lack of bias terms and unbounded activation functions.
The experimental setup used by the authors is identical to ours, allowing us to report their published
results as they are, on CIFAR-10.

Deep structured energy-based models. A deep structured energy-based model (DSEBM) is a
state-of-the-art deep neural technique, whose output is the energy function (negative log probability)
associated with an input sample [41]. Such models can be trained efficiently using score matching in
a similar way to a denoising autoencoder [32]. Samples associated with high energy are considered
anomalous. While the authors of [41] used a very shallow architecture in their model (which
is ineffective in our problems), we selected a deeper one when using their method. The chosen
architecture is the same as that of the encoder part in the convolutional autoencoder used by CAE-
OC-SVM, with ReLU activations in the encoding layer.

Deep Autoencoding Gaussian Mixture Model. A deep autoencoding Gaussian mixture model
(DAGMM) is another state-of-the-art deep autoencoder-based model, which generates a low-
dimensional representation of the training data, and leverages a Gaussian mixture model to perform
density estimation on the compact representation [43]. A DAGMM jointly and simultaneously
optimizes the parameters of the autoencoder and the mixture model in an end-to-end fashion, thus
leveraging a separate estimation network to facilitate the parameter learning of the mixture model.
The architecture of the autoencoder we used is similar to that of the convolutional autoencoder from
the CAE-OC-SVM experiment, but with linear activation in the representation layer. The estimation
network is inspired by the one in the original DAGMM paper.

Anomaly Detection with a Generative Adversarial Network. This network, given the acronym
ADGAN, is a GAN based model, which learns a one-way mapping from a low-dimensional multi-
variate Gaussian distribution to the distribution of the training set [7]. After training the GAN on the
“normal” dataset, the discriminator is discarded. Given a sample, the training of ADGAN uses gradient
descent to estimate the inverse mapping from the image to the low-dimensional seed. The seed is
then used to generate a sample, and the anomaly score is the `2 distance between that image and the
original one. In our experiments, for the generative model of the ADGAN we incorporated the same
architecture used by the authors of the original paper, namely, the original DCGAN architecture [26].
As described, ADGAN requires only a trained generator.

5.2 Datasets

We consider four image datasets in our experiments: CIFAR-10, CIFAR-100 [21], CatsVsDogs [11],
and fashion-MNIST [38], which are described below. We note that in all our experiments, pixel
values of all images were scaled to reside in [−1, 1]. No other pre-processing was applied.
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• CIFAR-10: consists of 60,000 32x32 color images in 10 classes, with 6,000 images per class.
There are 50,000 training images and 10,000 test images, divided equally across the classes.

• CIFAR-100: similar to CIFAR-10, but with 100 classes containing 600 images each. This set has
a fixed train/test partition with 500 training images and 100 test images per class. The 100 classes in
the CIFAR-100 are grouped into 20 superclasses, which we use in our experiments.

• Fashion-MNIST: a relatively new dataset comprising 28x28 grayscale images of 70,000 fashion
products from 10 categories, with 7,000 images per category. The training set has 60,000 images
and the test set has 10,000 images. In order to be compatible with the CIFAR-10 and CIFAR-100
classification architectures, we zero-pad the images so that they are of size 32x32.

• CatsVsDogs: extracted from the ASIRRA dataset, it contains 25,000 images of cats and dogs,
12,500 in each class. We split this dataset into a training set containing 10,000 images, and a test set
of 2,500 images in each class. We also rescale each image to size 64x64. The average dimension size
of the original images is roughly 360x400.

5.3 Experimental Protocol

We employ a one-vs-all evaluation scheme in each experiment. Consider a dataset with C classes,
from which we create C different experiments. For each 1 ≤ c ≤ C, we designate class c to be the
single class of normal images. We take S to be the set of images in the training set belonging to class
c. The set S is considered to be the set of “normal” samples based on which the model must learn
a normality score function. We emphasize that S contains only normal samples, and no additional
samples are provided to the model during training. The normality score function is then applied on
all images in the test set, containing both anomalies (not belonging to class c) and normal samples
(belonging to class c), in order to evaluate the model’s performance. As stated in Section 3, we
completely ignore the problem of choosing the appropriate anomaly threshold (λ) on the normality
score, and quantify performance using the area under the ROC curve metric, which is commonly
utilized as a performance measure for anomaly detection models. We are able to compute the ROC
curve since we have full knowledge of the ground truth labels of the test set.2

Hyperparameters and Optimization Methods For the self-labeled classification task, we use 72
geometric transformations. These transformations are specified in the supplementary material (see
also Section 6 discussing the intuition behind the choice of these transformations). Our model is
implemented using the state-of-the-art Wide Residual Network (WRN) model [40]. The parameters
for the depth and width of the model for all 32x32 datasets were chosen to be 10 and 4, respectively,
and for the CatsVsDogs dataset (64x64), 16 and 8, respectively. These hyperparameters were selected
prior to conducting any experiment, and were fixed for all runs.3 We used the Adam [20] optimizer
with default hyperparameters. Batch size for all methods was set to 128. The number of epochs was
set to 200 on all benchmark models, except for training the GAN in ADGAN for which it was set to
100 and produced superior results. We trained the WRN for d200/|T |e epochs on the self-labeled set
ST , to obtain approximately the same number of parameter updates as would have been performed
had we trained on S for 200 epochs.

5.4 Results

In Table 1 we present our results. The table is composed of four blocks, with each block containing
several anomaly detection problems derived from the same dataset (for lack of space we omit class
names from the tables, and those can be found in the supplementary material). For example, the
first row contains the results for an anomaly detection problem where the normal class is class 0 in
CIFAR-10 (airplane), and the anomalous instances are images from all other classes in CIFAR-10
(classes 1-9). In this row (as in any other row), we see the average AUROC results over five runs and
the corresponding standard error of the mean for all baseline methods. The results of our algorithm
are shown in the rightmost column. OC-SVM variants and ADGAN were run once due to their

2A complete code of the proposed method’s implementation and the conducted experiments is available at
https://github.com/izikgo/AnomalyDetectionTransformations.

3The parameters 16, 8 were used on CIFAR-10 by the authors. Due to the induced computational complexity,
we chose smaller values. When testing the parameters 16, 8 with our method on the CIFAR-10 dataset, anomaly
detection results improved.
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time complexity. The best performing method in each row appears in bold. For example, in the
CatsVsDogs experiments where dog (class 1) is the “normal” class, the best baseline (DSEBM)
achieves 0.561 AUROC. Note that the trivial average AUROC is always 0.5, regardless of the
proportion of normal vs. anomalous instances. Our method achieves an average AUROC of 0.888.

Several interesting observations can be made by inspecting the numbers in Table 1. Our relative
advantage is most prominent when focusing on the larger images. All baseline methods, including
OC-SVM variants, which enjoy hindsight information, only achieve performance that is slightly
better than random guessing in the CatsVsDogs dataset. On the smaller-sized images, the baselines
can perform much better. In most cases, however, our algorithm significantly outperformed the other
methods. Interestingly, in many cases where the baseline methods struggled with separating normal
samples from anomalies, our method excelled. See, for instance, the cases of automobile (class 1)
and horse (class 7; see the CIFAR-10 section in the table). Inspecting the results on CIFAR-100
(where 20 super-classes defined the partition), we observe that our method was challenged by the
diversity inside the normal class. In this case, there are a few normal classes on which our method
did not perform well; see e.g., non-insect invertebrates (class 13), insects (class 7), and household
electrical devices (class 5). In Section 6 we speculate why this might happen. We used the super-class
partitioning of CIFAR-100 (instead of the 100 base classes) because labeled data for single base
classes is scarce. On the fashion-MNIST dataset, all methods, excluding DAGMM, performed very
well, with a slight advantage to our method. The fashion-MNIST dataset was designed as a drop-in
replacement for the original MNIST dataset, which is slightly more challenging. Classic models, such
as SVM with an RBF kernel, can perform well on this task, achieving almost 90% accuracy [38].

5.5 Identifying Out-of-distribution Samples in Labeled Multi-class Datasets

Although it is not the main focus of this work, we have also tackled the problem of identifying out-of-
distribution samples in labeled multi-class datasets (i.e., identify images that belong to a different
distribution than that of the labeled dataset). To this end, we created a two-headed classification model
based on the WRN architecture. The model has two separate softmax output layers. One for categories
(e.g., cat, truck, airplane, etc.) and another for classifying transformations (our method). We use
the categories softmax layer only during training. At test time, we only utilize the transformations
softmax layer output as described in section 4.2, but use the simplified normality score. When training
on the CIFAR-10 dataset, and taking the tiny-imagenet (resized) dataset to be anomalies as done by
Liang et al. [23] in their ODIN method, we improved ODIN’s AUROC/AUPR-In/AUPR-Out results
from 92.1/89.0/93.6 to 95.7/96.1/95.4, respectively. It is important to note that in contrast to our
method, ODIN is inapplicable in the pure single class setting, where there are no class labels.

6 On the Intuition for Using Geometric Transformations

In this section we explain our intuition behind the choice of the set of transformations used in
our method. Any bijection of a set (having some geometric structure) to itself is a geometric
transformation. Among all geometric transformations, we only used compositions of horizontal
flipping, translations, and rotations in our model, resulting in 72 distinct transformations (see
supplementary material for the entire list). In the earlier stages of this work, we tried a few non-
geometric transformations (e.g., Gaussian blur, sharpening, gamma correction), which degraded
performance and we abandoned them altogether. We hypothesize that non-geometric transformations
perform worse since they can eliminate important features of the learned image set.

We speculate that the effectiveness of the chosen transformation set is affected by their ability to
preserve spatial information about the given “normal” images, as well as the ability of our classifier
to predict which transformation was applied on a given transformed image. In addition, for a fixed
type-II error rate, the type-I error rate of our method decreases the harder it gets for the trained
classifier to correctly predict the identity of the transformations that were applied on anomalies.

We demonstrate this idea by conducting three experiments. Each experiment has the following
structure. We train a neural classifier to discriminate between two transformations, where the normal
class is taken to be images of a single digit from the MNIST [22] training set. We then evaluate our
method using AUROC on a set of images comprising normal images and images of another digit
from the MNIST test set. The three experiments are:

7



(a) Left: original ‘0’s.
Right: the ‘0’s opti-
mized to a normality
score learned on ‘3’.

(b) Left: original ‘3’s.
Right: the ‘3’s opti-
mized to a normality
score learned on ‘3’.

Figure 1: Optimizing digit images to maximize the normality score

• Normal digit: ‘8’. Anomaly: ‘3’. Transformations: Identity and horizontal flip. It can be
expected that due to the invariance of ‘8’ to horizontal flip, the classifier will have difficulties learning
distinguishing features. Indeed, when presented with the test set containing ‘3’ as anomalies (which
do not exhibit such invariance), our method did not perform well, achieving an AUROC of 0.646.

• Normal digit: ‘3’. Anomaly: ‘8’. Transformations: Identity and horizontal flip. In contrast
to the previous experiment, the transformed variants of digit ‘3’ can easily be classified to the correct
transformation. Indeed, our method, using the trained model for ‘3’, achieved 0.957 AUROC in this
experiment.

• Normal digit: ‘8’. Anomaly: ‘3’. Transformations: Identity and translation by 7 pixels. In
this experiment, the transformed images are distinguishable from each other. As can be expected, our
method performs well in this case, achieving an AUROC of 0.919.

To convince ourselves that high scores given by our scoring function indicate membership in the
normal class, we tested how an image would need to change in order to obtain a high normality
score. This was implemented by optimizing an input image using gradient ascent to maximize the
simplified variant of the normality score described in section 5.5 (see, e.g., [39]). Thus, we trained a
classifier on the digit ‘3’ from the MNIST dataset, with a few geometric transformations. We then
took an arbitrary image of the digit ‘0’ and optimized it. In Figure 1(a) we present two such images,
where the left one is the original, and the right is the result after taking 200 gradient ascent steps
that “optimize” the original image. It is evident that the ‘0’ digits have deformed, now resembling
the digit ‘3’. This illustrates the fact that the classification model has learned features relevant to
the “normal” class. To further strengthen our hypothesis, we conducted the same experiment using
images from the normal class (i.e., images of the digit ‘3’). We expected these images to maintain
their appearance during the optimization process, since they already contain the features that should
contribute to a high normality score. Figure 1(b) contains two examples of the process, where in each
row, the left image is the initial ‘3’, and the right is the result after taking 200 gradient ascent steps
on it. As hypothesized, it is evident that the images remained roughly unchanged at the end of the
optimization process (regardless of their different orientations).

7 Conclusion and Future Work

We presented a novel method for anomaly detection of images, which learns a meaningful repre-
sentation of the learned training data in a fully discriminative fashion. The proposed method is
computationally efficient, and as simple to implement as a multi-class classification task. Unlike
best-known methods so far, our approach completely alleviates the need for a generative component
(autoencoders/GANs). Most importantly, our method significantly advances the state-of-the-art by
offering a dramatic improvement over the best available anomaly detection methods. Our results open
many avenues for future research. First, it is important to develop a theory that grounds the use of
geometric transformations. It would be interesting to study the possibility of selecting transformations
that would best serve a given training set, possibly with prior knowledge on the anomalous samples.
Another avenue is explicitly optimizing the set of transformations. Due to the effectiveness of our
method, it is tempting to try adapting it to other settings or utilizing it in applications. Some exam-
ples are open-world classification, selective classification and regression [36, 35, 13], uncertainty
estimation [15], and deep active learning [12, 14]. Finally, it would be interesting to consider using
our techniques in settings where additional unlabeled “contaminated” data (consisting of both normal
and novel instances) is provided, perhaps within a transductive learning framework [10].
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Table 1: Average area under the ROC curve in % with SEM (over 5 runs) of anomaly detection
methods. For all datasets, each model was trained on the single class, and tested against all other
classes. E2E column is taken from [27]. OC-SVM hyperparameters in RAW and CAE variants were
optimized with hindsight knowledge. The best performing method in each experiment is in bold.

Dataset ci
OC-SVM DAGMM DSEBM AD- OURSRAW CAE E2E GAN

CIFAR-10
(32x32x3)

0 70.6 74.9 61.7±1.3 41.4±2.3 56.0±6.9 64.9 74.7±0.4
1 51.3 51.7 65.9±0.7 57.1±2.0 48.3±1.8 39.0 95.7±0.0
2 69.1 68.9 50.8±0.3 53.8±4.0 61.9±0.1 65.2 78.1±0.4
3 52.4 52.8 59.1±0.4 51.2±0.8 50.1±0.4 48.1 72.4±0.5
4 77.3 76.7 60.9±0.3 52.2±7.3 73.3±0.2 73.5 87.8±0.2
5 51.2 52.9 65.7±0.8 49.3±3.6 60.5±0.3 47.6 87.8±0.1
6 74.1 70.9 67.7±0.8 64.9±1.7 68.4±0.3 62.3 83.4±0.5
7 52.6 53.1 67.3±0.3 55.3±0.8 53.3±0.7 48.7 95.5±0.1
8 70.9 71.0 75.9±0.4 51.9±2.4 73.9±0.3 66.0 93.3±0.0
9 50.6 50.6 73.1±0.4 54.2±5.8 63.6±3.1 37.8 91.3±0.1
avg 62.0 62.4 64.8 53.1 60.9 55.3 86.0

CIFAR-100
(32x32x3)

0 68.0 68.4 - 43.4±3.9 64.0±0.2 63.1 74.7±0.4
1 63.1 63.6 - 49.5±2.7 47.9±0.1 54.9 68.5±0.2
2 50.4 52.0 - 66.1±1.7 53.7±4.1 41.3 74.0±0.5
3 62.7 64.7 - 52.6±1.0 48.4±0.5 50.0 81.0±0.8
4 59.7 58.2 - 56.9±3.0 59.7±6.3 40.6 78.4±0.5
5 53.5 54.9 - 52.4±2.2 46.6±1.6 42.8 59.1±1.0
6 55.9 57.2 - 55.0±1.1 51.7±0.8 51.1 81.8±0.2
7 64.4 62.9 - 52.8±3.7 54.8±1.6 55.4 65.0±0.1
8 66.7 65.6 - 53.2±4.8 66.7±0.2 59.2 85.5±0.4
9 70.1 74.1 - 42.5±2.5 71.2±1.2 62.7 90.6±0.1

10 83.0 84.1 - 52.7±3.9 78.3±1.1 79.8 87.6±0.2
11 59.7 58.0 - 46.4±2.4 62.7±0.7 53.7 83.9±0.6
12 68.7 68.5 - 42.7±3.1 66.8±0.0 58.9 83.2±0.3
13 65.0 64.6 - 45.4±0.7 52.6±0.1 57.4 58.0±0.4
14 50.7 51.2 - 57.2±1.3 44.0±0.6 39.4 92.1±0.2
15 63.5 62.8 - 48.8±1.5 56.8±0.1 55.6 68.3±0.1
16 68.3 66.6 - 54.4±3.1 63.1±0.1 63.3 73.5±0.2
17 71.7 73.7 - 36.4±2.3 73.0±1.0 66.7 93.8±0.1
18 50.2 52.8 - 52.4±1.4 57.7±1.6 44.3 90.7±0.1
19 57.5 58.4 - 50.3±1.0 55.5±0.7 53.0 85.0±0.2
avg 62.6 63.1 - 50.5 58.8 54.7 78.7

Fashion-
MNIST

(32x32x1)

0 98.2 97.7 - 42.1±9.1 91.6±1.2 89.9 99.4±0.0
1 90.3 89.9 - 55.1±3.5 71.8±0.5 81.9 97.6±0.1
2 90.7 91.4 - 50.4±7.3 88.3±0.2 87.6 91.1±0.2
3 94.2 90.7 - 57.0±6.7 87.3±3.6 91.2 89.9±0.4
4 89.4 89.1 - 26.9±5.4 85.2±0.9 86.5 92.1±0.0
5 91.8 88.5 - 70.5±9.7 87.1±0.0 89.6 93.4±0.9
6 83.4 81.7 - 48.3±5.0 73.4±4.1 74.3 83.3±0.1
7 98.8 98.7 - 83.5±11.4 98.1±0.0 97.2 98.9±0.1
8 91.9 90.6 - 49.9±7.2 86.0±3.2 89.0 90.8±0.1
9 99.0 98.6 - 34.0±3.0 97.1±0.3 97.1 99.2±0.0
avg 92.8 91.7 - 51.8 86.6 88.4 93.5

CatsVsDogs
(64x64x3)

0 50.4 55.2 - 43.4±0.5 47.1±1.7 50.7 88.3±0.3
1 53.0 49.9 - 52.0±1.9 56.1±1.2 48.1 89.2±0.3
avg 51.7 52.5 - 47.7 51.6 49.4 88.8
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