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Abstract

Social goods, such as healthcare, smart city, and information networks, often pro-
duce ordered event data in continuous time. The generative processes of these event
data can be very complex, requiring flexible models to capture their dynamics.
Temporal point processes offer an elegant framework for modeling event data with-
out discretizing the time. However, the existing maximum-likelihood-estimation
(MLE) learning paradigm requires hand-crafting the intensity function beforehand
and cannot directly monitor the goodness-of-fit of the estimated model in the
process of training. To alleviate the risk of model-misspecification in MLE, we
propose to generate samples from the generative model and monitor the quality
of the samples in the process of training until the samples and the real data are
indistinguishable. We take inspiration from reinforcement learning (RL) and treat
the generation of each event as the action taken by a stochastic policy. We param-
eterize the policy as a flexible recurrent neural network and gradually improve
the policy to mimic the observed event distribution. Since the reward function is
unknown in this setting, we uncover an analytic and nonparametric form of the
reward function using an inverse reinforcement learning formulation. This new RL
framework allows us to derive an efficient policy gradient algorithm for learning
flexible point process models, and we show that it performs well in both synthetic
and real data.

1 Introduction
Many natural and artificial systems produce a large volume of discrete events occurring in continuous
time, for example, the occurrence of crime events, earthquakes, patient visits to hospitals, financial
transactions, and user behavior in mobile applications [5]. It is essential to understand and model these
complex and intricate event dynamics so that accurate prediction, recommendation or intervention
can be carried out subsequently depending on the context.

Temporal point processes offer an elegant mathematical framework for modeling the generative
processes of these event data. Typically, parametric (or semi-parametric) assumptions are made on the
intensity function [11, 9] based on prior knowledge of the processes, and the maximum-likelihood-
estimation (MLE) is used to fit the model parameters from data. These models often work well when
the parametric assumptions are correct. However, in many cases where the real event generative
process is unknown, these parametric assumptions may be too restricted and do not reflect the reality.

Thus there emerge some recent efforts in increasing the expressiveness of the intensity function using
nonparametric forms [7] and recurrent neural networks [6, 19]. However, these more sophisticated
models still rely on maximizing the likelihood which now involves intractable integrals and needs to
be approximated. Most recently, [27] proposed to bypass the problem of maximum likelihood by
adopting a generative adversarial network (GAN) framework, where a recurrent neural network is

∗Correspondence to: Shuang Li <sli370@gatech.edu>, Yao Xie <yao.xie@isye.gatech.edu>, and Le Song
<lsong@cc.gatech.edu>

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



learned to transform event sequence from a Poisson process to the target event sequence. However,
this approach is rather computationally intensive, since it requires fitting another recurrent neural
network as the discriminator, and it takes many iterations and careful tuning for both neural networks
to reach equilibrium.

In this paper, we take a new perspective and establish an under-explored connection between temporal
point processes and reinforcement learning: the generation of each event can be treated as the action
taken by a stochastic policy, and the intensity function learning problem in temporal point processes
can be viewed as the policy learning problem in reinforcement learning.
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Figure 1: Illustration of our modeling frame-
work. The observed trajectories of events will
be viewed as the actions generated by an expert
policy πE . The goal is to learn a policy which
we call learner that mimics the distribution
of the observed expert event sequences. The
learner policy π(a|st) provides the probabil-
ity of the next event occurring at a after t, and
st := {ti}ti<t is the history of events before
t. We parametrize π(a|st) by a recurrent neu-
ral network (RNN) with stochastic neurons [4],
where the generated events are fed back to the
RNN leading to a double stochastic point pro-
cess [12]. Furthermore, each generated event
ti will be also associated with a reward r(ti),
and the policy will be learned by maximizing
the expected cumulative rewards [26].

More specifically, we parameterize a stochastic policy
π using a recurrent neural network over event history
and learn the unknown reward function via inverse re-
inforcement learning [1, 20, 28, 15]. Our algorithm for
policy optimization iterates between learning the reward
function and the stochastic policy π. Inverse reinforce-
ment learning is known to be time-consuming, which
requires solving a reinforcement learning problem in
every inner-loop. To tackle this problem, we convert the
inverse reinforcement learning step to a minimization
problem over the discrepancy between the expert point
process and the learner point process. By choosing the
function class of reward to be the unit ball in reproduc-
ing kernel Hilbert space (RKHS) [13, 16, 8], we can get
an explicit nonparametric closed form for the optimal re-
ward function. Then the stochastic policy can be learned
by a customized policy gradient with the optimal reward
function having an analytical expression. An illustration
of our modeling framework is shown in Figure 1.

We conducted experiments on various synthetic and real
sequences of event data and showed that our approach
outperforms the state-of-the-art regarding both data de-
scription and computational efficiency.

2 Preliminaries
Temporal Point Processes. A temporal point process is a stochastic process whose realization is a
sequence of discrete events {ti} with ti ∈ R+ and i ∈ Z+ abstracted as points on a timeline [5]. Let
the history st = {t1, t2, . . . , tn|tn < t} be the sequence of event times up to but not including time t.
The intensity function (rate function) λ(t|st) conditioned on the history st uniquely characterizes the
generative process of the events. Different functional forms of λ(t|st)dt capture different generating
patterns of events. For example, a plain homogeneous Poisson process has λ(t|st) = λ0 > 0,
implying that each event occurs independently of each and uniformly on the timeline. A Hawkes
process has λ(t|st) = λ0 +

∑
ti∈st exp(−(t − ti)) where the occurrences of past events will

boost future occurrences. Given the intensity function, the survival function defined as S(t|st) =

exp(−
∫ t
tn
λ(τ)dτ) is the conditional probability that no event occurs in the window [tn, t), and

the likelihood of observing event at time t is defined as f(t|st) = λ(t|st)S(t|st). Then we can
express the joint likelihood of observing a sequence of events sT = {t1, t2, . . . , tn|tn < T} up to an
observation window T as

p({t1, t2, . . . , tn|tn < T}) =
∏
ti∈sT

λ(ti|sti) · exp

(
−
∫ T

0

λ(τ |sτ )dτ

)
. (1)

The integral normalization in the likelihood function can be intensive to compute especially in cases
where λ(t|st) do not have a simple form. In this case, a numerical approximation is typically needed
which may affect the accuracy of the fitting process.

Reproducing Kernel Hilbert Spaces. A reproducing kernel Hilbert space (RKHS) H on T
with a kernel k(t, t′) is a Hilbert space of functions f(·) : T 7→ R with inner product 〈·, ·〉H.
Its element k(t, ·) satisfies the reproducing property: 〈f(·), k(t, ·)〉H = f(t), and consequently,
〈k(t, ·), k(t′, ·)〉H = k(t, t′), meaning that we can view the evaluation of a function f at any point
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t ∈ T as an inner product. Commonly used RKHS kernel function includes Gaussian radial basis
function (RBF) kernel k(t, t′) = exp(−‖t− t′‖2 /2σ2) where σ > 0 is the kernel bandwidth, and
polynomial kernel k(t, t′) = (〈t, t′〉 + a)d where a > 0 and d ∈ N [23, 3, 13]. In this paper, if
not otherwise stated, we will assume that Gaussian RBF kernel is used. Let P be a measure on
T , we define the mapping of P to RKHS, µP := EP[k(t, ·)] =

∫
t∈T k(t, ·) dP(t), as the Hilbert

space embedding of P [24]. Then for all f ∈ H, EP[f(t)] = 〈f, µP〉H by the reproducing property.
Similarly, one can also embed another measure Q on T into RKHS as µQ. Then a distance between
measure P and Q can be defined as ‖µP − µQ‖H := sup‖f‖H61 〈f, µP − µQ〉H. A characteristic
RKHS is one for which the embedding is injective: that is, each measure has a unique embedding [25],
and ‖µP − µQ‖H = 0 if and only if P = Q. This property holds for many commonly used kernels.
For T = Rd, this includes the Gaussian kernels.

3 A Reinforcement Learning Framework
Suppose we are interested in modeling the daily crime patterns, or monthly occurrences of disease
for patients, then the data are collected as trajectories of events within a predefined time window T .
We regard the observed paths as actions taken by an expert (nature).

Let ξ = {τ1, τ2, . . . , τNξT } represent a single trajectory of events from the expert where Nξ
T is the

total number of events up to T , and it can be different for different sequences. Then, each trajectory
ξ ∼ πE can be seen as an expert demonstration sampled from the expert policy πE . Hence, on a high
level, given a set of expert demonstrations D = {ξ1, ξ2, . . . , ξj , . . . |ξj ∼ πE}, we can treat fitting a
temporal point process to D as searching for a learner policy πθ which can generate another set of
sequences D̃ = {η1, η2, . . . , ηj , . . . |ηj ∼ πθ} with similar patterns as D. We will elaborate on this
reinforcement learning framework below.

Reinforcement Learning Formulation (RL). Given a sequence of past events st = {ti}ti<t, the
stochastic policy πθ(a|st) samples an inter-event time a as its action to generate the next event
time as ti+1 = ti + a. Then, a reward r(ti+1) is provided and the state st will be updated to
st = {t1, . . . , ti, ti+1}. Fundamentally, the policy πθ(a|st) corresponds to the conditional probability
of the next event time in temporal point process, which in turn uniquely determines the corresponding
intensity function as λθ(t|sti) =

πθ(t−ti|sti )
1−

∫ t
ti
πθ(τ−ti|sti )dτ

. This builds the connection between the intensity

function in temporal point processes and the stochastic policy in reinforcement learning. If reward
function r(t) is given, the optimal policy π∗θ can be directly computed via

π∗θ = arg max
πθ∈G

J(πθ) := Eη∼πθ
[∑NηT

i=1
r(ti)

]
, (2)

where G is the family of all candidate policies πθ, η = {t1, . . . , tNηT } is one sampled roll-out from
policy πθ, and Nη

T can be different for different roll-out samples.

Inverse Reinforcement Learning (IRL). Eq.(2) shows that when the reward function is given, the
optimal policy can be determined by maximizing the expected cumulative reward. However, in our
case, only the expert’s sequences of events can be observed, but the real reward function is unknown.
Given the expert policy πE , IRL can help to uncover the optimal reward function r∗(t) by

r∗ = max
r∈F

(
Eξ∼πE

[∑NξT

i=1
r(τi)

]
− max
πθ∈G

Eη∼πθ
[∑NηT

i=1
r(ti)

])
, (3)

where F is the family class for reward function, ξ = {τ1, . . . , τNξT } is one event sequence generated
by the expert πE , and η = {t1, . . . , tNηT } is one roll-out sequence from the learner πθ. The formula-
tion means that a proper reward function should give the expert policy higher reward than any other
learner policy in G, and thus the learner can approach the expert performance by maximizing this
reward. Denote the procedure (2) and (3) as RL(r) and IRL(πE), accordingly. The optimal policy
can be obtained by

π∗θ = RL ◦ IRL(πE). (4)

Overview of the Proposed Learning Framework. Solving the optimization problem (3) is very
time-consuming in that it requires to solve the inner loop RL problem repeatedly. We relieve the
computational challenge by choosing the space of functions F for r(t) to be the unit ball in RKHS
H, which allows us to obtain an analytical expression for the updated reward function r̂(t) given any

3



current learner policy π̂(θ). This r̂(t) is determined by finite sample expert trajectories and finite
sample roll-outs from the current learner policy, and it directly quantifies the discrepancy between
the expert’s policy (or intensity function) and current learner policy (or intensity function). Then by
solving a simple RL problem as in (2), the learner policy can be improved to close its gap with the
expert policy using a simple policy gradient type of algorithm.

4 Model

In this section, we present model parametrization and the analytical expression of optimal reward
function.

Policy Network. The function class of the policy πθ ∈ G should be flexible and expressive enough to
capture the potential complex point process patterns of the expert. We, therefore, adopt the recurrent
neural network (RNN) with stochastic neurons [4] which is flexible to capture the nonlinear and
long-range sequential dependency structure. More specifically,

ai ∼ π(a |Θ(hi−1)), hi = ψ(V ai +Whi−1), h0 = 0, (5)

where the hidden state hi ∈ Rd encodes the sequence of past events {t1, . . . , ti}, ai ∈ R+, V ∈ Rd,
and W ∈ Rd×d. Here ψ is a nonlinear activation function applied element-wise, and Θ is a nonlinear
mapping from Rd to the parameter space of the probability distribution π. For instance, one can
choose ψ(z) = ez−e−z

ez+e−z to be the tanh function, and design the output layer of Θ such that Θ(hi−1)
is a valid parameter for a probability density function π. The output ai = ti − ti−1, serves as the
i-th inter-event time (let t0 = 0), and ai > 0. The choice of model π is quite flexible, only with
the constraint that the random variable should be positive since a is always positive. Common
distributions such as exponential and Rayleigh distributions would satisfy such constraint, leading
to π(a|Θ(hi−1)) = Θ(h)e−Θ(h)a and π(a|Θ(hi−1)) = Θ(h)ae−Θ(h)a2/2 respectively. In this way,
we specify a nonlinear and flexible dependency over the history.

hi−1

a1

h0 h1

ai−1

hi

ai

hi+1

ai+1

… …

an

hn

an+1

0 T
… …

t1 ti−1 ti ti+1 tn

Figure 2: Illustration of generator πθ.

The architecture of our model in (5) is shown in Fig-
ure 2. Different from traditional RNN, the outputs
ai are sampled from π rather than obtained by deter-
ministic transformations. This is what “stochastic"
policy means. Randomly sampling will allow the
policy to explore the temporary space. Furthermore,
the sampled time point will be fed back to the RNN.
The proposed model aims to capture that the state hi
is attributed by two parts. One is the deterministic influence from the previous hidden state hi−1, and
the other is the stochastic influence from the latest sampled action ai. Action ai is sampled from the
previous distribution π(a|Θ(hi−1)) with parameter Θ(hi−1) and will be fed back to influence the
current hidden state hi.

In some sense, our RNN with stochastic neurons mimics the event generating mechanism of the
doubly stochastic point process, such as Hawkes process and self-correcting process. For these types
of point processes, the intensity is stochastic, which depends on history, and the intensity function
will control the occurrence rate of the next event.

Reward Function Class. The reward function directly quantifies the discrepancy between πE and
πθ, and it guides the learning of the optimal policy π∗θ . On the one hand, we want its function class
r ∈ F to be sufficiently flexible so that it can represent the reward function of various shapes. On
the other hand, it should be restrictive enough to be efficiently learned with finite samples [3, 13].
With these competing considerations, we choose F to be the unit ball in RKHSH, ‖r‖H 6 1. An
immediate benefit of this function class is that we can show the optimal policy can be directly learned
via a minimization formulation given in Theorem 1 instead of the original minimax formulation (3).

A sketch of proof is provided as follows. For short notation, we denote

φ(η) :=

∫
[0,T )

k(t, ·)dN (η)
t︸ ︷︷ ︸

feature mapping from data space to R

, and µπθ := Eη∼πθ [φ(η)]︸ ︷︷ ︸
mean embeddings of the intensity function in RKHS
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where dN (η)
t is the counting process associated with sample path η, and k(t, t′) is a universal RKHS

kernel. Then using the reproducing property,

J(πθ) := Eη∼πθ

N(η)
T∑
i=1

r(ti)

 = Eη∼πθ

[∫
[0,T )

〈r, k (t, ·)〉HdN (η)
t

]
= 〈r, µπθ 〉H.

Similarly, we can obtain J(πE) = 〈r, µπE 〉H. From (3), r∗ is obtained by
max
‖r‖H≤1

min
πθ∈G

〈r, µπE − µπθ 〉H = min
πθ∈G

max
‖r‖H≤1

〈r, µπE − µπθ 〉H = min
πθ∈G

‖µπE − µπθ‖H,

where the first equality is guaranteed by the minimax theorem, and

r∗(·|πE , πθ) =
µπE − µπθ
‖µπE − µπθ‖H

∝ µπE − µπθ (6)

can be empirically evaluated by data. In this way, we change the original minimax formulation for
solving π∗θ to a simple minimization problem, which will be more efficient and stable to solve in
practice. We summarize the formulation in Theorem 1.

Theorem 1 Let the family of reward function be the unit ball in RKHSH, i.e., ‖r‖H 6 1. Then the
optimal policy obtained by (4) can also be obtained by solving

π∗θ = arg min
πθ∈G

D(πE , πθ,H) (7)

where D(πE , πθ,H) is the maximum expected cumulative reward discrepancy between πE and πθ,

D(πE , πθ,H) := max
‖r‖H61

(
Eξ∼πE

[∑N
(ξ)
T

i=1
r(τi)

]
− Eη∼πθ

[∑N
(η)
T

i=1
r(ti)

])
. (8)

Theorem 1 implies that we can transform the inverse reinforcement learning procedure of (4) to a
simple minimization problem which minimizes the maximum expected cumulative reward discrep-
ancy between πE and πθ. This enables us to sidestep the expensive computation of (4) caused by
the solving the inner RL problem repeatedly. What’s more interesting, we can derive an analytical
solution to (8) given by (6).

Finite Sample Estimation. Given L trajectories of expert point processes, and M trajectories
of events generated by πθ, mean embeddings µπE and µπθ can be estimated by their respective

empirical mean: µ̂πE = 1
L

∑L
l=1

∑N
(l)
T

i=1 k(τ
(l)
i , ·) and µ̂πθ = 1

M

∑M
m=1

∑N
(m)
T

i=1 k(t
(m)
i , ·). Then for

any t ∈ [0, T ), the estimated optimal reward is (without normalization) is

r̂∗(t) ∝ 1

L

∑L

l=1

∑N
(l)
T

i=1
k(τ

(l)
i , t)− 1

M

∑M

m=1

∑N
(m)
T

i=1
k(t

(m)
i , t). (9)

Note this empirical estimator is biased at τ (l)
i and t(m)

i . Unbiased estimator can also be obtained and
will be provided in Algorithm RLPP discussed later for simplicity.

Kernel Choice. The unit ball in RKHS is dense and expressive. Fundamentally, our proposed
framework and theoretical results are general and can be directly applied to other types of kernels.
For example, we can use the Matérn kernel, which generates spaces of differentiable functions known
as the Sobolev spaces [10, 2]. In later experiments, we have used Gaussian kernel and obtained
promising results.

5 Learning Algorithm

Learning via Policy Gradient. In practice, instead of minimizing D(πE , πθ,H) as in (7), we can
equivalently minimize D(πE , πθ,H)2 since square is a monotonic transformation. Now, we can
learn π∗θ from the RL formulation (2) using policy gradient with variance reduction. First, with the
likelihood ratio trick, the gradient of∇θD(πE , πθ,H)2 can be computed as

∇θD(πE , πθ,H)2 = Eη∼πθ

NηT∑
i=1

(∇θ log πθ(ai|Θ(hi−1))) ·
(∑NηT

i=1
r̂∗(ti)

) , (10)

where
∑NηT
i=1 (∇θ log πθ(ai|Θ(hi−1))) is the gradient of the log-likelihood of a roll-out sample

η = {t1, . . . , tNηT } using the learner policy πθ.
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Algorithm RLPP: Mini-batch Reinforcement Learning
for Learning Point Processes
1. Initialize model parameters θ;
2. For number of training iterations do
• Sample minibatch of L trajectories of events
{ξ(1), . . . , ξ(L)} from expert policy πE , where
ξ(l) = {τ (l)1 , . . . , τ

(l)

N
(l)
T

};
• Sample minibatch of M trajectories of events
{η(1), . . . , η(M)} from learner policy πθ , where
η(m) = {t(m)

1 , . . . , t
(m)
NT
};

• Estimate policy gradient∇θD(πE , πθ,H)2 as

∇θ
1

M

∑M

m=1

(∑N
(m)
T

i=1
r̂∗(t

(m)
i ) log pθ(η

(m))

)
where log pθ(η

(m)) =
∑N

η
T

i=1 (log πθ(ai|Θ(hi−1)))

is the log-likelihood of the sample η(m), and
r∗(t

(m)
i ) can be estimated by L expert trajectories

and (M − 1) roll-out samples without η(m)

r̂∗(t(m)) =
1

L

∑L

l=1

∑N
(l)
T

i=1
k(τ

(l)
i , t)

− 1

M − 1

M∑
m′=1,m′ 6=m

∑N
(m′)
T

j=1
k(t

(m′)
j , t);

• Update policy parameters as

θ ← θ + α∇θD(πE , πθ,H)2.
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Figure 3: The reward function r̂∗(t) is estimated us-
ing 100 sampled sequences from πE and πθ . In (a),
r̂∗(t) > 0 when the expert’s intensity is above the
learner’s intensity, and r̂∗(t) < 0 when the expert’s
intensity is below the learner’s intensity. In order to
maximize the cumulative reward given the current
reward, the learner should generate more events in
the region when r̂∗(t) > 0 and reduce the number
of events when r̂∗(t) < 0. Based on our formula-
tion, the optimal reward function always quantifies the
discrepancy between the expert and current learner
by considering the worst case. As a result, once the
learner is changed, the current optimal reward r̂∗(t)
is updated accordingly, and r̂∗(t) guides the learner
to update its policy towards mimicking the expert’s
behavior until they exactly match each other in (b)
where r̂∗(t) becomes zero.

To reduce the variance of the gradient, we can exploit the observation that future actions do not
depend on past rewards. This leads to a variance reduced gradient estimate ∇θD(πE , πθ,H)2 =

Eη∼πθ
[∑NηT

i=1 (∇θ log πθ(ai|Θ(hi−1))) ·
(∑NηT

l=i [r̂∗(tl)− bl]
)]

where
(∑NT

l=i r̂
∗(tl)

)
is referred to

as the “reward to go" and bl is the baseline to further reduce the variance. The overall procedure is
given in Algorithm RLPP. In the algorithm, after we sample M trajectories from the current policy,
we use one trajectory ηm for evaluation and the rest M − 1 samples to estimate reward function. An
example reward function learned at a different stage of the algorithm is also illustrated in Figure 3.

Comparison with MLE. During training, our generative model directly compares the generated
temporal events with the observed events to iteratively correct the mistakes, which can effectively
avoid model misspecification. Since the training only involves the policy gradient, it bypasses the
intractability issue of the log-survival term in the likelihood (Eq. (1)). On the other hand, because the
learned policy is in fact the conditional density of a point process, our approach still resembles the
form of MLE in the RL reformulation and can thus be interpreted in a statistically principled way.

Comparison with GAN and GAIL. By Theorem 1, our policy is learned directly by minimizing the
discrepancy between πE and πθ which has a closed form expression. Thus, we convert the original
IRL problem to a minimization problem with only one set of parameters with respect to the policy.
In each training iteration with the policy gradient, we have an unbiased estimator of the gradient,
and the estimated reward function also depends on the current policy πθ. In contrast, in GAN or
GAIL formulation, they have two sets of parameters related to the generator and the discriminator.
The gradient estimator is biased because each min-/max-problem is in fact nonconvex and cannot be
solved in one-shot. Thus, our framework is more stable and efficient than the mini-max formulation
for learning point processes.

6 Experiments
We evaluate our algorithm by comparing with state-of-the-arts on both synthetic and real datasets.

Synthetic datasets. To show the robustness to model-misspecifications of our approach, we propose
the following four different point processes as the ground-truth: (I) Inhomogeneous Poisson (IP)
with λ(t) = at + b where a = −0.2 and b = 3.5; Here we omit st since λ(t) does not depend on
the history. (II) Hawkes Process (HP) with λ(t|st) = µ+ α

∑
ti<t

exp{−(t− ti)} where µ = 2,
and α = 0.5. (III) Mixture of IP and HP version 1 (IP + HP1). For the IP component, its λ(t)
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Figure 4: Comparison of empirical intensity functions on the synthetic data.

is piece-wise linear with monotonic increasing slopes of pieces from {0.2, 0.3, 0.4, 0.5}. The HP
component has the parameter µ = 1 and α = 0.5; (IV) Mixture of IP and HP version 2 (IP + HP2)
where the IP component also has piece-wise linear intensity but the slopes have the zig-zag pattern
chosen from {1,−1, 2,−2}, and the HP component has the parameter µ = 1 and α = 0.1.

Real datasets. We evaluate our approach on four real datasets across a diverse range of domains:

• 911 call dataset contains 220,000 crime incident call records from 2011 to 2017 in Atlanta area.
We select one beat zone data with call timestamps ranging from 7:00 AM to 1:00 PM.
• Microsoft Academic Search (MAS) provides access to publication venues, time, citations, etc. We

collect citation records for 50,000 papers and treat each citation time as an event.
• Medical Information Mart for Intensive Care III (MIMIC-III) contains de-identified clinical visit

records from 2001 to 2012 for more than 40,000 patients. Our data contain 2,246 patients with at
least 3 visits. For a given patient, each clinical visit will be treated as an event.

• NYSE contains 0.7 million high-frequency trading records from NYSE for a given stock within
one day. All transactions are evenly divided into 3,200 segments. All segments have the same
temporal duration. Each trading record is treated as a event.

Baselines. We compare our approach against two state-of-the-arts as well as conventional paramet-
ric baselines. The two state-of-the-art methods are WGANTPP [27] and RMTPP2 [6]. In addition,
three parametric methods based on maximum likelihood estimation are compared, including: (1)
Inhomogeneous Poisson process where the intensity function is modeled using a mixture of Gaussian
components, (2) Hawkes Process (or Self-Excitation process denoted as SE), and (3) Self-Correcting
process (SC) with λ(t|st) = exp

{
µt−

∑
ti<t

α
}

. In contrast to Hawkes process, the self-correcting
process seeks to produce regular point patterns. The intuition is that while the intensity increases
steadily, every time when a new event appears, it is decreased by multiplying a constant e−α < 1, so
the chance of new points decreases after an event has occurred recently.

Experimental Setup. The policy in our method RLPP is parameterized as LSTM with 64 hidden
neurons, and π(a|Θ(h)) is chosen to be exponential distribution. Batch size is 32 (the number of
sampled sequences L and M are 32 in Algorithm 1, and learning rate is 1e-3. We use Gaussian
kernel k(t, t′) = exp(−‖t− t′‖2/σ2) for the reward function. The kernel bandwidth σ is estimated
using the “median trick” based on the observations [13]. For WGANTPP and RMTPP, we are using
the open source codes. For WGANTPP3, we have used the exact experimental setup as [27], which
adopts Adam optimization method [17] with learning rate 1e-4, β1 = 0.5, β2 = 0.9, and the batch
size is 256. For RMTPP4, batch size is 256, state size is 64, and learning rate is 1e-4.

Comparison of Learned Empirical Intensity. We first compare the empirical intensity of the
learner point process to the expert point process. This is a straightforward comparison: one can
visually assess the performance and localize the discrepancy. Fig. 4 and Fig. 5 demonstrate the
empirical intensity functions of generated sequences based on synthetic and real data. It clearly shows
that RLPP consistently outperforms RMTPP, and achieves comparable and sometimes even better
fitting against WGANTPP. Furthermore, RLPP consistently outperforms the other three conventional
parametric models when there exist model-misspecifications. Without any prior knowledge, RLPP
can capture the major trends in data and can accurately learn the nonlinear dependency structure

2RMTPP has very similar performance with [19].
3https://github.com/xiaoshuai09/Wasserstein-Learning-For-Point-Process
4https://github.com/dunan/NeuralPointProcess
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Figure 5: Comparison of empirical intensity functions on the real datasets. For each dataset, we have
used all learned models to generate new sequences. The comparisons are based on the empirical
intensities estimated from the generated temporal events and those estimated from the observed
temporal events.

hidden in data. In the Hawkes example, RLPP performs even as accurate as the ground-truth model.
On the real-world data, the underlying true model is unknown and the point process patterns are more
complicated. RLPP still shows a decent performance in the real datasets.

Comparison of Data Fitting. Quantile plot (QQ-plot) for residual analysis is a standard model
checking approach for general point processes. Given a set of real input samples t1, . . . , tn, by
the Time Changing Theorem [5], if such set of samples is one realization of a process with the
intensity λ(t), then the respective value achieved from the integral Λ =

∫ ti
ti−1

λ(t)dt should conform
to the unit-rate exponential distribution [18]. For the synthetic experiments, since we know the
exact ground-truth parametric form of λ(t|st), we can perform this explicit transformation for a test.
Ideally, the QQ-plot for the generated sequences should follow a 45-degree straight line. We use
Hawkes Process (HP) and Inhomogeneous Poisson Process + Hawkes Process (IP+HP1) dataset to
produce the QQ-plot and compare different methods in Fig. 6. In both cases, RLPP consistently
stands out even without any prior knowledge about the parametric form of the true underlying
generative point process and the fitting slope is very close to the diagonal line in both cases. More
rigorously, we perform the KS test. Fig. 7 illustrates the cumulative distributions (CDF) of p-values.
We followed the experiment setup in [21]: we generated samples from each learned point process
models, transformed the time interval, and applied the KS test to compare with unit rate exponential
distribution. Under this null hypothesis, the distribution of the p-values over tests should follow a
uniform distribution, whose CDF should be a diagonal line. If the target distribution is the Hawkes
process (Fig. 7), both the learned SE (Hawkes process) and the RLPP models are indistinguishable
from that.

0 2 4 6 8 10
Theoretical quantiles

0

2

4

6

8

10

Or
de

re
d 

Va
lu

es

Probability Plot
Real
IP
SE
SC

RMTPP
WGAN
RLPP

0 2 4 6 8 10
Theoretical quantiles

0

2

4

6

8

10

Or
de

re
d 

Va
lu

es

Probability Plot
Real
IP
SE
SC

RMTPP
WGAN
RLPP

Figure 6: QQ-plot for dataset HP (left) and HP+IP1 (right).
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Figure 7: KS test results: CDF of p-values.

Comparison of Runtime. The runtime for all methods averaged on all datasets is shown in Table
1. We note that both RLPP and WGANTPP are written in Tensorflow. However, WGANTPP adopts
the adversarial training framework based on Wasserstein divergence, where both the generator and
the discriminator are modeled as LSTMS. In contrast, RLPP only models the policy as a single
LSTM with the reward function learned in an analytical form. As a consequence, RLPP requires less
parameters and is more simpler to train while at the same time achieving comparable or even better
performance.

Table 1: Comparison of runtime.
Method RLPP WGANTPP RMTPP SE SC IP
Time 80m 1560m 60m 2m 2m 2m
Ratio 40x 780x 30x 1x 1x 1x
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Figure 8: Comparison of empirical intensity functions.

Comparisons to LGCP and non-parametric
Hawkes. We also compared RLPP to log-
Gaussian Cox process (LGCP) model and non-
parametric Hawkes with non-stationary back-
ground rate (Nonpar Hawkes) model regarding
learned empirical intensity function. Represen-
tative comparison results are showed in Fig. 8.
Our proposed method (RL) performs similarly
to LGCP and outperforms Nonpar Hawkes on
real datasets. However, LGCP needs to dis-
cretize time into windows and aggregate event into counts. This leads to some information loss and
introduces additional tuning parameters. Moreover, the standard LGCP is not scalable, typically
requiring O(n3) in computation and O(n2) in storage (n = sequence # × window #). We used an
implementation in GPy package5, which requires 50% more time than our method (127 mins vs
80 mins) in processing 5% of the dataset. The nonparametric Hawkes model is parametrized by
weighted sum of basis functions, similar to that of the inhomogeneous Poisson process baseline, and
it is difficult to generalize outside the observation window.

7 Discussions
1. RMTPP we compared in experiments is a state-of-the-art maximum-likelihood-based model,

which uses a similar RNN outputting parametrization of exponential distributions but fits the
model parameters with maximum likelihood. Across our experiments over eight synthetic and
real-world datasets, our proposed method performs consistently better than the MLE.

2. In theory, although MLE has many attractive limiting properties, it has no optimum properties for
finite samples, in the sense that (when evaluated on finite samples) other estimators may provide a
better estimate for the true parameters, e.g. [22]. Likelihood is related to KL divergence. Since KL
divergence is asymmetric and has a number of drawbacks for finite sample (such as high variance
and mode dropping), many other divergences have been proposed and shown to perform better in
the finite sample case, e.g. [14]. Our proposed discrepancy is inspired by a similar use of RKHS
discrepancy in two sample tests in [14]. RKHS discrepancy has been shown to perform nicely on
finite sample and also preserve the asymptotic properties.

3. Another potential benefit of our proposed framework is that one may use the RNN to define a
transformation for the temporal random variable instead of defining its output distribution. For
example, we can establish our policy as a transformation of a sample from a unit rate exponential
distribution. The same empirical objective in Eq. (8) will be used, but a different optimization
algorithm is needed. Since no explicit parameterization of the output distribution is needed, this
may lead to even more flexible models and this is left for future investigation.

8 Conclusions
This paper proposes a reinforcement learning framework to learn point process models. We
parametrized our policy as RNNs with stochastic neurons, which can sequentially sample dis-
crete events. The policy is updated by directly minimizing the discrepancy between the generated
sequences with the observed sequences, which can avoid model misspecification and the limitation
of likelihood based approach. Furthermore, the discrepancy is explicitly evaluated in terms of the
reward function in our setting. By choosing the function class of reward to be the unit ball in RKHS,
we successfully derived an analytical optimal reward which maximizes the discrepancy. The optimal
reward will iteratively encourage the policy to sample events as close as the observation. We show
that our proposed approach performs well on both synthetic and real data.
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