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Abstract

Multi-response linear models aggregate a set of vanilla linear models by assuming
correlated noise across them, which has an unknown covariance structure. To find
the coefficient vector, estimators with a joint approximation of the noise covariance
are often preferred than the simple linear regression in view of their superior
empirical performance, which can be generally solved by alternating-minimization-
type procedures. Due to the non-convex nature of such joint estimators, the
theoretical justification of their efficiency is typically challenging. The existing
analyses fail to fully explain the empirical observations due to the assumption of
resampling on the alternating procedures, which requires access to fresh samples in
each iteration. In this work, we present a resampling-free analysis for the alternating
minimization algorithm applied to the multi-response regression. In particular,
we focus on the high-dimensional setting of multi-response linear models with
structured coefficient parameter, and the statistical error of the parameter can be
expressed by the complexity measure, Gaussian width, which is related to the
assumed structure. More importantly, to the best of our knowledge, our result
reveals for the first time that the alternating minimization with random initialization
can achieve the same performance as the well-initialized one when solving this
multi-response regression problem. Experimental results support our theoretical
developments.

1 Introduction

We consider the following multi-response linear model [1, 5, 18] with m real-valued outputs,

y = Xθ∗ + η , where η = Σ
1/2
∗ η̃ (1)

where y ∈ Rm is the response vector and X ∈ Rm×p consists of m p-dimensional feature vectors,
and η̃ ∈ Rm is a zero-mean isotropic noise vector. The m responses share the same underlying
parameter θ∗ ∈ Rp, which corresponds to the so-called pooled model [17]. Without loss of generality,
the counterpart of (1) with response-specific parameters can be equivalently written in the above form,
by block-diagonalizing rows of X and concatenating different parameters into a single vector. What
makes this model different from vanilla linear models is the correlated noise η across responses, which
is assumed to be a linear transformation of η̃. The noise covariance of η is given by Cov(η) = Σ∗.
This model has found numbers of real-world applications, such as econometrics [17], computational
biology [22] and climate informatics [14, 15], just to name a few.

In practice, we are given n observations of (X,y), denoted by D = {(Xi,yi)}ni=1, while the
noise covariance structure Σ∗ between responses is typically unknown. Our goal is to estimate the
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parameter θ∗, ideally together with Σ∗. In this work, we additionally focus on the high-dimensional
regime, where the true parameter θ∗ is assumed to possess certain low-complexity structure measured
by some function f : Rp 7→ R+, which can be either convex (e.g., norms) or non-convex (e.g., L0

cardinality). For the low-dimensional setting, it has been shown, both empirically and theoretically,
that simultaneously estimating Σ and θ leads to better performance than ordinary least squares [20].
Inspired by this fact, we consider the joint estimator of (Σ,θ) in high dimension as follows,(

θ̂n, Σ̂n

)
= argmin

θ∈Rp, Σ�0

1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2
2
+

1

2
log |Σ| s.t. f(θ) ≤ λ , (2)

which corresponds to the constrained maximum likelihood estimator (MLE) of (Σ,θ) when the noise
is multivariate Gaussian. The structural assumption on θ∗ is encoded by the inequality constraint.
Though the noise structure is accounted in this joint estimator, one challenge faced by the associated
optimization problem is the non-convexity of the objective function. In the light of the simplicity
of the marginal optimization over Σ and θ when the other is fixed, a popular approach to dealing
with such problem is alternating minimization (AltMin), i.e., alternately solving for Σ (and θ) while
keeping θ (and Σ) fixed. For problem (2), the update of AltMin can be written as

Σ̂(t+1) =
1

n

n∑
i=1

(
yi −Xiθ̂(t)

)(
yi −Xiθ̂(t)

)T
, (3)

θ̂(t+1) = argmin
θ∈Rp

1

2n

n∑
i=1

∥∥∥Σ̂− 1
2

(t+1) (yi −Xiθ)
∥∥∥2
2

s.t. f(θ) ≤ λ , (4)

which will be executed for a number of iterations, say T . Here the new Σ̂(t+1) is obtained by
computing the empirical covariance of the residues estimated at θ̂(t). Though f can potentially
be non-convex, the update of θ̂(t+1) is merely solving a constrained least squares problem, for
which various algorithms are guaranteed to find the global minimum under mild conditions on
data [21, 3, 33]. Generally speaking, both steps are easy to implement, which makes AltMin more
attractive compared with other optimization algorithms that jointly update θ and Σ. In the low-
dimensional setting, the AltMin algorithm for multi-response regression was initially proposed by
[28]. For the high-dimensional counterpart with sparse parameters, previous works [32, 23, 31]
considered the regularized MLE approaches, which are also solved by AltMin-type algorithms.
Unfortunately, none of those works provide finite-sample statistical guarantees for their algorithms.
The first attempt to establish the non-asymptotic error bound of this AltMin approach is made by
[20] for low-dimensional regime, with a brief extension to sparse parameter setting using iterative
hard thresholding method [21]. But they did not allow more general structure of the parameter. One
of the closely related work is [10] with a focus on general parameter structures captured by norms.
They proposed an alternating estimation framework, in which the generalized Dantzig selector [8] is
used for θ-step as an alternative to the regularized and the constrained estimators.

The AltMin technique has also been applied to many other estimation problems, such as matrix
completion [19], phase retrieval [27], and mixed linear regression [44]. However, the current
theoretical understanding of AltMin is still incomplete. Including the aforementioned works, the
statistical guarantees for non-convex AltMin procedures are often shown under the resampling
assumption, which assumes that each iteration receives a fresh sample. Albeit this can be achieved by
partitioning the data into disjoint subsets and using different batches in each update, people seldom do
so in practice, as it usually results in worse performance than using all data in every iteration. From
the theoretical perspective, the resampling assumption oversimplifies the analysis of the algorithm
used in practice, which may otherwise require sophisticated proof techniques [36].

In this paper, we aim at a better way to bound the statistical error of the above AltMin procedure for
general structure-inducing f . In principal, non-asymptotic statistical analyses for the high dimension
typically involve bounding suprema of stochastic processes [26, 2, 42, 30]. The difficulty of analyzing
AltMin lies in the dependency between the data and the obtained iterates, and the lack of independence
prevents applications of various concentration inequalities to the suprema of the target processes. The
resampling assumption facilitates the analysis of AltMin by assuming access to new data that are
independent of previous iterates. In contrast to resampling, we here resort to uniform bounds to tackle
the dependency issue. That is, instead of dealing with the processes involving the specific iterates
generated by AltMin, we try to bound their worst-case counterparts that consider all possible iterates
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before running AltMin. This solution to dependency ends up with more complicated stochastic
processes, which need careful treatment. By applying generic chaining [37], an advanced tool from
probability theory, we are able to obtain the desired bounds for the processes under consideration,
and eventually express the error bound in terms of a complexity measure called Gaussian width
[16, 7] (see Section 3.1). In particular, we analyze the AltMin procedure under two different choices
of initialization, one with an arbitrarily initialized iterate and the other starting at a point close to
θ∗. The L2-error for both types of AltMin is shown to converge geometrically to certain minimum
achievable error emin with overwhelming probability, i.e.,∥∥θ̂(T ) − θ∗

∥∥
2
≤ emin + ρTn ·

(∥∥θ̂(0) − θ∗
∥∥
2
− emin

)
(5)

where ρn < 1 is the contraction factor and emin is given by

emin = O

(
w(C) +m√

n

)
(arbitrary initialization) , (6)

emin = O

(
w(C)√
n

)
(good initialization) . (7)

Here w(C) is the Gaussian width of a set C related the structure of θ∗ (see Definition 2). Surprisingly
the error for good initializations matches the resampling-based result up to some constant, which
requires more fresh data to achieve such a bound. In general, our work improves the results in
[20, 10] in several aspects. First, our analysis does not rely on the resampling assumption. Second,
our statistical guarantees work for general sub-Gaussian noise while [20] and [10] only considered
Gaussian noise. Third, we allow the complexity function f to be non-convex, whereas [10] required
f being a norm. Last but not least, our result suggests that when the amount of data is adequate
for the error bound (6) to meet the requirement of good initialization, the AltMin with arbitrary
initialization can achieve the same level of error as the well-initialized one. Although this type of
guarantee for arbitrary initializations was discovered for other problems [43], it has not been revealed
for the multi-response regression, and our proof technique is also different from the existing ones.

The rest of the paper is organized as follows. In Section 2, we outline our strategy for combating non-
convexity and present the algorithmic details of the AltMin procedure for structured multi-response
regression. In Section 3, we present the statistical guarantees for the AltMin algorithm under suitable
probabilistic assumptions. We provide some experimental results in Section 4, and conclude in
Section 5. All proofs are deferred to the supplementary material.

2 Strategy to Conquer Non-Convexity

For many statistical estimation problems, we can construct the estimator of the underlying model
parameter w∗, by minimizing certain loss function on the given sample D,

ŵ = argmin
w∈W

L(w;D) . (8)

In order to show the recovery guarantee for non-convex estimation, there are mainly two commonly-
used strategies. One strategy is to show certain local convergence in a neighborhood N of the global
minimizer ŵ of (8) [6, 29, 39, 45, 25]. With a proper initialization inside N , subsequent iterates
produced by some local search might be able to converge to ŵ, whose statistical error is expected to
be small. This strategy is particularly suitable for the noiseless setting, as ŵ is equal to w∗, and most
of the existing works use gradient descent type or its variants as workhorse algorithms. The other
strategy is to show that there is no spurious local minima of L under the assumed statistical models,
so that any optimization algorithms that provably converge to local minima will suffice for a good
estimation [34, 35, 4, 13, 24, 12].

For our multi-response regression problem, however, it is difficult to apply the aforementioned
strategies. First, bounding the statistical error of the global minimizer is nontrivial in the noisy setting,
especially when the objective L(w) involves more than one set of variables like the multi-response
regression, let alone characterizing the equivalence of all local minima. Second, the gradient-based
local search is inefficient for the problem (2), since the update of Σ involves matrix inversion and
projection onto positive semidefinite (PSD) cone. In contrast, AltMin procedure has a closed-form
solution to Σ-step, which is preferred in this setting.

3



In this work, we consider another strategy for the non-convex estimation in which w (w∗) is composed
of two parameters, a and b (a∗ and b∗). The loss L is assumed to jointly non-convex over a and b,
but might be marginally convex w.r.t. a (b) when b (a) is fixed. When the marginal subproblems are
easy to solve, alternating minimization procedure is appealing for the purpose of estimation, which is
true for the multi-response regression. The AltMin algorithm executes the following updates,

â(t+1) = argmin
a∈A

L(a, b̂(t);D) , b̂(t+1) = argmin
b∈B

L(â(t+1),b;D) . (9)

The basic idea for showing the statistical guarantees of AltMin is to derive the statistical error bounds
for both the a- and b-steps when the other parameter is fixed to the latest estimate. Since both
subproblems in (9) are usually simpler, the separate errors might be easier to characterize than
considered jointly, which are ideally of the form,

d1
(
â(t+1), a∗

)
≤ e1

(
d2

(
b̂(t),b∗

))
, d2

(
b̂(t+1), b∗

)
≤ e2

(
d1
(
â(t+1),a∗

))
. (10)

The function d1 (respectively d2) characterizes the closeness between â(t+1) and a∗ (b̂(t+1) and b∗),
which is nonnegative with d1(a∗,a∗) = 0 (d2(b∗,b∗) = 0) but not necessarily a metric. The choice
of d1 and d2 depends on the goal of analysis for the problem under consideration, and a suitable
combination of d1 and d2 may facilitate the proof. The upper bound e1 (respectively e2) may depend
on other quantities such as n, but our emphasis is the dependence on the estimation accuracy of b

(a). It is natural to expect that e1 (e2) will shrink as b̂(t) (â(t)) moves closer to b∗ (a∗). Under this
condition, we can apply the bounds in (10) alternatingly and recursively

d1(â(T ),a∗) ≤ e1
(
d2

(
b̂(T−1),b∗

))
≤ . . . . . . ≤ e1

(
e2

(
. . . e1

(
d2

(
b̂(0),b∗

))
. . .
))

︸ ︷︷ ︸
composition of T e1(·) and T − 1 e2(·)

(11)

d2(b̂(T ),b∗) ≤ e2
(
d1
(
â(T ),a∗

))
≤ . . . . . . ≤ e2

(
e1

(
. . . e1

(
d2

(
b̂(0),b∗

))
. . .
))

︸ ︷︷ ︸
composition of T e2(·) and T e1(·)

(12)

which may imply the error of â(T ) and b̂(T ) under other metrics of interest as well. Compared
with the previous strategies, one notable difference of our treatment is that we do not care about the
optimization convergence of AltMin, as we neither characterize the error of any local minimizers
of L(·) nor show any iterate convergence to those minimizers. Instead the ingredients we need
are simply the statistical error bounds in (10). Given this fact, our analysis can be extended to the
alternating estimation (AltEst) procedure [10] that need not optimize a joint objective over a and b
and certainly cannot be handled by the earlier strategies.

In order to get (10), the analysis for each AltMin step is often confronted with a technical challenge
due to the dependency between data and the iterates obtained so far, which is bypassed by many
existing analyses via the resampling assumption. Essentially the resampling-based result states
that with any fixed b̂(t) (â(t+1)), given a fresh sample D(t) independent of b̂(t) (â(t+1)), the next
iterate â(t+1) (b̂(t+1)) satisfies the corresponding bound in (10) with high probability. To avoid the
resampling, we leverage the idea of uniform bounds [40], which aims to show that given a sample D,
the bounds in (10) hold uniformly with high probability for all possible value of the input b̂(t) and
â(t+1). This argument asks for no fresh data in each iteration, and the probability of the error bounds
being true does not deteriorate with growing number of iterations. For structured multi-response
regression, we will focus on the AltMin procedure shown in Algorithm 1. For the rest of the paper,
C0, C1, c0, c1 and so on are reserved for absolute constants.

3 Statistical Guarantees of Alternating Minimization

In this section, we apply the resampling-free analysis strategy introduced in Section 2 to the multi-
response regression problem, for which a = Σ and b = θ. First we introduce a few notations. Given
a set A ⊆ Rp, define coneA = {c · a | c ≥ 0, a ∈ A}. We denote the smallest and the largest
eigenvalue of Σ∗ as σ−∗ and σ+

∗ , and assume Diag(Σ∗) = Im×m throughout the paper for simplicity.
In addition, we drop the subscripts indexing the iteration, and analyze both Σ-update and θ-update in
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Algorithm 1 Alternating minimization for multi-response regression
Input: Number of iterations T , Data D = {(Xi,yi)}ni=1 and Tuning parameter λ
Output: Estimated θ̂(T )

1: Initialize θ̂(0) (e.g., solving (4) with Σ̂(0) = I)
2: for t:= 0 to T − 1 do
3: Compute Σ̂(t+1) according to (3)
4: Compute θ̂(t+1) by solving (4)
5: end for
6: return θ̂(T )

a broader setting, where the other parameter is fixed as a generic input in certain regions, i.e.,

Σ̂(θ) =
1

n

n∑
i=1

(yi −Xiθ) (yi −Xiθ)
T
, (13)

θ̂(Σ) = argmin
f(θ)≤f(θ∗)

1

2n

n∑
i=1

∥∥∥Σ− 1
2 (yi −Xiθ)

∥∥∥2
2
. (14)

Note that here the tuning parameter λ in (4) for the θ-step is set as λ = f(θ∗), which will be kept for
the rest of the analysis. Given the recent progress in non-convex optimization [3], we also assume
that θ̂(Σ) can be solved globally despite the potential non-convexity of f . The input regions we
consider for θ and Σ are respectively given by

R =
{
θ ∈ Rp

∣∣ f(θ) ≤ f(θ∗)} , (15)

M(e0) =
{

Σ̂(θ) ∈ Rm×m
∣∣ θ ∈ R, ‖θ − θ∗‖2 ≤ e0

}
, (16)

in which e0 is the error tolerance to be specified for the initialization. Note that the input region
M(e0) implicitly depends onR as well as the sample D = {(x,y)}ni=1 used for computing Σ̂(θ).

3.1 Preliminaries

To apply the proof strategy for AltMin, we first define the distance function d1 and d2.

Definition 1 (distance functions) The distance functions for Σ-step and θ-step are defined as

d1(Σ,Σ∗) =
ξ(Σ)

ξ(Σ∗)
− 1, where ξ(Σ) =

√
Tr(Σ−1Σ∗Σ−1)

Tr(Σ−1)
, (17)

d2(θ,θ∗) = ‖θ − θ∗‖2 . (18)

Although d1 may look odd at first glance, it actually arises as a natural choice after we fix d2, as the
L2-error of θ is our primary goal in the statistical analysis. It is worth noting that ξ(Σ) is minimized
at Σ = Σ∗. The following definition is critical to the analysis for general structures of θ∗ [7].

Definition 2 (error spherical cap) For a structure-inducing f , its error spherical cap is defined as

C = cone
{
u ∈ Rp

∣∣ f(θ∗ + u) ≤ f(θ∗)
}
∩ Sp−1 , (19)

where Sp−1 = {u | ‖u‖2 = 1} is the unit sphere of Rp.

The probabilistic analysis of d1 and d2 is built upon the concept of sub-Gaussian vectors and matrices,
which are defined below.

Definition 3 (sub-Gaussian vector and matrix) A vector x ∈ Rp is said to be sub-Gaussian if its
ψ2-norm satisfies,

|||x|||ψ2
= sup

u∈Sp−1

|||〈x,u〉|||ψ2
≤ κ < +∞ , (20)
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where |||·|||ψ2
is defined for a random variable x ∈ R as |||x|||ψ2

= supq≥1
(E|x|q)

1
q

√
q . A matrix

X ∈ Rm×p is sub-Gaussian if the following ψ2-norm for X is finite,

|||X|||ψ2
= sup

u∈Sp−1 v∈Sm−1

∣∣∣∣∣∣∣∣∣uTΓ
− 1

2
v XTv

∣∣∣∣∣∣∣∣∣
ψ2

≤ κ < +∞ , (21)

where Γv = E[XTvvTX]. Further, Γv for any v ∈ Sm−1 is assumed to satisfy the condition
0 < µ− ≤ λmin(Γv) ≤ λmax(Γv) ≤ µ+ < +∞, for some constants µ− and µ+.

This definition is adopted from [41, 20]. If rows of X are i.i.d. copies of an isotropic sub-Gaussian
random vector x with |||x|||ψ2

≤ κ, it is not difficult to verify that |||X|||ψ2
≤ Cκ for a universal

constant C, and µ− = µ+ = 1. Our assumptions on {Xi} and {η̃i} are given below.

(A1) The designs X1, . . . ,Xn are i.i.d. copies of a sub-Gaussian X with parameter κ, µ− and µ+.

(A2) The isotropic noises η̃1, . . . , η̃n are i.i.d. copies of a sub-Gaussian η̃ with parameter τ .

Another key ingredient in the analysis is the complexity measure of the parameter structure captured
by C, which turns out to be the notion of Gaussian width [16].

Definition 4 (Gaussian width) The Gaussian width w(A) of a set A ⊆ Rp is defined as

w(A) = Eg∼N (0,I)

[
sup
u∈A
〈g,u〉

]
. (22)

Gaussian width is easy to calculate or bound for the error spherical caps induced by many f of
interest [7, 9]. Based on Gaussian width, the proofs of the error bounds utilize a powerful tool
from probability theory, called generic chaining [37]. We refer the interested readers to the recent
monograph [38] and references therein.

3.2 Error Bound for Arbitrary Initializations

Given the definitions of distance function d1 and d2, we first focus on the separate error bounds
for the Σ-step and the θ-step in (13) and (14). To allow arbitrary initializations, we consider the
tolerance of initialization error e0 = +∞, which appears in the definition ofM(e0).

Lemma 1 (error bound for Σ-estimation) Under the assumptions (A1) and (A2), if the sample size

n ≥ C0 max

{
1, τ4, κ4

(
σ+
∗ µ

+

σ−
∗ µ−

)2}
·max

{
m, w

4(C)
m

}
, with probability at least 1−C2 exp (−C1m),

Σ̂(θ) given in (13) is invertible for any θ ∈ R and its error satisfies

d1

(
Σ̂(θ), Σ∗

)
≤ C3τ

2

√
m

n
+ C4

√
µ+

σ−∗
· d2 (θ,θ∗) . (23)

Remark: If θ = θ∗, the Σ-step computes the sample covariance of the noise, for which d2(θ,θ∗) =
0, and the remaining O

(√
m
n

)
term in (23) is the typical statistical rate for covariance estimation.

Lemma 2 (error bound for θ-estimation) Under the assumptions (A1) and (A2), if the sample

size n ≥ C0 max

{
1, τ4, κ4

(
σ+
∗ µ

+

σ−
∗ µ−

)2}
· max

{
m, w

4(C)
m

}
, then with probability at least 1 −

C2 exp (−C1m), the following bound holds for θ̂(Σ) given in (14) with any input Σ ∈M(+∞),

d2

(
θ̂(Σ), θ∗

)
≤ (1 + d1 (Σ,Σ∗)) ·

C4κ
√
µ+

µ−
√
Tr(Σ−1∗ )

· m+ w(C)√
n

, (24)

where ξ(Σ) is given in Definition 1.
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Remark: For Σ = Σ∗ and Σ = I, θ-step corresponds to the oracle estimator θ̂orc and the ordinary
least squares (OLS) estimator θ̂odn respectively, i.e.,

θ̂orc = argmin
f(θ)≤f(θ∗)

1

2n

n∑
i=1

∥∥∥Σ− 1
2
∗ (yi −Xiθ)

∥∥∥2
2
, (25)

θ̂odn = argmin
f(θ)≤f(θ∗)

1

2n

n∑
i=1

‖yi −Xiθ‖22 . (26)

An analysis similar to [10] shows that with high probability the L2-errors of θ̂orc and θ̂odn satisfy∥∥∥θ̂orc − θ∗

∥∥∥
2
≤ C ′κ

√
µ+

µ−
√
Tr(Σ−1∗ )

· w(C)√
n

, eorc, (27)

∥∥∥θ̂odn − θ∗

∥∥∥
2
≤ C ′κ

√
µ+

µ−
√
m
· w(C)√

n
, eodn, (28)

which indicates that the oracle estimator improves the OLS by a factor of

eorc

eodn
=

√
m

Tr(Σ−1∗ )
. (29)

In practice, this improvement can be significant, especially when there is strong cross-correlation
among the responses, such that Σ∗ is close to singular.

By assembling Lemma 1 and 2, we obtain the following theorem for the error of AltMin, which
exhibits a geometrical convergence to certain minimum achievable error.

Theorem 1 (error bound for arbitrarily-initialized AltMin) Under the assumptions (A1) and

(A2), if the sample size n ≥ C0 ·max

{
1, τ4, κ4

(
µ+σ+

∗
µ−σ−

∗

)2
, κ2

(
µ+

µ−

)2 (
σ+
∗
σ−
∗

)}
·max

{
w4(C)
m ,m

}
,

and θ̂(0) is a feasible initialization (i.e., f(θ̂(0)) ≤ f(θ∗)), then with probability at least
1− C2 exp(−C1m), the following error bound holds for θ̂(T ) returned by Algorithm 1∥∥∥θ̂(T ) − θ∗

∥∥∥
2
≤ emin + ρTn ·

(∥∥∥θ̂(0) − θ∗

∥∥∥
2
− emin

)
, (30)

in which ρn and emin satisfy the inequalities below with δn = C5τ
2
√

m
n ≤

1
4 ,

ρn ≤
C3κµ

+

µ−
√
σ−∗ Tr(Σ−1∗ )

· m+ w(C)√
n

≤ 1

2
, (31)

emin ≤
C4κ

√
µ+

µ−
√
Tr(Σ−1∗ )

· m+ w(C)√
n

· 1 + δn
1− ρn

. (32)

Remark: The inequality (30) indicates that the upper bound of the error for AltMin procedure will
decrease geometrically to the minimum achievable error emin with rate ρn. Though the initialization
condition f(θ̂(0)) ≤ f(θ∗) may not be true for arbitrary θ̂(0), it should be satisfied by the first iterate
θ̂(1), from which Theorem 1 starts to apply.

Note that the ρn in (30) not only controls the convergence rate of error, but also affects the value of
emin. The emin is of the same order as the right-hand side of (24) with Σ = Σ∗, which has an extra
additive O

(
m√
n

)
term compared with eorc. This is due to the uniformity considered for the θ-step

over all Σ ∈M(+∞). To improve the bound for AltMin, we can consider a small e0 forM(e0).

3.3 Improved Bound with Good Initializations

As discussed above, we consider a smaller input region M(e0) for the θ-step with e0 =
√

σ−
∗
µ+ .

Before presenting the results, we introduce the set called error spherical sector.
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Definition 5 (error spherical sector) For a structure-inducing f , its error spherical sector is defined
as

S = cone
{
u ∈ Rp

∣∣ f(θ∗ + u) ≤ f(θ∗)
}
∩ Bp−1 , (33)

where Bp = {u | ‖u‖2 ≤ 1} is the unit ball of Rp.

Geometrically S is closely related to the previously defined C in (19), and their Gaussian widths
satisfy w(S) ≤ w(C) + c for some universal constant c. Based on this definition, the following
theorem characterizes the sharpened error of AltMin under good initializations.

Theorem 2 (error bound for well-initialized AltMin) Under the assumptions (A1) and (A2), if

the sample size n ≥ C0 ·max

{
1, τ4, κ4

(
µ+σ+

∗
µ−σ−

∗

)2
, κ2

(
µ+

µ−

)2 (
σ+
∗
σ−
∗

)}
·max

{
w4(C)
m , m3

w2(C) ,m
2
}

,

and a feasible initialization θ̂(0) satisfies ‖θ̂(0) − θ∗‖2 ≤
√

σ−
∗
µ+ , then with probability at least

1− C2 exp
(
−C1 ·min

{
w2(C),m

})
, the error bound (30) holds for θ̂(T ) returned by Algorithm 1

with ρn and emin satisfying

ρn ≤
C3κµ

+

µ−
√
σ−∗ Tr(Σ−1∗ )

· w(S)√
n
≤ 1

2
, (34)

emin ≤
C4κ

√
µ+

µ−
√

Tr(Σ−1∗ )
· w(S)√

n
· 1 + δn
1− ρn

, (35)

where δn is the same as the one given in Theorem 1.

Remark: Since w(S) only differs from w(C) by a constant, the above error bound matches the order
of the oracle error eorc. For instance, if θ∗ is s-sparse and f = ‖ · ‖0, then w(S) and emin satisfy,

w(S) = O
(√

s log p
)

=⇒ emin = O

(√
s log p

n

)
The initialization condition is a result of setting a small value of e0, which yields an improved version
of Lemma 2 so that we can obtain a better bound in Theorem 2. A reasonably good initialization
of θ̂(0) can be obtained by solving OLS θ̂odn, whose error bound is given (27). On the other hand,
the iterates obtained by running arbitrarily-initialized AltMin may also satisfy the initialization
requirements as Theorem 1 guarantees a moderate error. Once the requirements are met during the
iteration, the arbitrarily-initialized AltMin can attain this sharper bound as well as the well-initialized.

4 Experiments

In this section, we present some experimental results to support our theoretical analysis. Specifically
we focus on the sparsity structure of θ∗, and consider L0-cardinality as complexity function f .
Throughout the experiment, we fix problem dimension p = 1000, sparsity level of θ∗ s = 20, and
number of iterations T = 10. Entries of X of η̃ are generated by i.i.d. standard Gaussian, and
θ∗ = [1, . . . , 1︸ ︷︷ ︸

10

,−1, . . . ,−1︸ ︷︷ ︸
10

, 0, . . . , 0︸ ︷︷ ︸
980

]T . Σ∗ is given as a block diagonal matrix with Σ′ =
[

1 a
a 1

]
replicated along the diagonal. All the plots are obtained based on the average over 100 random trials.

First we set a = 0.9, m = 10, and vary sample size n from 30 to 80. We run the AltMin initialized
by both OLS and Gaussian random vector, where θ-step is solved by the hard-thresholding pursuit
(HTP) algorithm [11]. The error plots are shown in Figure 1. Second, we fix m = 10, and vary the
parameter a in Σ∗ from 0.5 to 0.9 for n = 30, 40, 50 and 60. The plots in Figure 2(a) shows the
error of AltMin against a. As indicated by (29), the improvement of the oracle least squares over the
ordinary one is amplified with increasingly large a. Figure 2(b) compares the actual ratio of eorc to
eodn and the suggested one. Finally we fix a = 0.8, and the number of responses m ranges from 10
to 18 for n = 30, 40, 50 and 60. The results are presented in Figure 2(c) and 2(d).
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Figure 1: (a) A phase transition is observed for the randomly-initialized AltMin around n = 40, whose error is
on a par with the well-initialized for n ≥ 40. This coincides with the remark for Theorem 2. Also, the error of
AltMin is close to the oracle estimator, which is significantly better than OLS. (b) Our theoretical results suggest
that a larger sample size leads to smaller ρn, thus AltMin converge faster as shown in the plots.
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Figure 2: (a) With a varying from 0.5 to 0.9, the responses become increasingly correlated and the error of
AltMin reduces more quickly. (b) The actual ratio of eorc to eodn is very close the predicted one given by (29).
(c) As m increases from 10 to 18, the error of AltMin does not decrease drastically. The main reason is the
increasingly large error in the estimation of Σ∗. (d) Compared with the error of OLS, the advantage of AltMin
becomes marginal with growing m, while its gap with the oracle estimator is widened.

5 Conclusions

In this paper, we investigate the alternating minimization (AltMin) algorithm for high-dimensional
multi-response linear models, which allow general structures of the underlying parameter. In particu-
lar, we present a resampling-free analysis for the statistical error of the non-convex AltMin procedure.
Our error bound matches the resampling-based result up to some constant, which is of the same order
as the oracle estimator. Above all, the error bounds suggest that the arbitrarily-initialized AltMin is
able to attain the same level of estimation error as the one with good initializations.
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