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1 Comparison to exponential coordinates

Many optimization algorithms tend to favor Rodrigues vector (exponential coordinates) [1] param-
eterization due to R3 embedding and geodesics being straight lines [2]. This also leads to simpler
Jacobian forms. In this paper, we argue that unit quaternions are more suitable for the approach we
pursue: First, 3-vector formulations suffer from infinitely many singularities when the rotation angle
approaches 0, ‖a‖ → 0, whereas quaternions avoid them [3]. Moreover, quaternions have single
redundancy in the representation q = −q, whereas the normed vectors possess infinite redundancy,
i.e. the norm can grow indefinitely, but the angle lies in range [0 − 2π]. These make it harder to
define continuous distributions directly on Rodrigues vectors. Yet, for quaternions there exists the
natural antipodally symmetric Bingham distributions.

2 Illustration of tempered posteriors

In this study we consider the tempered posterior distributions whose density is controlled by the
inverse temperature variable β. When β = 1, the posterior density coincides with the original
posterior; however, as β goes to infinity, the tempered density concentrates near the global minimum
of the potential U [4, 5]. As we mentioned in the main document, this important property implies
that, for large enough β, a random sample that is drawn from the tempered posterior would be close
to the global optimum and can therefore be used as a MAP estimate.

The figure below illustrates this phenomenon on a simple 2-component Gaussian mixture: when
β = 1 we can observe that both modes are visible, but when β = 20 the mode on the right vanishes
and the distribution concentrates around the global mode.

Figure S1: Illustration of tempered posteriors on a simple Gaussian mixture model.
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3 Numerical Integration

In this section, we provide the details of the numerical integration scheme that was explained in
Section 4 of the main document. In short, the overall scheme is an extension of [6], where we
introduce the inverse temperature β.

Once the gradients with respect to the latent variables are computed, i.e.:

∇xU(x) ≡ {∇q1
U(x), . . .∇qnU(x),∇t1U(x), . . .∇tnU(x)}, (S1)

we can update each of the variables q1, . . . ,qn, t1, . . . , tn independently from each other, meaning
that, the split integration steps, A, B, O can be applied to each of these variables independently. The
operations A, B, O will differ depending on the manifold of the particular variable, therefore we
will define these operations both on S3 and R3 for the two sets of variables {qi}ni=1 and {ti}ni=1,
respectively.

As we split x into {qi}ni=1 and {ti}ni=1, we similarly split the variable v into {vq
i }ni=1 and {vt

i}ni=1
in order to facilitate the presentation.

3.1 Update equations for the rotation components

Set a step-size h. For each {qi,vq
i } pairs, the operations A, B, O have the following analytical form:

Step A:

Set α = ‖vq
i ‖, q′ ← qi and v′ ← vq

i .

qi ← q′ cos(αh) + (v′/α) sin(αh) (S2)

vq
i ← −αq′ sin(αh) + v′ cos(αh) (S3)

Step B:

vq
i ← exp(−ch)vq

i (S4)

Step O:

Set v′ ← vq
i and g← ∇qiU(x)

vq
i ← v′ + P (qi)

(
−hg +

√
2c/βzqi

)
, (S5)

where P (q) = (I− qq>) denotes the projector and zqi denotes a standard Gaussian random variable
on R4.

3.2 Update equations for the translation components

Set a step-size h. For each {ti,vt
i} pairs, the operations A, B, O have the following analytical form:

Step A:

ti ← ti + hvt
i (S6)

Step B:

vt
i ← exp(−ch)vt

i (S7)

Step O:

Set v′ ← vt
i and g← ∇tiU(x)

vt
i ← v′ +

(
−hg +

√
2c/βzti

)
, (S8)

where zti denotes a standard Gaussian random variable on R3.

3.3 Algorithm pseudocode

We illustrate the overall algorithm in Algorithm 1
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Algorithm 1: TG-MCMC
1 input :x0 = {q1, . . . ,qn, t1, . . . , tn}, v = {vq

1 , . . . ,v
q
n,v

t
1, . . . ,v

t
n}, β, c , h

2 for i = 1, . . . , N do
3 Compute the gradient∇xU(xi)

// Update the rotation components
4 for j = 1, . . . , n do
5 Run the B, O, A steps (in this order) on qj ,v

q
j (Section 3.1)

// Update the translation components
6 for j = 1, . . . , n do
7 Run the B, O, A steps (in this order) on tj ,v

t
j (Section 3.2)

4 Assumptions

In this section, we state the assumptions that imply our theoretical results.

H1. The gradient of the potential is Lipschitz continuous, i.e. there exists L < ∞, such that
‖∇xU(x)−∇xU(x′)‖ ≤ LdX (x,x′), ∀x,x′ ∈ X , where dX denotes the geodesic distance on X .

H 2. The second-order moments of πx are bounded and satisfies the following inequality:∫
X ‖x‖

2πx(dx) ≤ C
β , for some C > 0.

H3. Let ψ be a functional that is the unique solution of a Poisson equation that is defined as follows:

Lnψ(ϕn) = U(xn)− Ūβ , (S9)

where ϕn = [x̃>n ,p
>
n ]>, Ln is the generator of (8) at t = nh (see [7] for the definition). The

functional ψ and its up to third-order derivatives Dkψ are bounded by a function V (ϕ), such that
‖Dkψ‖ ≤ CkV

rk for k = 0, 1, 2, 3 and Ck, rk > 0. Furthermore, supnEV
r(xn) < ∞ and V

is smooth such that sups∈(0,1) V
r(sϕ + (1 − s)ϕ′) ≤ C(V r(ϕ) + V r(ϕ′)) for all ϕ,ϕ′ ∈ R12n,

r ≤ max 2rk, and C > 0.

5 Proof of Proposition 1

Proof. We start by rewriting the SDE given in (8) as follows:

dϕt =

−

[
0 0

0 cM>M
β I

]
︸ ︷︷ ︸

D

+

[
0 − I

β
I
β 0

]
︸ ︷︷ ︸

Q


[
A(x̃t,pt, β)
βG−1pt

]
︸ ︷︷ ︸
∇ϕEλ(ϕt)

 dt+
√

2DdWt. (S10)

where A(x̃t,pt, β) , β∇x̃Uλ(x̃t) + β
2∇x̃ log |G| + β

2∇x̃(p>t G−1pt). Here, we observe that D
is positive semi-definite, Q is anti-symmetric. Then, the desired result is a direct consequence of
Theorem 1 of [8].

6 Proof of Theorem 1

Before proving Theorem 1, we first prove the following intermediate results, whose proofs are given
later in this document.

Corollary 1. Assume that H1 and H3 hold. Let {xn,vn} be the output our algorithm with β > 0.
Define ÛN , 1

N

∑N
n=1 U(xn). Then the following bound holds for the bias:∣∣EÛN − Ūβ∣∣ = O(

β

Nh
+
h

β
). (S11)
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Lemma S1. Assume that the conditions H1 and H2 hold. Then, the following bound holds for
β ≤ 6

Lπ2 log CLπ4e
3n :

Ūβ − U? = O
( 1

β

)
, (S12)

where C is defined in H2.

6.1 Proof of Theorem 1

Proof. The proof is a direct application of Corollary 1 and Lemma S1.

7 Proof of Corollary 1

Proof. From [7][Theorem 2], the bias of a standard SG-MCMC algorithm (i.e. β = 1) is bounded by

O(
1

Nh′
+

∑N
n=1 ‖E∆Vn‖

N
+ h′). (S13)

where h′ denotes the step-size and ∆Vn is an operator and it is related to bias of the stochastic
gradient computations if there is any. If the iterates are obtained via full gradient computations
∇U or unbiased stochastic gradients computations (i.e. the case we consider here), then we have
‖E∆Vn‖ = 0. Then by using a time-scaling argument similar to [9, 10], we define h = h′

β . This
corresponds to running a standard SG-MCMC algorithm directly on the energy function EH(x,v).
The result is then obtained by replacing h′ by h

β in (S13).

8 Proof of Lemma S1

In order to prove Lemma S1, we first need some rather elementary technical results, which we provide
in Section 9 for clarity.

Proof. We use a similar proof technique to the one given in [9][Proposition 11]. We assume that πx
admits a density, denoted as ρ(x) , 1

Zβ
exp(−βU(x)), where Zβ is the normalization constant:

Zβ ,
∫
X

exp(−βU(x))dx. (S14)

We start by using the definition of Ūβ , as follows:

Ūβ =

∫
X
U(x)πx(dx) =

1

β
(H(ρ)− logZβ), (S15)

where H(ρ) is the differential entropy, defined as follows:

H(ρ) , −
∫
X
ρ(x) log ρ(x)dx. (S16)

We now aim at upper-bounding H(ρ) and lower-bounding logZβ .

By Assumption H2, the distribution πx has a finite second-order moment, therefore all the marginal
distributions will also have bounded second order moments. By abusing the notation and denoting
x ≡ {q1, . . . ,qn, t1, . . . , tn}, and by using the fact that the joint differential entropy is smaller than
the sum of the differential entropies of the individual random variables, we can upper-bound H(ρ) as
follows:

H(ρ) ≤
n∑
i=1

H(ρqi) +H(ρt1,...,tn), (S17)

where ρqi denotes the marginal density of qi and ρt1,...,tn denotes the joint marginal density of
(t1, . . . , tn). Since ρt1,...,tn is defined on R3n, we know that H(ρt1,...,tn) is upper-bounded by the
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differential entropy of a Gaussian distribution on R3n that has the same second order moment. By
denoting the covariance matrix of the Gaussian distribution with Σ, we obtain:

H(ρt1,...,tn) ≤ 1

2
log[(2πe)3n det(Σ)] (S18)

≤ 1

2
log[(2πe)3n

( tr(Σ)

3n

)3n
] (S19)

≤ 3n

2
log
(

2πe
C

3βn

)
, (S20)

The equations (S19) and (S20) follows by the relation between the arithmetic and geometric means,
and Assumption H2.

By using a similar argument, since ρqi lives on the unit sphere, its differential entropy is upper-
bounded by the differential entropy of the uniform distribution on the unit sphere. Accordingly, we
obtain:

H(ρqi) ≤ log(2π2), (S21)

By using (S20) and (S21) in (S17), we obtain

H(ρ) ≤n log(2π2) +
3n

2
log
(

2πe
C

3βn

)
(S22)

=
3n

2
log(
√

2π)4/3 +
3n

2
log
(

2πe
C

3βn

)
(S23)

≤3n

2
log
(4π3eC

3βn

)
. (S24)

We now lower-bound logZβ . By definition, we have

logZβ = log

∫
X

exp(−βU(x))dx (S25)

= −βU? + log

∫
X

exp(β(U? − U(x)))dx (S26)

≥ −βU? + log

∫
X

exp(−βLπ
2‖x− x?‖2

8
)dx (S27)

Here, in (S27) we used Assumption H 1 and Corollary 2 (presented below). By using x ≡
[q>1 , . . . ,q

>
n , t
>]> and x? ≡ [(q?1)>, . . . , (q?n)>, (t?)>]>, and t ≡ [t>1 , . . . , t

>
n ]>, t? ≡

[(t?1)>, . . . , (t?n)>]> we obtain:

logZβ ≥− βU? + log

(
n∏
i=1

∫
S3

exp(−βLπ
2‖qi − q?i ‖2

8
)dqi

)

+ log

(∫
R3n

exp(−βLπ
2‖t− t?‖2

8
)dt

)
(S28)

=− βU? + log

(
n∏
i=1

∫
S3

exp(−βLπ
2‖qi − q?i ‖2

8
)dqi

)

+
3n

2
log(

4

βLπ
). (S29)

Let us focus on the integral with respect to qi. By definition, we have:∫
S3

exp(−βLπ
2‖qi − q?i ‖2

8
)dqi =

∫
S3

exp
(
−βLπ

2

8
(2− 2q>i q?i )

)
dqi (S30)

= exp
(
−βLπ

2

4

)∫
S3

exp
(βLπ2

4
q>i q?i

)
dqi. (S31)
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By using the connection between the integral on the right hand side of the above equation and the
Von Mises–Fisher distribution [11], we obtain:∫

S3
exp(−βLπ

2‖qi − q?i ‖2

8
)dqi = exp

(
−βLπ

2

4

)
2π2I1

(βLπ2

4

) 4

βLπ2
, (S32)

where I1 denotes the modified Bessel function of the first kind. By [12] (see Equation 6.25 in the
reference), we know that I1(x) ≥ x/2. By using this inequality in (S32), we obtain:∫

S3
exp(−βLπ

2‖qi − q?i ‖2

8
)dqi ≥ exp

(
−βLπ

2

4

)
π2. (S33)

We can insert (S33) in (S29), as follows:

logZβ ≥− βU? +
3n

2
log(

4

βLπ
) +

n∑
i=1

log

∫
S3

exp(−βLπ
2‖qi − q?i ‖2

8
)dqi (S34)

≥− βU? +
3n

2
log(

4

βLπ
)− nβLπ

2

4
+ 2n log π (S35)

≥− βU? +
3n

2
log(

4

βLπ
)− nβLπ

2

4
(S36)

Finally, by combining (S15), (S24), and (S36), we obtain:

Ūβ − U? =
1

β
(H(ρ)− logZβ)− U? (S37)

≤ 3n

2β
log
(4π3eC

3βn

)
− 3n

2β
log(

4

βLπ
) + n

Lπ2

4
(S38)

=
3n

2β
log
(CLπ4e

3n

)
+ n

Lπ2

4
(S39)

≤ 3n

β
log
(CLπ4e

3n

)
. (S40)

The last line follows from the hypothesis. This finalizes the proof.

9 Technical Results

In the following lemma, we generalize [13][Lemma 1.2.3] to manifolds. Similar arguments can be
found in [14, 15].
Lemma S2. Let X ⊂ Rn be a Rimannian manifold with metric dX , and let γ : [0, 1] 7→ X be a
constant-speed geodesic curve between two points x,y ∈ X , such that γ(0) = x and γ(1) = y. Let
f : X 7→ R be a continuously differentiable function with Lipschitz continuous gradients. Then the
following bound holds for every x,y ∈ X :∣∣∣f(y)− f(x)−

∫ 1

0

〈∇f(x), γ′(t)〉dt
∣∣∣ ≤ L

2
dX (x,y)2, (S41)

where 〈x,y〉 , x>y and L denotes the Lipschitz constant.

Proof. Let us define a function ϕ : [0, 1] 7→ R, such that ϕ(t) , f(γ(t)). By definition, we have
ϕ(0) = f(x) and ϕ(1) = f(y). By using the second fundamental theorem of calculus, we can write:

ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t)dt, (S42)

where ϕ′(t) denotes the derivative of ϕ(t) with respect to t. By the theorem of derivation of composite
functions, we have

ϕ′(t) = 〈∇f(γ(t)), γ′(t)〉. (S43)
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By combining (S42) and (S43), we obtain the following identity for all x,y ∈ X :

f(y) = f(x) +

∫ 1

0

〈∇f(γ(t)), γ′(t)〉dt (S44)

= f(x) +

∫ 1

0

〈∇f(x), γ′(t)〉dt+

∫ 1

0

〈∇f(γ(t))−∇f(x), γ′(t)〉dt . (S45)

Therefore, we obtain∣∣∣f(y)− f(x)−
∫ 1

0

〈∇f(x), γ′(t)〉dt
∣∣∣ =

∣∣∣∫ 1

0

〈∇f(γ(t))−∇f(x), γ′(t)〉dt
∣∣∣ (S46)

≤
∫ 1

0

∣∣∣〈∇f(γ(t))−∇f(x), γ′(t)〉
∣∣∣dt (S47)

≤
∫ 1

0

‖∇f(γ(t))−∇f(x)‖‖γ′(t)‖dt (S48)

≤ L
∫ 1

0

dX (γ(t),x) ‖γ′(t)‖dt. (S49)

We can now use the fact that the geodesic curve has a constant velocity, such that ‖γ′(t)‖ = dX (x,y)
for all t ∈ [0, 1], which also implies dX (γ(t1), γ(t2)) = |t1 − t2|dX (γ(1), γ(0)). Then, using
x = γ(0), y = γ(1), we obtain:∣∣∣f(y)− f(x)−

∫ 1

0

〈∇f(x), γ′(t)〉dt
∣∣∣ ≤ L∫ 1

0

tdX (x,y)2dt (S50)

=
L

2
dX (x,y)2. (S51)

This concludes the proof.

Corollary 2. Under the assumptions of Lemma S2, the following bound holds for all x ∈ X

f(x)− f? ≤ Lπ2

8
‖x− x?‖2, (S52)

where X , (S3)n × R3n, f? = minx′∈X f(x′) and x? = arg minx′∈X f(x′).

Proof. By using Lemma S2 and the obvious facts that ∇f(x?) = 0 and f(x) > f? for all x ∈ X ,
we have:

f(x)− f? ≤ L

2
dX (x,x?)2. (S53)

The inequality given in Equation A.1.1 in [16] states that the geodesic distance on the sphere is
bounded by the 2-norm, more precisely, for all q,q′ ∈ Sd−1 we have:

dSd−1(q,q′) ≤ π

2
‖q− q′‖. (S54)

Using x ≡ [q>1 , . . . ,q
>
n , t
>
1 , . . . , t

>
n ]> and x? ≡ [(q?1)>, . . . , (q?n)>, (t?1)>, . . . , (t?n)>]> yields:

f(x)− f? ≤L
2

( n∑
i=1

dS3(qi,q
?
i )

2 +

n∑
i=1

‖ti − t?i ‖2
)

(S55)

≤L
2

(π2

4

n∑
i=1

‖qi − q?i ‖2 +

n∑
i=1

‖ti − t?i ‖2
)

(S56)

≤Lπ
2

8

( n∑
i=1

‖qi − q?i ‖2 +

n∑
i=1

‖ti − t?i ‖2
)

(S57)

=
Lπ2

8
‖x− x?‖2. (S58)

This concludes the proof.
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10 Gradients of Likelihood and Prior Terms

In this section we provide derivations of the gradients for data and prior terms. For completeness, we
find it worthy to once again repeat our MLE formulation:

arg max
Q,T

( ∑
(i,j)∈E

{
log p(qij |Q,T) + log p(tij |Q,T)

}
+
∑
i

log p(qi) +
∑
i

log p(ti)
)
. (S59)

We begin by deriving the gradients of the rotational components first, and translations second. In
the setting where V is constant w.r.t. q the gradient of log Bingham distribution w.r.t. the random
variable q reads:

∇x logB(x; Λ,V) = ∇x log
1

F
+∇x(xTVΛVTx) = (VΛVT + VΛTVT )x = 2VΛVTx.

(S60)
As the first column of V is the mode, we avoid storing it. Thus, for the implementation purposes, we
abuse the notation and use V ∈ R4×3 and Λ ∈ R3×3. Normalizing constant F drops as it depends
on Λ only [17]. We also have cases where V is a function of the mode q, V→ V(q). Then:

∇q logB(x; Λ,V(q)) = ∇q(xTV(q)ΛVT (q)x) = ∇k(kTΛk)∇q(k) = 2kTΛ∇q(k), (S61)

where k = VT (q)x ∈ R3 is used to ease the computations. Note that in our particular application
it is the case that x ← qij , i.e. the data is specified by the relative poses attached to the edges of
the graph. We then speak of the gradient of log(p(qij |qi, qj)) with V → V(qjq̄i) w.r.t. qi. We
shorten r← qjq̄i and write V as a function of r, V(r) , V(qjq̄i). Then:

∇qi logB(x; Λ,V(r)) = ∇r logB(x; Λ,V(r))∇qi(r) = 2kTΛ∇r(k)∇qi(r), (S62)

this time with k = VT (r)x ∈ R3. Note that∇r logB(x; Λ,V(r)) is expanded as in Eq. S61. Using
the definition of V in Eq. 3, the terms simplify to:

k =

[
q1x2 − q2x1 + q3x4 − q4x3
q1x3 − q3x1 − q2x4 + q4x2
−q1x4 − q2x3 + q3x2 + q4x1

]
∇q(k) =

[
x2 −x1 x4 −x3
x3 −x4 −x1 x2
x4 x3 −x2 −x1

]
. (S63)

The last term in eq. S62 expands as:

∇qi(qjq̄i) =

qj,1 qj,2 qj,3 qj,4
qj,2 −qj,1 qj,4 −qj,3
qj,3 −qj,4 −qj,1 qj,2
qj,4 qj,3 −qj,2 −qj,1

 . (S64)

Due to the symmetry of the relative poses in the graph, we do not need to compute the gradients
w.r.t. qj . We will now derive the gradients for translational components. Similarly, we start by the
gradient of the log likelihood w.r.t. the data. While a shorter derivation through matrix calculus is
also possible, we deliberately provide a longer version, as it might be more intuitive:

∇t logN
(
t;µ, σ2I

)
= ∇t log

1

G
+∇t(−

1

2
(t− µ)TΣ−1(t− µ)

)
= ∇t

(
− 1

2

(
tTΣ−1t− tTΣ−1µ− µTΣ−1t + µTΣ−1µ

))
= −1

2

(
tT (Σ−1 + Σ−T )− (Σ−1µ)T − (µTΣ−1) + 0

)
= −1

2

(
2tTΣ−1 − 2µTΣ−1

)
= (µT − tT )Σ−1 (S65)

The normalizing constant drops similarly as it does not depend on t.

Similar to rotational counterpart, our algorithm centers the data on the mean of the distribution, also
requiring to compute the gradients w.r.t. the mean of the distribution. With a derivation similar to but
simpler from Eq. S65, it follows:

∇µ logN
(
x;µ, σ2I

)
= −1

2

(
2µTΣ−1 − 2xTΣ−1

)
= (xT − µT )Σ−1 (S66)
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When we center the distribution on the data, substituting µ← tj − rtir̄ , where r← qjq̄i, x← tij ,
we arrive at:

∇ti logN
(
x;µ, σ2I

)
= ∇µ logN

(
x;µ, σ2I

)
Jti(µ) (S67)

Note that the first term of the right hand side is given in Eq. S66. The second one can be computed
from the derivative of the sandwich action on the 1-blade ti. With slight abuse of notation, in the
following we assume that translation-quaternion is purified: ti ← [0; ti].

Jti(µ) = Jti(tj − rtir̄) (S68)

= −Jti
(
Q(r̄)Q(ti)r

T
)

(S69)

= −Jti
((

qij ⊗Q(r̄)
)

vec
(
Q(ti)

))
(S70)

= −Jti
(
K vec

(
Q(ti)

))
(S71)

= −K∇tivec
(
Q(ti)

)
(S72)

= −KJti (S73)

=

 0 0 0
−q21 − q22 + q23 + q24 2q1q4 − 2q2q3 −2q1q3 − 2q2q4
−2q1q4 − 2q2q3 −q21 + q22 − q23 + q24 2q1q2 − 2q3q4
2q1q3 − 2q2q4 −2q1q2 − 2q3q4 −q21 + q22 + q23 − q24

 (S74)

where K ∈ R4×16 refers to the Kronecker product matrix K = r⊗Q(q̄ij), Jti = ∇tivec
(
Q(ti)

)
is the 16× 3 Jacobian matrix and vec(·) denotes the linearization operator. Individual components qi
belong to r = [q1, q2, q3, q4]. The map Q(·) : H1 → R4x4 constructs a Quaternion matrix form:

Q(q) =

q1 −q2 −q3 −q4
q2 q1 q4 −q3
q3 −q4 q1 q2
q4 q3 −q2 q1

 (S75)

leading to a more compact notation of the quaternion product. In fact this is not very different from
the definition of V(q), as one is free to pick any of the 48 distinct representations out of the matrix
ring M(4,R). For a more thorough reading on differentiating the quaternions, we refer the reader
to [18]. Note that Eq. S74 has zeros in the initial row. This is due to the property that all the operations
respect the purity of the blade. The final Jacobian matrix can be extracted from the remaining three
rows corresponding to the vector part.

Last but not least, we require the gradients of the translational part w.r.t. the quaternions due to the
coupling:

∇qi logN
(
x;µ, σ2I

)
= ∇µ logN

(
x;µ, σ2I

)
Jqi(µ) (S76)

The first term in Eq. S76 is given above and the derivation of the rightmost Jacobian is subject to an
operation similar to the ones given in S68.

11 Additional Experiments and Details
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Figure S2: Effect of λ on rotational (Q) and
translational (T) errors.

Hyper-parameter Selection Throughout all the
experiments we set c ← 1000 and during optimiza-
tion β ←∞. In practice, we only set β to a very large
finite value. h varies between 0.001− 0.008 depend-
ing on the dataset ((λ, σ2)). We typically set Bing-
ham and Gaussian variances to be at the noise level
of the dataset, evaluated empirically. The variance of
the Bingham distribution is λ ∈ [350, 900]. Likewise,
variance of the Gaussian lies in σ2 ∈ [0.01, 0.1]. To
show that the choice is not critical, in Fig. S2, we
plot λ, our most sensitive parameter, against the error
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Figure S3: Robustness to outliers. With respect to the outlier percentage, we plot: (a) deviations of
rotations from ground truth (mean error) (b) deviations of translation from ground truth (mean error)
(c) graph consistency (for definition, see paper).
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Figure S4: Synthetic evaluations against projected gradient descent (PGD). (a) Iterations vs negative
log likelihood (b) Iterations vs absolute rotation error of the estimates w.r.t. ground truth. (c) Iterations
vs consistency (for definition, see paper).

attained at convergence for different datasets, including synthetic and real. The figure indicates that
for a variety of choices, λ > 100, the solution can safely be found. Note that certain level of noise can
also be compensated by the step size, as variance and step size are multiplicative factors. Moreover,
the step size can be adjusted dynamically proportional to the dataset size. The number of integration
steps varies, typically in range [350, 800] and TG-MCMC runs until convergence.

Graph Consistency In the paper, as well as in this supplementary material, we speak of graph
consistency, an intuitive measure of quantifying how well the estimated parameters agree to the input
data. This measure is easier to interpret than, say, average rotational distance, that is always unit
bound. We define the graph consistency as follows:

gc = 1− 1

π|E|
∑

(i,j)∈E

2 arccos(qij(qiq̄j)) (S77)

In other words, gc measures how well the relative poses computed from absolute estimates align with
the ones given in the data. gc = 1 for the perfect ground truth and gc → 0 when all estimates are off
by π.

11.1 Quantitative Evaluations

Outliers Even though TG-MCMC has no explicit treatment of outliers, it is still of interest to
observe the robustness to outliers. We do that synthetically, by following a similar experimentation
setup to the main paper. This time, we increase the outlier ratio in the pose graph by excessively
corrupting some of the relative transformation matrices by composing it with random rotations in the
range [60◦80◦] around random axes, and random translations between [0, 1]. We then run TG-MCMC,
as well as the other algorithms under consideration. Our results are depicted in Fig. S3. Many state-
of-the-art methods that lack outlier handling are similar in performance. However, advantage of
TG-MCMC is more apparent as the outlier percentage increases.
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Projected Gradient Descent Next, we compare our method against projected gradient descent
(PGD) algorithm, that is heavily used when one avoids the manifold operations of quaternions. This
amounts to solving our MAP estimation using a standard first order method and projecting the
intermediary solutions back onto the manifold. Using compatible step sizes, Fig. S4 plots multiple
quantities as iterates progress. It is clearly visible that walking on the manifold is advantageous both
in finding quicker solutions (a,b) and reducing the energy of the cost (c).

Runtime Performance We now provide, in Tab. 1a runtime analysis. It is common to all PGO
initialization algorithms to outperform BA in terms of speed, which justifies the attempt to initialize
PGO. Among the compared methods, we are not the fastest. Our runtimes are just comparable to
those of the state of the art. However, we have, in addition, the component of uncertainty estimates,
which cannot be provided by the competing algorithms. It is also clearly visible that BA benefits
from the TG-MCMC initialization by an order of magnitude (shown in Gains column).

Table 1: Runtimes (seconds) of different algorithms. BA-X refers to BA with initialization X. Points,
Poses refer to optimizing only points or only poses, respectively.

PGO BA-MinSpan BA-Ours
Dataset Arrigoni Torsello Govindu Ours Points Poses Points Poses Gains
Madrid 0.137 2.255 3.033 5.794 53.82 139.6 33.30 14.54 9.60x
South Building 0.060 0.784 1.213 1.986 46.18 108.0 6.087 4.969 21.74x

11.2 Qualitative Evaluations

Uncertainty Estimation We now give further visualizations showing the behavior of uncertainty
estimation. Let us first supplement the main paper, by providing close up and easier to view shots of
some of the scenes. Due to space limitations, we had to omit some of the larger drawings from the
main paper. Fig. S5 illustrates the uncertainty mapping on the Madrid Metropolis reconstruction and
Fig. S6 on the South Building dataset [19, 20]. In the former, distant content, which is intrinsically
less accurate to triangulate, appears less certain than the structure nearby. This overlaps well with the
findings of stereo vision where baseline-to-distance ratio determines the triangulation accuracy. In
the latter, though, we see that hard to match content such as vegetation has more uncertainty. This is
also natural, because such image regions render the feature matching difficult. Finally, we provide
uncertainty maps for two more objects Angel and Fountain. In these objects, due to the small size and
noise, uncertainty variation is less apparent and hard to observe. However, on Angel, our algorithm
overall manages to spot the noisy points and mark them with higher uncertainty. On the Fountain, the
structure close to the borders of the image are shot from a fewer number of cameras, which is what
TG-MCMC has discovered.

(a) Madrid Metropolis (b) 3D Reconstruction (c) Uncertainty Map

Figure S5: Reconstruction of Madrid Metropolis. Our uncertainty map can reveal the distant structure
such as buildings because the 3D triangulation quality decreases with the distance. Samples produced
by TG-MCMC can successfully explain these variations.

Graph Evolution To shade light upon the inner workings of TG-MCMC, we now visualize the
evolution of the pose graph as iterations/time proceed(s). Fig. S8 presents snapshots of the pose
graph of Angel dataset, evolving towards the solution. Notice, our algorithm can start from a random
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South Building Reconstructions Uncertainty Map

Figure S6: Reconstruction of South Building of UNC. Notice that hard-to-reconstruct structure
such as vegetation is also marked to be uncertain by our algorithm, whereas rigid structures such as
building façades enjoy high certainty.

Figure S7: Uncertainty visualizations on Angel and Fountain objects.

T=1 T=31 T=111 T=201 T=501

T=901 T=1101 T=1251 Final Poses

Figure S8: Evolution of the graph structure on the Angel object.

initialization and achieve results that are very close to the ground truth. In fact, we also show
comparisons of the obtained pose graph against the ground truth poses in Fig. S9. Our low numbers
in quantitative error well transfers to qualitative evaluations.

Further Visual Results from the Used Datasets In order to have a better idea of the nature of the
datasets we utilized, it is worthwhile to visualize the camera locations as well as the 3D reconstruction
following a full bundle adjustment, that optimizes both 3D points (structure) and 3D poses (motion).
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(i) Ground truth pose graph (ii) Computed pose graph

(a)Angel (b) Dinasour

(i) Ground truth pose graph (ii) Computed pose graph

Figure S9: Comparing the resulting pose graph with the ground truth for Angel and Dino objects.

In Fig. S10, we report 6 such visualizations on 3 outdoor, large scenes, as well as 3 object-scanning
scenarios. These plots are not the outcome of our approach, but meant as a reference for the datasets
we deal with.

(a) Dante

(d) Dinasour

(b)Madrid Metropolis

(e)Angel

(c)Notre Dame

(f) Temple

Figure S10: Results of the full bundle adjustment (structure + camera poses) on several datasets.
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