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Abstract

Effective implementations of sampling-based probabilistic inference often require
manually constructed, model-specific proposals. Inspired by recent progresses in
meta-learning for training learning agents that can generalize to unseen environ-
ments, we propose a meta-learning approach to building effective and generalizable
MCMC proposals. We parametrize the proposal as a neural network to provide
fast approximations to block Gibbs conditionals. The learned neural proposals
generalize to occurrences of common structural motifs across different models,
allowing for the construction of a library of learned inference primitives that can
accelerate inference on unseen models with no model-specific training required.
We explore several applications including open-universe Gaussian mixture models,
in which our learned proposals outperform a hand-tuned sampler, and a real-world
named entity recognition task, in which our sampler yields higher final F1 scores
than classical single-site Gibbs sampling.

1 Introduction

Model-based probabilistic inference is a highly successful paradigm for machine learning, with
applications to tasks as diverse as movie recommendation [31], visual scene perception [17], music
transcription [3], efc. People learn and plan using mental models, and indeed the entire enterprise
of modern science can be viewed as constructing a sophisticated hierarchy of models of physical,
mental, and social phenomena. Probabilistic programming provides a formal representation of
models as sample-generating programs, promising the ability to explore a even richer range of models.
Probabilistic programming language based approaches have been successfully applied to complex
real-world tasks such as seismic monitoring [23], concept learning [18] and design generation [26].

However, most of these applications require manually designed proposal distributions for efficient
MCMC inference. Commonly used “black-box” MCMC algorithms are often far from satisfactory
when handling complex models. Hamiltonian Monte Carlo [24] takes global steps but is only
applicable to continuous latent variables with differentiable likelihoods. Single-site Gibbs sampling
[30, 1] can be applied to many model but suffers from slow mixing when variables are coupled in the
posterior. Effective real-world inference often requires block proposals that update multiple variables
together to overcome near-deterministic and long-range dependence structures. However, computing
exact Gibbs proposals for large blocks quickly becomes intractable (approaching the difficulty of
posterior inference), and in practice it is common to invest significant effort in hand-engineering
computational tricks for a particular model.
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(a) Two models of same structure, but with different parameters (b) To design a single proposal that
and thus different near-deterministic relations (shown in red). Naive works on both models in Fig. 1a, we con-
MCMC algorithms like single-site Gibbs fail on both models due to sider this general model with variable
these dependencies. parameters « and 3 (shown in blue).
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(c) Our neural proposal takes model parameters « and /3 as input, (d) The neural proposal can be ap-
and is trained to output good proposal distributions on randomly plied anywhere this structural pattern
generated parameters. Therefore, it performs well for any given « is present (or instantiated). The grey
and (. (For simplicity, inputs in diagram omit possible other nodes regions show example instantiations in
that the proposed nodes may depend on.) this large model. (There are more.)

Figure 1: Toy example: Naive MCMC algorithms (e.g., single-site Gibbs) fail when variables are tightly
coupled, requiring custom proposals even for models with similar structure but different dependency relations
(Fig. 1a). Our goal is to design a single proposal that works on any model with similar local structure. We
consider the general model where the dependency relations among nodes are represented by variable model
parameters (Fig. 1b), and then train proposals parametrized by neural networks on models with randomly
generated parameters (Fig. 1c). The trained proposal thus work on anywhere the structure is found (Fig. 1d).
With proposals trained for many common motifs, we can automatically speed up inference on unseen models.

Can we build tractable MCMC proposals that are (1) effective for fast mixing and (2) ready to be
reused across different models?

Recent advances in meta-learning demonstrate promising results in learning to build reinforcement
learning agents that can generalize to unseen environments [7, 33, 9, 37]. The core idea of meta-
learning is to generate a large number of related training environments under the same objective and
then train a learning agent to succeed in all of them. Inspired by those meta-learning works, we can
adopt a similar approach to build generalizable MCMC proposals.

We propose to learn approximate block-Gibbs proposals that can be reused within a given model,
and even across models containing similar structural motifs (i.e., common structural patterns).
Recent work recognized that a wide range of models can be represented as compositions of simple
components [10], and that domain-specific models may still reuse general structural motifs such
as chains, grids, rings, or trees [14]. We exploit this by training a meta-proposal to approximate
block-Gibbs conditionals for models containing a given motif, with the model parameters provided as
an additional input. At a high level, approach first (1) generates different instantiations of a particular
motif by randomizing its model parameters, and then (2) meta-train a neural proposal “close to” the
true Gibbs conditionals for all the instantiations (see Fig. 1). By learning such flexible samplers, we
can improve inference not only within a specific model but even on unseen models containing similar
structures, with no additional training required. In contrast to techniques that compile inference
procedures specific to a given model [32, 19, 29], learning inference artifacts that generalize to novel
models is valuable in allowing model builders to quickly explore a wide range of possible models.

We explore the application of our approach to a wide range of models. On grid-structured models
from a UAI inference competition, our learned proposal significantly outperforms Gibbs sampling.
For open-universe Gaussian mixture models, we show that a simple learned block proposal yields



performance comparable to a model-specific hand-tuned sampler, and generalizes to models more
than those it was trained on. We additionally apply our method to a named entity recognition (NER)
task, showing that not only do our learned block proposals mix effectively, the ability to escape local
modes yields higher-quality solutions than the standard Gibbs sampling approach.

2 Related Work

There has been great interest in using learned, feedforward inference networks to generate approximate
posteriors. Variational autoencoders (VAE) train an inference network jointly with the parameters of
the forward model to maximize a variational lower bound [15, 5, 11]. However, the use of a parametric
variational distribution means they typically have limited capacity to represent complex, potentially
multimodal posteriors, such as those incorporating discrete variables or structural uncertainty.

A related line of work has developed data-driven proposals for importance samplers [25, 19, 27],
training an inference network from prior samples which is then used as a proposal given observed
evidence. In particular, Le et al. [19] generalize the framework to probabilistic programming, and is
able to automatically generate and train a neural proposal network given an arbitrary model described
in a probabilistic program. Our approach differs in that we focus on MCMC inference, allowing
modular proposals for subsets of model variables that may depend on latent quantities, and exploit
recurring structural motifs to generalize to new models with no additional training.

Several approaches have been proposed for adaptive block sampling, in which sets of variables
exhibiting strong correlations are identified dynamically during inference, so that costly joint sampling
is used only for blocks where it is likely to be beneficial [35, 34]. This is largely complementary to
our current approach, which assumes the set of blocks (structural motifs) is given and attempts to
learn fast approximate proposals.

Perhaps most related to our approach is recent work that trains model-specific MCMC proposals with
machine learning techniques. In [29], adversarial training directly optimizes the similarity between
posterior values and proposed values from a symmetric MCMC proposal. Stochastic inverses of
graphical models[32] train density estimators to speed up inference. However, both approaches
have limitations on applicable models and require model-specific training using global information
(samples containing all variables). Our approach is simpler and more scalable, requiring only local
information and generating local proposals that can be reused both within and across different models.

At a high level, our approach of learning an approximate local update scheme can be seen as related
to approximate message passing [28, 12] and learning to optimize continuous objectives [2, 20].

3 Meta-Learning MCMC Proposals

We propose a meta-learning approach, using a neural network to approximate the Gibbs proposal for
a recurring structural motif in graphical models, and to speed up inference on unseen models without
extra tuning. Crucially our proposals do not fix the model parameters, which are instead provided as
network input. After training with random model parametrizations, the same trained proposal can be
reused to perform inference on novel models with parametrizations not previously observed.

Our inference networks are parametrized as mixture density networks [4], and trained to minimize
the Kullback-Leibler (KL) divergence between the true posterior conditional and the proposal by
sampling instantiations of the motif. The proposals are then accepted or rejected following the
Metropolis-Hastings (MH) rule [1], so we maintain the correct stationary distribution even though
the proposals are approximate. The following sections describe our work in greater depth.

3.1 Background

Although our approach applies to arbitrary probabilistic programs, for simplicity we focus on models
represented as factor graphs. A model consists of a set of variables V' as the nodes of a graph
G = (V, E), along with a set of factors specifying a joint probability distribution py (V') described
by parameters V. In particular, this paper focuses primarily on directed models, in which the factors
W specify the conditional probability distributions of each variable given its parents. In undirected



(a) One instantiation. (b) Another instantiation.

Figure 2: Two instantiations of a structural motif in a directed chain of length seven. The motif consists of two
consecutive variables and their Markov blanket of four neighboring variables. Each instantiation is separated
into block proposed variables B; (white) and conditioning variables C; (shaded).

models, such as the Conditional Random Fields (CRFs) in Sec. 4.3, the factors are arbitrary functions
associated with cliques in the graph [16].

Given a set of observed evidence variables, inference attempts to sample from the conditional
distribution on the remaining variables. In order to construct good MCMC proposals that generalize
well across a variety of inference tasks, we take the advantage of recurring structural motifs in
graphical models, such as grids, rings, and chains [14].

In this work, our goal is to train a neural network as an efficient expert proposal for a structural
motif, with its inputs containing the local parameters, so that the trained proposal can be applied to
different models. Within a motif, the variables are divided into a proposed set of variables that will
be resampled, and a conditioning set corresponding to an approximate Markov blanket. The proposal
network essentially maps the values of conditional variables and local parameters to a distribution
over the proposed variables.

3.2 MCMC Proposals on Structural Motifs in Graphical Models

We associate each learned proposal with a structural motif that determines the shape of the network
inputs and outputs. In general, structural motifs can be arbitrary subgraphs, but we are more interested
in motifs that represent interesting conditional structure between two sets of variables, the block
proposed variables B and the conditioning variables C'. A given motif can have multiple instantiations
with a model, or even across models. As a concrete example, Fig. 2 shows two instantiations of
a structural motif of six consecutive variables in a chain model. In each instantiation, we want to
approximate the conditional distribution of two middle variables given neighboring four.

Definition. A structural motif (B, C') (or motif in short) is an (abstract) graph with nodes partitioned
into two sets, B and C, and a parametrized joint distribution p(B, C') whose factorization is consistent
with the graph structure. This specifies the functional form of the conditional p(B|C), but not the
specific parameters.

A motif usually have many instantiations across many different graphical models.

Definition. For a graphical model (G = (V, E), ¥), an instantiation (B;, C;, ¥;) of a motif (B, C)

includes

1. a subset of the model variables (B;, C;) C V such that the induced subgraph on (B;, C;) is
isomorphic to the motif (B, C) with the partition preserved by the isomorphism (so nodes in B
are mapped to B;, and C' to C}), and

2. asubset of model parameters U; C W required to specify the conditional distribution py, (B|C).

We would typically define a structural motif by first picking out a block of variables B to jointly
sample, and then selecting a conditioning set C. Intuitively, the natural choice for a conditioning
set is the Markov blanket, C' = MB(B). However, this is not a fixed requirement, and C' could be
either a subset or superset of it (or neither). We might deliberately choose to use some alternate
conditioning set C, e.g., a subset of the Markov blanket to gain a more computationally efficient
proposal (with a smaller proposal network), or a superset with the idea of learning longer-range
structure. More fundamentally, however, Markov blankets depend on the larger graph structure might
not be consistent across instantiations of a given motif (e.g., if one instantiation has additional edges
connecting B; to other model variables not in C;). Allowing C' to represent a generic conditioning
set leaves us with greater flexibility in instantiating motifs.

Formally, our goal is to learn a Gibbs-like block proposal ¢(B;|C;; ¥;) for all possible instantiations
(B, C;, ;) of a structural motif that is close to the true conditional in the sense that

Y(B;, Ci, V), Ye; € supp(Cy), q(Bi; ¢i, W) = pw, (Bi|Cs = ¢;). (1)



This provides another view of this approximation problem. If we choose the motif to have complex
structures in each instantiation, the conditionals py, (B;|C; = ¢;) can often be quite different for
different instantiations, and thus difficult to approximate. Therefore, choosing what is a structural
motif represents a trade-off between generality of the proposal and easiness to approximate. While
our approach works for any structural motif complying with the above definition, we suggest using
common structures as motifs, such as chain of certain length as in Fig. 2. In principle, recurring motifs
could be automatically detected, but in this work, we focus on hand-identified common structures.

3.3 Parametrizing Neural Block Proposals

We choose mixture density networks (MDN) [4] as our proposal network parametrization. An MDN
is a form of neural network whose outputs parametrize a mixture distribution, where in each mixture
component the variables are uncorrelated.

In our case, a neural block proposal is a function gy parametrized by a MDN with weights 6. The
function gy represents proposals for a structural motif (B, C') by taking in current values of C; and
local parameters ¥, and outputting a distribution over B;. The goal is to optimize 6 so that gy is
close to the true conditional.

In the network output, mixture weights are represented explicitly. Within each mixture component,
distributions of bounded discrete variables are directly represented as independent categorical proba-
bilities, and distributions of continuous variables are represented as isotropic Gaussians with mean
and variance. To avoid degenerate proposals, we threshold the variance of each Gaussian component
to be at least 1072,

3.4 Training Neural Block Proposals

Loss function for a specific instantiation: Given a particular motif instantiation, we use the KL
divergence D(py, (B;|C;) || go(Bi; C;, U;)) as the measure of closeness between our proposal and
the true conditional in Eq. 1. Taking into account all possible values ¢; € supp(C;), we consider the
expected divergence over C};’s prior:

Ec, [D(py, (Bi|Ci) || g0(Bi; Ci, ¥;))] = —Ep, ¢, [log qo(Bi; Ci, ¥;)] + constant. )

The second term is independent of §. So we define the loss function on (B;, C;, ¥;) as
E(Q, B;, Civ \117) = 7]EBi,Ci [log qe(Bi; Ci7 \111)]

Meta-training over many instantiations: To train a generalizable neural block proposal, we
generate a set of random instantiations and optimize the loss function over all of them. Assuming a
distribution over instantiations P, our goal is to minimize the overall loss

L(6) = E(s,,0,,w)~p[L(0; By, Ci, W) = —E(p,. 0, w)~pEn,.c, 108 40(Bi: Ci, ¥l . (3)
which is optimized with minibatch SGD in our experiments.

There are different ways to design the motif instantiation distribution P. One approach is to find
a distribution over model parameter space, and attach the random parametrizations ¥; to (B;, C;).
Practically, it is also viable to find a training dataset of models that contains a large number of
instantiations. Both approaches are discussed in detail and experimented in the experiment section.

Neural block sampling: The overall MCMC sampling procedure with meta-proposals is outlined in
Algorithm 1, which supports building a library of neural block proposals trained on common motifs
to speed up inference on previously unseen models.

4 [Experiments

In this section, we evaluate our method of learning neural block proposals against single-site Gibbs
sampler as well as several model-specific MCMC methods. We focus on three most common
structural motifs: grids, mixtures and chains. In all experiments, we use the following guideline to
design the proposal: (1) using small underlying MDNs (we pick networks with two hidden layers
and elu activation [6]), and (2) choosing an appropriate distribution to generate parameters of the
motif such that the generated parameters could cover the whole space as much as possible. More
experiments details and an additional experiment are available in the supplementary materials.



Algorithm 1 Neural Block Sampling

Input: Graphical model (G, ¥), observations y,
motifs {(B"™, C(™)},,. and their instantiations {(B{"™, C{™ w{™)}, ., detected in (G, ¥).
for each motif B™,C™ do

1:

2 if proposal trained for this motif exists then

3 ¢'™ <— trained neural block proposal

4 else

5: Train neural block proposal qém) using SGD by Eq. 3 on its instantiations {(Bi(m, C’i('")7 \IIE"L) )i
6 end if

7: end for

8: x <— initialize state

9: for timestepin1...7 do
10:  Propose 2’ « proposal ¢i™ on some instantiation (B{"™, C{™, w{™))
11: Accept or reject according to MH rule
12: end for

13: return MCMC samples

4.1 Grid Models

We start with a common structural motif in graphical models, grids. In this section, we focus on
binary-valued grid models of all sorts for their relative easiness to directly compute posteriors. To

evaluate MCMC algorithms, we compare the estimated posterior marginals P against true posterior
marginals P computed using IJGP [22]. For each inference task with N variables, we calculated the

error +; Zfil P(X;=1)—-P(X; = 1)‘ as the mean absolute deviation of marginal probabilities.

4.1.1 General Binary-Valued Grid Models

We consider the motif in Fig. 3, which is instantiated in every binary-valued grid Bayesian networks
(BN). Our proposal takes in the conditional probability tables (CPTs) of all 23 variables as well as the
current values of 14 conditioning variables, and outputs a distribution over the 9 proposed variables.

To sample over all possible binary-valued grid instantiations, we generate random grids by sampling
each CPT entry i.i.d. from a mixed distribution of this following form:

[07 1] W.p- pdeéerm
[1,0] w.p. Dizem “)
Dirichlet(cr) w.p. 1 — Dgeterm,

where Pgeterm € [0, 1] is the probability of the CPT entry being deterministic. Our proposal is trained
with pgeterm = 0.05 and @ = (0.5,0.5).

To test the generalizability of our trained proposal, we generate random binary grid instantiations
using distributions with various pgeerm and o values, and compute the KL divergences between the
true conditionals and our proposal outputs on 1000 sampled instantiations from each distribution.
Fig. 5 shows the histograms of divergence values from 4 very different distributions, including the
one used for training (top left). The resulting histograms show mostly small divergence values,
and are nearly indistinguishable, even though one distribution has pgeerm = 0.8 and the proposal is
only trained with pgeterm = 0.05. This shows that our approach is able to generally and accurately
approximate true conditionals, despite only being trained with an arbitrary distribution.

We evaluate the performance of the trained neural block proposal on all 180 grid BNs up to 500 nodes
from UAI 2008 inference competition. In each epoch, for each latent variable, we try to identify
and propose the block as in Fig. 3 with the variable located at center. If this is not possible, e.g., the
variable is at boundaries or close to evidence, single-site Gibbs resampling is used instead.

Fig. 6 shows the performance of both our method and single-site Gibbs in terms of error integrated
over time for all 180 models. The models are divided into three classes, grid-50, grid-75 and grid-
90, according to the percentage of deterministic relations. Our neural block sampler significantly
outperforms Gibbs sampler in nearly every model. We notice that the improvement is less significant
as the percentage of deterministic relations increases. This is largely due to that the above proposal



Figure 3: Motif for general grid
models. Conditioning variables
(shaded) form the Markov blan-
ket of proposed variables (white).
Dashed gray arrows show possi-
ble but irrelevant dependencies.
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Figure 4: Sample runs comparing single-site Gibbs, Neural Block Sampling,
and block Gibbs with true conditionals. For each model, we compute 10
random initializations and run three algorithms for 1500s on each. Epochs
plots are cut off at 500 epochs to better show the comparison because true
block Gibbs finishes far less epochs within given time. 50-20-5 and
90-21-10 are identifiers of these two models in the competition.
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Figure 6: Performance comparison on 180 grid models
from UAI 2008 inference competition. Each mark
represents error integrals for both single-site Gibbs
and our method in a single run over 1200s inference.

can only easily handle dependency among the 9 proposed nodes. We expect an

increased block size to yield stronger performance on models with many deterministic relations.

Furthermore, we compare our proposal against single-site Gibbs, and exact block Gibbs with identical
proposal block, on grid models with different percentages of deterministic relations in Fig. 4. Single-
site Gibbs performs worst on both models due to quickly getting stuck in local modes. Between
the two block proposals, neural block sampling performs better in error w.r.t. time due to shorter
computational time. However, because the neural block proposal is only an approximate of the true
block Gibbs proposal, it is worse in terms of error w.r.t. epochs, as expected. Detailed comparisons
on more models are available in the supplementary material.

Additionally, our approach can be used model-specifically by training only on instantiations within a
particular model. In supplementary materials, we demonstrate that our method achieves comparable
performance with a more advanced task-specific MCMC method, Inverse MCMC [32].

4.2

Gaussian Mixture Model with Unknown Number of Components

We next consider open-universe Gaussian mixture models (GMMs), in which the number of mixture
components is unknown, subject to a prior. Similarly to Dirichlet process GMMs, these are typically
treated with hand-designed model-specific split-merge MCMC algorithms.

Consider the following GMM. n points x = {x; };=1,...
from one of M (unknown) active mixtures, with M ~ Unif{1,2,...,

. are observed, and come uniformly randomly

m}. Our task is to infer the
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Figure 7: All except bottom right: Average log likelihoods of MCMC runs over 200 tasks for total 600s in
various GMMs. Bottom right: Trace plots of M over 12 runs from initialization with different M values on a
GMM with m = 12, n = 90. Our approach explores sample space much faster than Gibbs with SDDS.

posterior of mixture means pt = {y;};=1,... ar, their activity indicators v = {v;},;—1 . s, and the
labels z = {z; }i=1,... n, where z; is the mixture index x; comes from. Since M is determined by v,
in this experiment, we always calculate M = >~ Vi instead of sampling M.

Such GMMs have many nearly-deterministic relations, e.g., p(vj =0, z; = j) = 0, causing vanilla
single-site Gibbs failing to jump across different M values. Split-merge MCMC algorithms, e.g.,
Restricted Gibbs split-merge (RGSM) [13] and Smart-Dumb/Dumb-Smart (SDDS) [36], use hand-
designed MCMC moves to solve such issues. In our framework, it’s possible to deal with such
relations with a proposal block including all of z, i and v. However, doing so requires significant
training and inference time (due to larger proposal network and larger proposal block), and the
resulting proposal can not generalize to GMMs of different sizes.

In order to apply the trained proposal to differently sized GMMs, we choose the motif to propose gg
for two arbitrary mixtures (f;,v;) and (u;, v;) conditioned on all other variables excluding z, and
instead consider the model with z variables collapsed. The inference task is then equivalent to first
sampling p, v from the collapsed model p(p, v|x), and then z from p(z|p, v, x). We modify the
algorithm such that the proposal from gy is accepted or rejected by the MH rule on the collapsed
model. Then z is resampled from p(z|u, v, x). This approach is less sensitive to different n values
and performs well in variously sized GMMs. More details are available in the supplementary material.

We train with a small GMM with m = 8 and n = 60 as the motif, and apply the trained proposal on
GMMs with larger m and n by randomly selecting 8 mixtures and 60 points for each proposal. Fig. 7
shows how the our sampler performs on GMM of various sizes, compared against split-merge Gibbs
with SDDS. We notice that as model gets larger, Gibbs with SDDS mixes more slowly, while neural
block sampling still mixes fairly fast and outperforms Gibbs with SDDS. Bottom right of Fig. 7
shows the trace plots of M for both algorithms over multiple runs on the same observations. Gibbs
with SDDS takes a long time to find a high likelihood explanation and fails to explore other possible
ones efficiently. Our proposal, on the other hand, mixes quickly among the possible explanations.

4.3 Named Entity Recognition (NER) Tagging

Named entity recognition (NER) is the task of inferring named entity tags for words in natural
language sentences. One way to tackle NER is to train a conditional random field (CRF) model
representing the joint distribution of tags and word features [21]. In test time, we use the CRF build
a chain Markov random field (MRF) containing only tags variables, and apply MCMC methods to
sample the NER tags. We use a dataset of 17494 sentences from CoNLL-2003 Shared Task">. The
CRF model is trained with AdaGrad [8] through 10 sweeps over the training dataset.

3https ://www.clips.uantwerpen.be/conl12003/ner/
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Our goal is to train good neural block proposals for the chain MRFs built for test sentences. Exper-
imenting with different chain lengths, we train three proposals, each for a motif of two, three, or
four consecutive proposed tag variables and their Markov blanket. These proposals are trained on
instantiations within MRFs built from the training dataset for the CRF model.

We then evaluate the learned neural block proposals on the previously unseen test dataset of 3453
sentences. Fig. 8 plots the performance of neural block sampling and single-site Gibbs w.r.t. both
time and epochs on the entire test dataset. As block size grows larger, learned proposal takes more
time to mix. But eventually, block proposals generally achieve better performance than single-site
Gibbs in terms of both F1 scores and log likelihoods. Therefore, as shown in the figure, a mixed
proposal of single-site Gibbs and neural block proposals can achieve better mixing without slowing
down much. As an interesting observation, neural block sampling sometimes achieves higher F1
scores even before surpassing single-site Gibbs in log likelihood, implying that log likelihood is at
best an imperfect proxy for performance on this task.

5 Conclusion

This paper proposes and explores the (to our knowledge) novel idea of meta-learning generalizable
approximate block Gibbs proposals. Our meta-proposals are trained offline and can be applied
directly to novel models given only a common set of structural motifs. Experiments show that the
neural block sampling approach outperforms standard single-site Gibbs in both convergence speed
and sample quality and achieve comparable performance against model-specialized methods. In
will be an interesting system design problem to investigate, when given a library of trained block
proposals, how an inference system in a probabilistic programming language can automatically detect
the common structural motifs and (adaptively) apply appropriate samplers to help convergence for
more general real-world applications.

Additionally, from the meta-learning perspective, our method is based on meta-training, i.e., training
over a variety of motif instantiations. At test time, the learned proposal does not adapt to new
scenarios after meta-training. While in many meta-learning works in reinforcement learning [9, 7], a
meta-trained agent can further adapt the learned policy to unseen environments via a few learning
steps under the assumption that a reward signal is accessible at test time. In our setting, we can
similarly adopt such fast adaptation scheme at test time to further improve the quality of proposed
samples by treating the acceptance rate as a test time reward signal. We leave this as a future work.
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