
Legendre Decomposition for Tensors

Mahito Sugiyama
National Institute of Informatics

JST, PRESTO
mahito@nii.ac.jp

Hiroyuki Nakahara
RIKEN Center for Brain Science
hiro@brain.riken.jp

Koji Tsuda
The University of Tokyo

NIMS; RIKEN AIP
tsuda@k.u-tokyo.ac.jp

Abstract

We present a novel nonnegative tensor decomposition method, called Legendre
decomposition, which factorizes an input tensor into a multiplicative combination
of parameters. Thanks to the well-developed theory of information geometry, the
reconstructed tensor is unique and always minimizes the KL divergence from an in-
put tensor. We empirically show that Legendre decomposition can more accurately
reconstruct tensors than other nonnegative tensor decomposition methods.

1 Introduction

Matrix and tensor decomposition is a fundamental technique in machine learning; it is used to analyze
data represented in the form of multi-dimensional arrays, and is used in a wide range of applications
such as computer vision (Vasilescu and Terzopoulos, 2002, 2007), recommender systems (Symeoni-
dis, 2016), signal processing (Cichocki et al., 2015), and neuroscience (Beckmann and Smith, 2005).
The current standard approaches include nonnegative matrix factorization (NMF; Lee and Seung,
1999, 2001) for matrices and CANDECOMP/PARAFAC (CP) decomposition (Harshman, 1970) or
Tucker decomposition (Tucker, 1966) for tensors. CP decomposition compresses an input tensor
into a sum of rank-one components, and Tucker decomposition approximates an input tensor by a
core tensor multiplied by matrices. To date, matrix and tensor decomposition has been extensively
analyzed, and there are a number of variations of such decomposition (Kolda and Bader, 2009),
where the common goal is to approximate a given tensor by a smaller number of components, or
parameters, in an efficient manner.
However, despite the recent advances of decomposition techniques, a learning theory that can
systematically define decomposition for any order tensors including vectors and matrices is still
under development. Moreover, it is well known that CP and Tucker tensor decomposition include
non-convex optimization and that the global convergence is not guaranteed. Although there are a
number of extensions to transform the problem into a convex problem (Liu et al., 2013; Tomioka and
Suzuki, 2013), one needs additional assumptions on data, such as a bounded variance.
Here we present a new paradigm of matrix and tensor decomposition, called Legendre decomposition,
based on information geometry (Amari, 2016) to solve the above open problems of matrix and tensor
decomposition. In our formulation, an arbitrary order tensor is treated as a discrete probability
distribution in a statistical manifold as long as it is nonnegative, and Legendre decomposition is
realized as a projection of the input tensor onto a submanifold composed of reconstructable tensors.
The key to introducing the formulation is to use the partial order (Davey and Priestley, 2002; Gierz
et al., 2003) of indices, which allows us to treat any order tensors as a probability distribution in the
information geometric framework.
Legendre decomposition has the following remarkable properties: It always finds the unique tensor
that minimizes the Kullback–Leibler (KL) divergence from an input tensor. This is because Legendre
decomposition is formulated as convex optimization, and hence we can directly use gradient descent,
which always guarantees the global convergence, and the optimization can be further speeded up by

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

ηv = ∑ qu

�

�

↓v

↑v u∈↑v

Input tensor � Decomposable tensor �

Reconstruction
(one-to-one)

KL divergence
is minimized

Parameters (θv)v∈B

Legendre
decomposition

a b

qv = ∏ exp(θu)
u∈↓vexp(ψ(θ))

1
� = (� , �)

Figure 1: (a) Overview of Legendre decomposition. (b) Illustration of θ and η for second-order
tensor (matrix) when B = [I1]× [I2].

using a natural gradient (Amari, 1998) as demonstrated in our experiments. Moreover, Legendre
decomposition is flexible as it can decompose sparse tensors by removing arbitrary entries beforehand,
for examples zeros or missing entries.
Furthermore, our formulation has a close relationship with statistical models, and can be interpreted
as an extension of the learning of Boltzmann machines (Ackley et al., 1985). This interpretation
gives new insight into the relationship between tensor decomposition and graphical models (Chen
et al., 2018; Yılmaz et al., 2011; Yılmaz and Cemgil, 2012) as well as the relationship between tensor
decomposition and energy-based models (LeCun et al., 2007). In addition, we show that the proposed
formulation belongs to the exponential family, where the parameter θ used in our decomposition is
the natural parameter, and η, used to obtain the gradient of θ, is the expectation of the exponential
family.
The remainder of this paper is organized as follows. We introduce Legendre decomposition in
Section 2. We define the decomposition in Section 2.1, formulate it as convex optimization in
Section 2.2, describe algorithms in Section 2.3, and discuss the relationship with other statistical
models in Section 2.4. We empirically examine performance of our method in Section 3, and
summarize our contribution in Section 4.

2 The Legendre Decomposition

We introduce Legendre decomposition for tensors. We begin with a nonnegative N th-order tensor
X ∈ RI1×I2×···×IN

≥0 . To simplify the notation, we write the entry xi1i2...iN by xv with the index
vector v = (i1, i2, . . . , iN) ∈ [I1]× [I2]× · · · × [IN], where each [Ik] = {1, 2, . . . , Ik}. To treat X
as a discrete probability mass function in our formulation, we normalize X by dividing each entry by
the sum of all entries, yielding P = X/

∑
v xv . In the following, we always work with a normalized

tensor P .

2.1 Definition

Legendre decomposition always finds the best approximation of a given tensor P . Our strategy is
to choose an index set B ⊆ [I1] × [I2] × · · · × [IN] as a decomposition basis, where we assume
(1, 1, . . . , 1) ̸∈ B for a technical reason, and approximate the normalized tensorP by a multiplicative
combination of parameters associated with B.
First we introduce the relation “≤” between index vectors u = (j1, . . . , jN) and v = (i1, . . . , iN) as
u ≤ v if j1 ≤ i1, j2 ≤ i2, . . . , jN ≤ iN . It is clear that this relation gives a partial order (Gierz et al.,
2003); that is, ≤ satisfies the following three properties for all u, v, w: (1) v ≤ v (reflexivity), (2)
u ≤ v, v ≤ u⇒ u = v (antisymmetry), and (3) u ≤ v, v ≤ w ⇒ u ≤ w (transitivity). Each tensor
is treated as a discrete probability mass function with the sample spaceΩ ⊆ [I1]×· · ·×[IN]. While it
is natural to setΩ = [I1]×· · ·×[IN], our formulation allows us to use any subsetΩ ⊆ [I1]×· · ·×[IN].
Hence, for example, we can remove unnecessary indices such as missing or zero entries of an input
tensor P from Ω. We define Ω+ = Ω \ {(1, 1, . . . , 1)}.

2

We define a tensor Q ∈ RI1×I2×···×IN
≥0 as fully decomposable with B ⊆ Ω+ if each entry qv ∈ Ω is

represented in the form of

qv =
1

exp(ψ(θ))
∏
u∈↓v

exp(θu), ↓v = { u ∈ B | u ≤ v } , (1)

using |B| parameters (θv)v∈B with θv ∈ R and the normalizer ψ(θ) ∈ R, which is always uniquely
determined from the parameters (θv)v∈B as

ψ(θ) = log
∑
v∈Ω

∏
u∈↓v

exp(θu).

This normalization does not have any effect on the decomposition performance, but rather it is
needed to formulate our decomposition as an information geometric projection, as shown in the next
subsection. There are two extreme cases for a choice of a basis B: If B = ∅, a fully decomposable
Q is always uniform; that is, qv = 1/|Ω| for all v ∈ Ω. In contrast, if B = Ω+, any input P itself
becomes decomposable.

We now define Legendre decomposition as follows: Given an input tensor P ∈ RI1×I2×···×IN
≥0 , the

sample space Ω ⊆ [I1]× [I2]×· · ·× [IN], and a parameter basisB ⊆ Ω+, Legendre decomposition
finds the fully decomposable tensor Q ∈ RI1×I2×···×IN

≥0 with a B that minimizes the Kullback–
Leibler (KL) divergence DKL(P,Q) =

∑
v∈Ω pv log(pv/qv) (Figure 1[a]). In the next subsection,

we introduce an additional parameter (ηv)v∈B and show that this decomposition is always possible
via the dual parameters ((θv)v∈B , (ηv)v∈B) with information geometric analysis. Since θ and η are
connected via Legendre transformation, we call our method Legendre decomposition.
Legendre decomposition for second-order tensors (that is, matrices) can be viewed as a low rank
approximation not of an input matrix P but of its entry-wise logarithm logP . This is why the rank
of logQ with the fully decomposable matrix Q coincides with the parameter matrix T ∈ RI1×I2

such that tv = θv if v ∈ B, t(1,1) = 1/ exp(ψ(θ)), and tv = 0 otherwise. Thus we fill zeros into
entries in Ω+ \B. Then we have log qv =

∑
u∈↓v tu, meaning that the rank of logQ coincides with

the rank of T . Therefore if we use a decomposition basis B that includes only l rows (or columns),
rank(logQ) ≤ l always holds.

2.2 Optimization

We solve the Legendre decomposition by formulating it as a convex optimization problem. Let us
assume that B = Ω+ = Ω \ {(1, 1, . . . , 1)}, which means that any tensor is fully decomposable.
Our definition in Equation (1) can be re-written as

log qv =
∑

u∈Ω+

ζ(u, v)θu − ψ(θ) =
∑
u∈Ω

ζ(u, v)θu, ζ(u, v) =

{
1 if u ≤ v,
0 otherwise (2)

with −ψ(θ) = θ(1,1,...,1), and the sample space Ω is a poset (partially ordered set) with respect to
the partial order “≤” with the least element ⊥ = (1, 1, . . . , 1). Therefore our model belongs to
the log-linear model on posets introduced by Sugiyama et al. (2016, 2017), which is an extension
of the information geometric hierarchical log-linear model (Amari, 2001; Nakahara and Amari,
2002). Each entry qv and the parameters (θv)v∈Ω+ in Equation (2) directly correspond to those in
Equation (8) in Sugiyama et al. (2017). According to Theorem 2 in Sugiyama et al. (2017), if we
introduce (ηv)v∈Ω+ such that

ηv =
∑
u∈↑v

qu =
∑
u∈Ω

ζ(v, u)qu, ↑v = { u ∈ Ω | u ≥ v } , (3)

for each v ∈ Ω+ (see Figure 1[b]), the pair ((θv)v∈Ω+ , (ηv)v∈Ω+) is always a dual coordinate
system of the set of normalized tensors S = {P | 0 < pv < 1 and

∑
v∈Ω pv = 1} with respect to

the sample space Ω, as they are connected via Legendre transformation. Hence S becomes a dually
flat manifold (Amari, 2009).
Here we formulate Legendre decomposition as a projection of a tensor onto a submanifold. Suppose
that B ⊆ Ω+ and let SB be the submanifold such that

SB =
{
Q ∈ S

∣∣ θv = 0 for all v ∈ Ω+ \B
}
,

3

��

�

�B

�

(fully decomposable tensors)

(tensors with the same η for basis B)(input tensor)

(solution)

m-projection

e-projection

ˆ

ℛ

Figure 2: Projection in statistical manifold.

which is the set of fully decomposable tensors withB and is an e-flat submanifold as it has constraints
on the θ coordinate (Amari, 2016, Chapter 2.4). Furthermore, we introduce another submanifold
SP for a tensor P ∈ S and A ⊆ Ω+ such that

SP = { Q ∈ S | ηv = η̂v for all v ∈ A } ,

where η̂v is given by Equation (3) by replacing qu with pu, which is an m-flat submanifold as it has
constraints on the η coordinate.
The dually flat structure of S with the dual coordinate systems ((θv)v∈Ω+ , (ηv)v∈Ω+) leads to the
following strong property: If A = B, that is, (Ω+ \ B) ∪ A = Ω+ and (Ω+ \ B) ∩ A = ∅, the
intersection SB ∩ SP is always a singleton; that is, the tensor Q such that Q ∈ SB ∩ SP always
uniquely exists, and Q is the minimizer of the KL divergence from P (Amari, 2009, Theorem 3):

Q = argmin
R∈SB

DKL(P,R). (4)

The transition from P to Q is called the m-projection of P onto SB , and Legendre decomposition
coincides with m-projection (Figure 2). In contrast, if some fully decomposable tensor R ∈ SB is
given, finding the intersection Q ∈ SB ∩ SP is called the e-projection of R onto SP . In practice,
we use e-projection because the number of parameters to be optimized is |B| in e-projection while
it is |Ω \B| in m-projection, and |B| ≤ |Ω \B| usually holds.
The e-projection is always convex optimization as the e-flat submanifold SB is convex with respect
to (θv)v∈Ω+ . More precisely,

DKL(P,Q) =
∑
v∈Ω

pv log
pv
qv

=
∑
v∈Ω

pv log pv −
∑
v∈Ω

pv log qv = −
∑
v∈Ω

pv log qv −H(P),

where H(P) is the entropy of P and independent of (θv)v∈Ω+ . Since we have

−
∑
v∈Ω

pv log qv =
∑
v∈Ω

pv

(∑
u∈B

ζ(u, v)(−θu) + ψ(θ)

)
, ψ(θ) = log

∑
v∈Ω

exp

(∑
u∈B

ζ(u, v)θ(u)

)
,

ψ(θ) is convex and DKL(P,Q) is also convex with respect to (θv)v∈Ω+ .

2.3 Algorithm

Here we present our two gradient-based optimization algorithms to solve the KL divergence mini-
mization problem in Equation (4). Since the KL divergence DKL(P,Q) is convex with respect to
each θv , the standard gradient descent shown in Algorithm 1 can always find the global optimum,
where ε > 0 is a learning rate. Starting with some initial parameter set (θv)v∈B , the algorithm
iteratively updates the set until convergence. The gradient of θw for each w ∈ B is obtained as

∂

∂θw
DKL(P,Q) = −

∂

∂θw

∑
v∈Ω

pv log qv = − ∂

∂θw

∑
v∈Ω

pv
∑
u∈B

ζ(u, v)θu +
∂

∂θw

∑
v∈Ω

pvψ(θ)

= −
∑
v∈Ω

pvζ(w, v) +
∂ψ(θ)

∂θw
= ηw − η̂w,

4

Algorithm 1: Legendre decomposition by gradient descent
1 GradientDescent(P , B)
2 Initialize (θv)v∈B ; // e.g. θv = 0 for all v ∈ B
3 repeat
4 foreach v ∈ B do
5 Compute Q using the current parameter (θv)v∈B ;
6 Compute (ηv)v∈B from Q;
7 θv ← θv − ε(ηv − η̂v);
8 until convergence of (θv)v∈B ;

Algorithm 2: Legendre decomposition by natural gradient
1 NaturalGradient(P , B)
2 Initialize (θv)v∈B ; // e.g. θv = 0 for all v ∈ B
3 repeat
4 Compute Q using the current parameter (θv)v∈B ;
5 Compute (ηv)v∈B from Q and ∆η ← η − η̂;
6 Compute the inverse G−1 of the Fisher information matrix G using Equation (5);
7 θ ← θ −G−1∆η
8 until convergence of (θv)v∈B ;

where the last equation uses the fact that ∂ψ(θ)/∂θw = ηw in Theorem 2 in Sugiyama et al. (2017).
This equation also shows that the KL divergence DKL(P,Q) is minimized if and only if ηv = η̂v for
all v ∈ B. The time complexity of each iteration isO(|Ω||B|), as that of computingQ from (θv)v∈B

(line 5 in Algorithm 1) is O(|Ω||B|) and computing (ηv)v∈B from Q (line 6 in Algorithm 1) is
O(|Ω|). Thus the total complexity isO(h|Ω||B|2) with the number of iterations h until convergence.
Although gradient descent is an efficient approach, in Legendre decomposition, we need to repeat
“decoding” from (θv)v∈B and “encoding” to (ηv)v∈B in each iteration, which may lead to a loss of
efficiency if the number of iterations is large. To reduce the number of iterations to gain efficiency,
we propose to use a natural gradient (Amari, 1998), which is the second-order optimization method,
shown in Algorithm 2. Again, since the KL divergence DKL(P,Q) is convex with respect to
(θv)v∈B , a natural gradient can always find the global optimum. More precisely, our natural gradient
algorithm is an instance of the Bregman algorithm applied to a convex region, which is well known
to always converge to the global solution (Censor and Lent, 1981). Let B = {v1, v2, . . . , v|B|},
θ = (θv1 , . . . , θv|B|)

T , and η = (ηv1 , . . . , ηv|B|)
T . In each update of the current θ to θnext, the natural

gradient method uses the relationship,

∆η = −G∆θ, ∆η = η − η̂ and ∆θ = θnext − θ,

which leads to the update formula

θnext = θ −G−1∆η,

where G = (guv) ∈ R|B|×|B| is the Fisher information matrix such that

guv(θ) =
∂ηu
∂θv

= E

[
∂ log pw
∂θu

∂ log pw
∂θv

]
=
∑
w∈Ω

ζ(u,w)ζ(v, w)pw − ηuηv (5)

as given in Theorem 3 in Sugiyama et al. (2017). Note that natural gradient coincides with Newton’s
method in our case as the Fisher information matrix G corresponds to the (negative) Hessian matrix:

∂2

∂θu∂θv
DKL(P,Q) = −

∂ηu
∂θv

= −guv.

The time complexity of each iteration is O(|Ω||B|+ |B|3), where O(|Ω||B|) is needed to compute
Q from θ and O(|B|3) to compute the inverse of G, resulting in the total complexity O(h′|Ω||B|+
h′|B|3) with the number of iterations h′ until convergence.

5

2.4 Relationship to Statistical Models

We demonstrate interesting relationships between Legendre decomposition and statistical models,
including the exponential family and the Boltzmann (Gibbs) distributions, and show that our decom-
position method can be viewed as a generalization of Boltzmann machine learning (Ackley et al.,
1985). Although the connection between tensor decomposition and graphical models has been ana-
lyzed by Chen et al. (2018); Yılmaz et al. (2011); Yılmaz and Cemgil (2012), our analysis adds a new
insight as we focus on not the graphical model itself but the sample space of distributions generated
by the model.

2.4.1 Exponential family

We show that the set of normalized tensors S = {P ∈ RI1×I2×···×IN
>0 |

∑
v∈Ω pv = 1} is included

in the exponential family. The exponential family is defined as

p(x,θ) = exp
(∑

θiki(x) + r(x)− C(θ)
)

for natural parameters θ. Since our model in Equation (1) can be written as

pv =
1

exp(ψ(θ))
∏
u∈↓v

exp(θu) = exp

(∑
u∈Ω+

θuζ(u, v)− ψ(θ)

)

with θu = 0 for u ∈ Ω+ \ B, it is clearly in the exponential family, where ζ and ψ(θ) correspond
to k and C(θ), respectively, and r(x) = 0. Thus, the (θv)v∈B used in Legendre decomposition are
interpreted as natural parameters of the exponential family. Moreover, we can obtain (ηv)v∈B by
taking the expectation of ζ(u, v):

E
[
ζ(u, v)

]
=
∑
v∈Ω

ζ(u, v)pv = ηu.

Thus Legendre decomposition of P is understood to find a fully decomposable Q that has the same
expectation with P with respect to a basis B.

2.4.2 Boltzmann Machines

A Boltzmann machine is represented as an undirected graph G = (V,E) with a vertex set V and an
edge set E ⊆ V × V , where we assume that V = [N] = {1, 2, . . . , N} without loss of generality.
This V is the set of indices of N binary variables. A Boltzmann machine G defines a probability
distribution P , where each probability of an N -dimensional binary vector x ∈ {0, 1}N is given as

p(x) =
1

Z(θ)

∏
i∈V

exp
(
θixi

)∏
{i,j}∈E

exp
(
θijxixj

)
,

where θi is a bias, θij is a weight, and Z(θ) is a partition function.

To translate a Boltzmann machine into our formulation, let Ω = {1, 2}N and suppose that

B(V) = { (ia1 , . . . , iaN) ∈ Ω | a ∈ V } , ial =

{
2 if l = a,
1 otherwise,

B(E) =
{
(iab1 , . . . , i

ab
N) ∈ Ω

∣∣ {a, b} ∈ E } , iabl =

{
2 if l ∈ {a, b},
1 otherwise.

Then it is clear that the set of probability distributions, or Gibbs distributions, that can be represented
by the Boltzmann machine G is exactly the same as SB with B = B(V) ∪B(E) and exp(ψ(θ)) =
Z(θ); that is, the set of fully decomposable N th-order tensors defined by Equation (1) with the
basis B(V) ∪ B(E) (Figure 3). Moreover, let a given N th-order tensor P ∈ R2×2×···×2

≥0 be
an empirical distribution estimated from data, where each pv is the probability for a binary vector
v−(1, . . . , 1) ∈ {0, 1}N . The tensorQ obtained by Legendre decomposition withB = B(V)∪B(E)
coincides with the distribution learned by the Boltzmann machine G = (V,E). The condition
ηv = η̂v in the optimization of the Legendre decomposition corresponds to the well-known learning

6

(0, 0, 0)

(1, 0, 0) (0, 0, 1)

(1, 1, 0)

(0, 1, 0)

(1, 0, 1)
(0, 1, 1)

(1, 1, 1)

(1, 1, 1)

(2, 1, 1)

(1, 2, 1) (1, 2, 2)

(1, 1, 2)

(2, 2, 1) (2, 2, 2)

(2, 1, 2)

Boltzmann machine

Hasse diagram of sample space Tensor

(2, 1, 2)

(0, 1, 0)

(1, 0, 1)

(1, 1, 1)

1
2

3

Figure 3: Boltzmann machine with V = {1, 2, 3} and E = {{1, 2}, {2, 3}} (left) and its sample
space (center), which corresponds to a tensor (right). Grayed circles are the domain of parameters θ.

equation of Boltzmann machines, where η̂ and η correspond to the expectation of the data distribution
and that of the model distribution, respectively.
Therefore our Legendre decomposition is a generalization of Boltzmann machine learning in the
following three aspects:
1. The domain is not limited to binary but can be ordinal; that is, {0, 1}N is extended to [I1]× [I2]×
· · · × [IN] for any I1, I2, . . . , IN ∈ N.

2. The basis B with which parameters θ are associated is not limited to B(V) ∪ B(E) but can be
any subset of [I1]× · · · × [IN], meaning that higher-order interactions (Sejnowski, 1986) can be
included.

3. The sample space of probability distributions is not limited to {0, 1}N but can be any subset of
[I1]×[I2]×· · ·×[IN], which enables us to perform efficient computation by removing unnecessary
entries such as missing values.

Hidden variables are often used in Boltzmann machines to increase the representation power, such
as in restricted Boltzmann machines (RBMs; Smolensky, 1986; Hinton, 2002) and deep Boltzmann
machines (DBMs; Salakhutdinov and Hinton, 2009, 2012). In Legendre decomposition, including
a hidden variable corresponds to including an additional dimension. Hence if we include H hidden
variables, the fully decomposable tensorQ has the order of N +H . This is an interesting extension
to our method and an ongoing research topic, but it is not a focus of this paper since our main aim is
to find a lower dimensional representation of a given tensor P .
In the learning process of Boltzmann machines, approximation techniques of the partition function
Z(θ) are usually required, such as annealed importance sampling (AIS; Salakhutdinov and Murray,
2008) or variational techniques (Salakhutdinov, 2008). This requirement is because the exact
computation of the partition function requires the summation over all probabilities of the sample
space Ω, which is always fixed to 2V with the set V of variables in the learning process of Boltzmann
machines, and which is not tractable. Our method does not require such techniques as Ω is a subset
of indices of an input tensor and the partition function can always be directly computed.

3 Experiments

We empirically examine the efficiency and the effectiveness of Legendre decomposition using syn-
thetic and real-world datasets. We used Amazon Linux AMI release 2018.03 and ran all experiments
on 2.3 GHz Intel Xeon CPU E5-2686 v4 with 256 GB of memory. The Legendre decomposition
was implemented in C++ and compiled with icpc 18.0.0 1.
Throughout the experiments, we focused on the decomposition of third-order tensors and used
three types of decomposition bases in the form of B1 = {v | i1 = i2 = 1} ∪ {v | i2 = i3 =
1} ∪ {v | i1 = i3 = 1}, B2(l) = {v | i1 = 1, i2 ∈ C2(l)} ∪ {v | i1 ∈ C1(l), i2 = 1} with
Ck(l) = {c⌊Ik/l⌋ | c ∈ [l]}, and B3(l) = {v | (i1, i2) ∈ Hi3(l)} with Hi3(l) being the set indices
for the top l elements of the i3th frontal slice in terms of probability. In these bases, B1 works
as a normalizer for each mode, B2 works as a normalizer for rows and columns of each slice, and
B3 highlights entries with high probabilities. We always assume that (1, . . . , 1) is not included in

1Implementation is available at: https://github.com/mahito-sugiyama/Legendre-decomposition

7

https://github.com/mahito-sugiyama/Legendre-decomposition

� � � � � � �� � �� � � � � � � � � �

�
��

��
���

���
��
��
���

��

� � � � � �
 � � � � �
� �

� � 	

� � �

� � � � � � �� �� �

��
��

��
��
���

��
(�
��
�)

� � � � � � � � � � � � � � � � � �
� � –�

� �

� � �

� � 	

� � �

� � � � � � �� � �� � � � � � � � � �

��
��

��
��
���

��
(�
��
�)

� � � � � �
 � � � � �

� � 	

� � �

� �

� � –	

� � � � � � � �� � � � �
� � � � ��� � � � � � �

� � � � � � � �
� � � � � � � � � � �� � � ­ � �
� � � � � � � � � � �� �
� � �� � �

� � �

Figure 4: Experimental results on synthetic data. (a, b) Comparison of natural gradient (Algorithm 2)
and gradient descent (Algorithm 1), where both algorithms produce exactly the same results. (c)
Comparison of Legendre decomposition (natural gradient) and other tensor decomposition methods.

the above bases. The cardinality of a basis corresponds to the number of parameters used in the
decomposition. We used l to vary the number of parameters for decomposition in our experiments.
To examine the efficiency and the effectiveness of tensor decomposition, we compared Legendre
decomposition with two standard nonnegative tensor decomposition techniques, nonnegative Tucker
decomposition (Kim and Choi, 2007) and nonnegative CANDECOMP/PARAFAC (CP) decomposi-
tion (Shashua and Hazan, 2005). Since both of these methods are based on least square objective
functions (Lee and Seung, 1999), we also included a variant of CP decomposition, CP-Alternating
Poisson Regression (CP-APR; Chi and Kolda, 2012), which uses the KL-divergence for its objective
function. We used the TensorLy implementation (Kossaifi et al., 2016) for the nonnegative Tucker
and CP decompositions and the tensor toolbox (Bader et al., 2017; Bader and Kolda, 2007) for
CP-APR. In the nonnegative Tucker decomposition, we always employed rank-(m,m,m) Tucker
decomposition with the single number m, and we use rank-n decomposition in the nonnegative CP
decomposition and CP-APR. Thus rank-(m,m,m) Tucker decomposition has (I1+ I2+ I3)m+m3

parameters, and rank-n CP decomposition and CP-APR have (I1 + I2 + I3)n parameters.

Results on Synthetic Data First we compared our two algorithms, the gradient descent in Algo-
rithm 1 and the natural gradient in Algorithm 2, to evaluate the efficiency of these optimization
algorithms. We randomly generated a third-order tensor with the size 20×20×20 from the uniform
distribution and obtained the running time and the number of iterations. We set B = B3(l) and
varied the number of parameters |B| with increasing l. In Algorithm 2, we used the outer loop (from
line 3 to 8) as one iteration for fair comparison and fixed the learning rate ε = 0.1.
Results are plotted in Figure 4(a, b) that clearly show that the natural gradient is dramatically faster
than gradient descent. When the number of parameters is around 400, the natural gradient is more
than six orders of magnitude faster than gradient descent. The increased speed comes from the
reduction of iterations. The natural gradient requires only two or three iterations until convergence
in all cases, while gradient descent requires more than 105 iterations to get the same result. In the
following, we consistently use the natural gradient for Legendre decomposition.
Next we examined the scalability compared to other tensor decomposition methods. We used the
same synthetic datasets and increased the tensor size from 20× 20× 20 to 500× 500× 500. Results
are plotted in Figure 4(c). Legendre decomposition is slower than Tucker and CP decompositions
if the tensors get larger, while the plots show that the running time of Legendre decomposition is
linear with the tensor size (Figure 5). Moreover, Legendre decomposition is faster than CP-APR if
the tensor size is not large.

Results on Real Data Next we demonstrate the effectiveness of Legendre decomposition on real-
world datasets of third-order tensors. We evaluated the quality of decomposition by the root mean
squared error (RMSE) between the input and the reconstructed tensors. We also examined the
scalability of our method in terms of the number of parameters.
First we examine Legendre decomposition and three competing methods on the face image dataset2.
We picked up the first entry from the fourth mode (corresponds to lighting) from the dataset and the

2This dataset is originally distributed at http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html and also available from the R rTensor package (https://CRAN.R-project.org/
package=rTensor).

8

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://CRAN.R-project.org/package=rTensor
https://CRAN.R-project.org/package=rTensor

� � � � ��� � � � � � � � ��� � � � � � �� � � � �� �

� � � � � � �� � �� � � � � � � � � �

��
��

�
 � � � � � � � � � � �

�
� 	

�

 �

�

 �

�

 �

�

 �

� � � � � � �� � �� � � � � � � � � �

��
��

��
��
���

��
(s
ec
.)

��
��

��
��
���

��
(s
ec
.)

�
 � � � � � � � � � � �

 � �

 � �

 � �

� � � � � � �� � �� � � � � � � � � �

��
��

� � � � � � � � �
 � � � �

� �

� �

� �

� � � � � � �� � �� � � � � � � � � �
� � � � � � � � �
 � � � �

 � �

 � �

 � �

 � �

� � � �

� � � � � � � � � � � � � � � � �� � �� � ­ � � � � � � � � � � �� � �� � � � �� � �

Figure 5: Experimental results on the face image dataset (a, b) and MNIST (c, d).

first 20 faces from the third mode, resulting in a single third-order tensor with a size of 92×112×20,
where the first two modes correspond to image pixels and the third mode to individuals. We set
decomposition basesB asB = B1 ∪B2(l)∪B3(l). For every decomposition method, we gradually
increased l, m, and n and checked the performance in terms of RMSE and running time.
Results are plotted in Figure 5(a, b). In terms of RMSE, Legendre decomposition is superior to
the other methods if the number of parameters is small (up to 2,000), and it is competitive with
nonnegative CP decomposition and inferior to CP-APR for a larger number of parameters. The
reason is that Legendre decomposition uses the information of the index order that is based on the
structure of the face images (pixels); that is, rows or columns cannot be replaced with each other in
the data. In terms of running time, it is slower than Tucker and CP decompositions as the number of
parameters increases, while it is still faster than CP-APR.
Next we used the MNIST dataset (LeCun et al., 1998), which consists of a collection of images
of handwritten digits and has been used as the standard benchmark datasets in a number of recent
studies such as deep learning. We picked up the first 500 images for each digit, resulting in 10
third-order tensors with the size of 28 × 28 × 500, where the first two modes correspond to image
pixels. In Legendre decomposition, the decomposition basis B was simply set as B = B3(l) and
removed zero entries from Ω. Again, for every decomposition method, we varied the number of
parameters by increasing l, m, and n and evaluated the performance in terms of RMSE.
Means± standard error of the mean (SEM) across all digits from “0” to “9” are plotted in Figure 5(c,
d). Results for all digits are presented in the supplementary material. Legendre decomposition
clearly shows the smallest RMSE, and the difference is larger if the number of parameters is smaller.
The reason is that Legendre decomposition ignores zero entries and decomposes only nonzero entries,
while such decomposition is not possible for other methods. Running time shows the same trend
as that of the face dataset; that is, Legendre decomposition is slower than other methods when the
number of parameters increases.

4 Conclusion

In this paper, we have proposed Legendre decomposition, which incorporates tensor structure into
information geometry. A given tensor is converted into the dual parameters (θ, η) connected via
the Legendre transformation, and the optimization is performed in the parameter space instead of
directly treating the tensors. We have theoretically shown the desired properties of the Legendre
decomposition, namely, that its results are well-defined, unique, and globally optimized, in that it
always finds the decomposable tensor that minimizes the KL divergence from the input tensor. We
have also shown the connection between Legendre decomposition and Boltzmann machine learning.
We have experimentally shown that Legendre decomposition can more accurately reconstruct input
tensors than three standard tensor decomposition methods (nonnegative Tucker decomposition, non-
negative CP decomposition, and CP-APR) using the same number of parameters. Since the shape
of the decomposition basis B is arbitrary, Legendre decomposition has the potential to achieve even
more-accurate decomposition. For example, one can incorporate the domain knowledge into the set
B such that specific entries of the input tensor are known to dominate the other entries.
Our work opens the door to both further theoretical investigation of information geometric algorithms
for tensor analysis and a number of practical applications such as missing value imputation.

9

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP16K16115, JP16H02870, and JST,
PRESTO Grant Number JPMJPR1855, Japan (M.S.); JSPS KAKENHI Grant Numbers 26120732
and 16H06570 (H.N.); and JST CREST JPMJCR1502 (K.T.).

References
D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for Boltzmann machines.

Cognitive Science, 9(1):147–169, 1985.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

S. Amari. Information geometry on hierarchy of probability distributions. IEEE Transactions on
Information Theory, 47(5):1701–1711, 2001.

S. Amari. Information geometry and its applications: Convex function and dually flat manifold.
In F. Nielsen, editor, Emerging Trends in Visual Computing: LIX Fall Colloquium, ETVC 2008,
Revised Invited Papers, pages 75–102. Springer, 2009.

S. Amari. Information Geometry and Its Applications. Springer, 2016.

B. W. Bader and T. G. Kolda. Efficient MATLAB computations with sparse and factored tensors.
SIAM Journal on Scientific Computing, 30(1):205–231, 2007.

B. W. Bader, T. G. Kolda, et al. MATLAB tensor toolbox version 3.0-dev, 2017.

C. F. Beckmann and S. M. Smith. Tensorial extensions of independent component analysis for
multisubject FMRI analysis. NeuroImage, 25(1):294–311, 2005.

Y. Censor and A. Lent. An iterative row-action method for interval convex programming. Journal
of Optimization Theory and Applications, 34(3):321–353, 1981.

J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang. Equivalence of restricted Boltzmann machines
and tensor network states. Physical Review B, 97:085104, 2018.

E. C. Chi and T. G. Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM Journal on
Matrix Analysis and Applications, 33(4):1272–1299, 2012.

A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan. Tensor
decompositions for signal processing applications: From two-way to multiway component analysis.
IEEE Signal Processing Magazine, 32(2):145–163, 2015.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2
edition, 2002.

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous Lattices
and Domains. Cambridge University Press, 2003.

R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an “ex-
planatory” multi-modal factor analysis. Technical report, UCLA Working Papers in Phonetics,
1970.

G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computa-
tion, 14(8):1771–1800, 2002.

Y. D. Kim and S. Choi. Nonnegative Tucker decomposition. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8, 2007.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500,
2009.

J. Kossaifi, Y. Panagakis, and M. Pantic. TensorLy: Tensor learning in Python. arXiv:1610.09555,
2016.

10

Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of handwritten digits, 1998. URL
http://yann.lecun.com/exdb/mnist/.

Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. J. Huang. A tutorial on energy-based learning.
In G. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. N. Vishwanathan, editors,
Predicting Structured Data. The MIT Press, 2007.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In Advances in Neural
Information processing Systems 13, pages 556–562, 2001.

J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual
data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):208–220, 2013.

H. Nakahara and S. Amari. Information-geometric measure for neural spikes. Neural Computation,
14(10):2269–2316, 2002.

R. Salakhutdinov. Learning and evaluating Boltzmann machines. UTML TR 2008-002, 2008.

R. Salakhutdinov and G. E. Hinton. Deep Boltzmann machines. In Proceedings of the 12th
International Conference on Artificial Intelligence and Statistics, pages 448–455, 2009.

R. Salakhutdinov and G. E. Hinton. An efficient learning procedure for deep Boltzmann machines.
Neural Computation, 24(8):1967–2006, 2012.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep belief networks. In Proceedings
of the 25th International Conference on Machine learning, pages 872–879, 2008.

T. J. Sejnowski. Higher-order Boltzmann machines. In AIP Conference Proceedings, volume 151,
pages 398–403, 1986.

A. Shashua and T. Hazan. Non-negative tensor factorization with applications to statistics and
computer vision. In Proceedings of the 22nd International Conference on Machine Learning,
pages 792–799, 2005.

P. Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In D. E.
Rumelhart, J. L. McClelland, and PDP Research Group, editors, Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1, pages 194–281. MIT Press, 1986.

M. Sugiyama, H. Nakahara, and K. Tsuda. Information decomposition on structured space. In 2016
IEEE International Symposium on Information Theory, pages 575–579, 2016.

M. Sugiyama, H. Nakahara, and K. Tsuda. Tensor balancing on statistical manifold. In Proceedings
of the 34th International Conference on Machine Learning, pages 3270–3279, 2017.

P. Symeonidis. Matrix and tensor decomposition in recommender systems. In Proceedings of the
10th ACM Conference on Recommender Systems, pages 429–430, 2016.

R. Tomioka and T. Suzuki. Convex tensor decomposition via structured schatten norm regularization.
In Advances in Neural Information Processing Systems 26, pages 1331–1339, 2013.

L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):
279–311, 1966.

M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: TensorFaces. In
Proceedings of The 7th European Conference on Computer Vision (ECCV), volume 2350 of LNCS,
pages 447–460, 2002.

M. A. O. Vasilescu and D. Terzopoulos. Multilinear (tensor) image synthesis, analysis, and recogni-
tion [exploratory dsp]. IEEE Signal Processing Magazine, 24(6):118–123, 2007.

K. Y. Yılmaz, A. T. Cemgil, and U. Simsekli. Generalised coupled tensor factorisation. In Advances
in Neural Information Processing Systems 24, pages 2151–2159, 2011.

Y. K. Yılmaz and A. T. Cemgil. Algorithms for probabilistic latent tensor factorization. Signal
Processing, 92(8):1853–1863, 2012.

11

http://yann.lecun.com/exdb/mnist/

