
Link Prediction Based on Graph Neural Networks

Muhan Zhang
Department of CSE

Washington University in St. Louis
muhan@wustl.edu

Yixin Chen
Department of CSE

Washington University in St. Louis
chen@cse.wustl.edu

Abstract

Link prediction is a key problem for network-structured data. Link prediction
heuristics use some score functions, such as common neighbors and Katz index,
to measure the likelihood of links. They have obtained wide practical uses due to
their simplicity, interpretability, and for some of them, scalability. However, every
heuristic has a strong assumption on when two nodes are likely to link, which
limits their effectiveness on networks where these assumptions fail. In this regard,
a more reasonable way should be learning a suitable heuristic from a given network
instead of using predefined ones. By extracting a local subgraph around each target
link, we aim to learn a function mapping the subgraph patterns to link existence,
thus automatically learning a “heuristic” that suits the current network. In this
paper, we study this heuristic learning paradigm for link prediction. First, we
develop a novel �-decaying heuristic theory. The theory unifies a wide range of
heuristics in a single framework, and proves that all these heuristics can be well
approximated from local subgraphs. Our results show that local subgraphs reserve
rich information related to link existence. Second, based on the �-decaying theory,
we propose a new method to learn heuristics from local subgraphs using a graph
neural network (GNN). Its experimental results show unprecedented performance,
working consistently well on a wide range of problems.

1 Introduction

Link prediction is to predict whether two nodes in a network are likely to have a link [1]. Given the
ubiquitous existence of networks, it has many applications such as friend recommendation [2], movie
recommendation [3], knowledge graph completion [4], and metabolic network reconstruction [5].

One class of simple yet effective approaches for link prediction is called heuristic methods. Heuristic
methods compute some heuristic node similarity scores as the likelihood of links [1, 6]. Existing
heuristics can be categorized based on the maximum hop of neighbors needed to calculate the
score. For example, common neighbors (CN) and preferential attachment (PA) [7] are first-order
heuristics, since they only involve the one-hop neighbors of two target nodes. Adamic-Adar (AA) and
resource allocation (RA) [8] are second-order heuristics, as they are calculated from up to two-hop
neighborhood of the target nodes. We define h-order heuristics to be those heuristics which require
knowing up to h-hop neighborhood of the target nodes. There are also some high-order heuristics
which require knowing the entire network. Examples include Katz, rooted PageRank (PR) [9], and
SimRank (SR) [10]. Table 3 in Appendix A summarizes eight popular heuristics.

Although working well in practice, heuristic methods have strong assumptions on when links may
exist. For example, the common neighbor heuristic assumes that two nodes are more likely to connect
if they have many common neighbors. This assumption may be correct in social networks, but is
shown to fail in protein-protein interaction (PPI) networks – two proteins sharing many common
neighbors are actually less likely to interact [11].

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

D
C

AB

AB

D
C

?

?

Extract enclosing
subgraphs

common neighbors = 3
Jaccard = 0.6
preferential attachment = 16
Katz ≈	0.03
……

Learn graph structure features

common neighbors = 0
Jaccard = 0
preferential attachment = 8
Katz ≈	0.001
……

1 (link)

0 (non-link)

Predict links

Graph neural network

Figure 1: The SEAL framework. For each target link, SEAL extracts a local enclosing subgraph around it, and
uses a GNN to learn general graph structure features for link prediction. Note that the heuristics listed inside the
box are just for illustration – the learned features may be completely different from existing heuristics.

In fact, the heuristics belong to a more generic class, namely graph structure features. Graph structure
features are those features located inside the observed node and edge structures of the network, which
can be calculated directly from the graph. Since heuristics can be viewed as predefined graph structure
features, a natural idea is to automatically learn such features from the network. Zhang and Chen
[12] first studied this problem. They extract local enclosing subgraphs around links as the training
data, and use a fully-connected neural network to learn which enclosing subgraphs correspond to
link existence. Their method called Weisfeiler-Lehman Neural Machine (WLNM) has achieved
state-of-the-art link prediction performance. The enclosing subgraph for a node pair (x, y) is the
subgraph induced from the network by the union of x and y’s neighbors up to h hops. Figure 1
illustrates the 1-hop enclosing subgraphs for (A,B) and (C,D). These enclosing subgraphs are very
informative for link prediction – all first-order heuristics such as common neighbors can be directly
calculated from the 1-hop enclosing subgraphs.

However, it is shown that high-order heuristics such as rooted PageRank and Katz often have much
better performance than first and second-order ones [6]. To effectively learn good high-order features,
it seems that we need a very large hop number h so that the enclosing subgraph becomes the entire
network. This results in unaffordable time and memory consumption for most practical networks.
But do we really need such a large h to learn high-order heuristics?

Fortunately, as our first contribution, we show that we do not necessarily need a very large h to
learn high-order graph structure features. We dive into the inherent mechanisms of link prediction
heuristics, and find that most high-order heuristics can be unified by a �-decaying theory. We prove
that, under mild conditions, any �-decaying heuristic can be effectively approximated from an h-hop
enclosing subgraph, where the approximation error decreases at least exponentially with h. This
means that we can safely use even a small h to learn good high-order features. It also implies that the
“effective order” of these high-order heuristics is not that high.

Based on our theoretical results, we propose a novel link prediction framework, SEAL, to learn general
graph structure features from local enclosing subgraphs. SEAL fixes multiple drawbacks of WLNM.
First, a graph neural network (GNN) [13, 14, 15, 16, 17] is used to replace the fully-connected neural
network in WLNM, which enables better graph feature learning ability. Second, SEAL permits
learning from not only subgraph structures, but also latent and explicit node features, thus absorbing
multiple types of information. We empirically verified its much improved performance.

Our contributions are summarized as follows. 1) We present a new theory for learning link prediction
heuristics, justifying learning from local subgraphs instead of entire networks. 2) We propose SEAL,
a novel link prediction framework based on GNN (illustrated in Figure 1). SEAL outperforms all
heuristic methods, latent feature methods, and recent network embedding methods by large margins.
SEAL also outperforms the previous state-of-the-art method, WLNM.

2 Preliminaries

Notations Let G = (V,E) be an undirected graph, where V is the set of vertices and E ✓ V ⇥ V

is the set of observed links. Its adjacency matrix is A, where A

i,j

= 1 if (i, j) 2 E and A

i,j

= 0

2

otherwise. For any nodes x, y 2 V , let �(x) be the 1-hop neighbors of x, and d(x, y) be the shortest
path distance between x and y. A walk w = hv0, · · · , vki is a sequence of nodes with (v

i

, v

i+1) 2 E.
We use |hv0, · · · , vki| to denote the length of the walk w, which is k here.

Latent features and explicit features Besides graph structure features, latent features and explicit
features are also studied for link prediction. Latent feature methods [3, 18, 19, 20] factorize some
matrix representations of the network to learn a low-dimensional latent representation/embedding for
each node. Examples include matrix factorization [3] and stochastic block model [18] etc. Recently,
a number of network embedding techniques have been proposed, such as DeepWalk [19], LINE
[21] and node2vec [20], which are also latent feature methods since they implicitly factorize some
matrices too [22]. Explicit features are often available in the form of node attributes, describing all
kinds of side information about individual nodes. It is shown that combining graph structure features
with latent features and explicit features can improve the performance [23, 24].

Graph neural networks Graph neural network (GNN) is a new type of neural network for learning
over graphs [13, 14, 15, 16, 25, 26]). Here, we only briefly introduce the components of a GNN since
this paper is not about GNN innovations but is a novel application of GNN. A GNN usually consists
of 1) graph convolution layers which extract local substructure features for individual nodes, and 2) a
graph aggregation layer which aggregates node-level features into a graph-level feature vector. Many
graph convolution layers can be unified into a message passing framework [27].

Supervised heuristic learning There are some previous attempts to learn supervised heuristics
for link prediction. The closest work to ours is the Weisfeiler-Lehman Neural Machine (WLNM)
[12], which also learns from local subgraphs. However, WLNM has several drawbacks. Firstly,
WLNM trains a fully-connected neural network on the subgraphs’ adjacency matrices. Since fully-
connected neural networks only accept fixed-size tensors as input, WLNM requires truncating
different subgraphs to the same size, which may lose much structural information. Secondly, due
to the limitation of adjacency matrix representations, WLNM cannot learn from latent or explicit
features. Thirdly, theoretical justifications are also missing. We include more discussion on WLNM
in Appendix D. Another related line of research is to train a supervised learning model on different
heuristics’ combination. For example, the path ranking algorithm [28] trains logistic regression on
different path types’ probabilities to predict relations in knowledge graphs. Nickel et al. [23] propose
to incorporate heuristic features into tensor factorization models. However, these models still rely on
predefined heuristics – they cannot learn general graph structure features.

3 A theory for unifying link prediction heuristics

In this section, we aim to understand deeper the mechanisms behind various link prediction heuristics,
and thus motivating the idea of learning heuristics from local subgraphs. Due to the large number of
graph learning techniques, note that we are not concerned with the generalization error of a particular
method, but focus on the information reserved in the subgraphs for calculating existing heuristics.
Definition 1. (Enclosing subgraph) For a graph G = (V,E), given two nodes x, y 2 V , the

h-hop enclosing subgraph for (x, y) is the subgraph G

h

x,y

induced from G by the set of nodes

{ i | d(i, x)  h or d(i, y)  h }.

The enclosing subgraph describes the “h-hop surrounding environment" of (x, y). Since G

h

x,y

contains all h-hop neighbors of x and y, we naturally have the following theorem.
Theorem 1. Any h-order heuristic for (x, y) can be accurately calculated from G

h

x,y

.

For example, a 2-hop enclosing subgraph will contain all the information needed to calculate any first
and second-order heuristics. However, although first and second-order heuristics are well covered
by local enclosing subgraphs, an extremely large h seems to be still needed for learning high-order
heuristics. Surprisingly, our following analysis shows that learning high-order heuristics is also
feasible with a small h. We support this first by defining the �-decaying heuristic. We will show
that under certain conditions, a �-decaying heuristic can be very well approximated from the h-hop
enclosing subgraph. Moreover, we will show that almost all well-known high-order heuristics can be
unified into this �-decaying heuristic framework.
Definition 2. (�-decaying heuristic) A �-decaying heuristic for (x, y) has the following form:

H(x, y) = ⌘

1X

l=1

�

l

f(x, y, l), (1)

3

where � is a decaying factor between 0 and 1, ⌘ is a positive constant or a positive function of � that

is upper bounded by a constant, f is a nonnegative function of x, y, l under the the given network.

Next, we will show that under certain conditions, a �-decaying heuristic can be approximated from
an h-hop enclosing subgraph, and the approximation error decreases at least exponentially with h.
Theorem 2. Given a �-decaying heuristic H(x, y) = ⌘

P1
l=1 �

l

f(x, y, l), if f(x, y, l) satisfies:

• (property 1) f(x, y, l)  �

l

where � <

1
�

; and

• (property 2) f(x, y, l) is calculable from G

h

x,y

for l = 1, 2, · · · , g(h), where g(h)= ah+b with

a, b 2 N and a > 0,

then H(x, y) can be approximated from G

h

x,y

and the approximation error decreases at least expo-

nentially with h.

Proof. We can approximate such a �-decaying heuristic by summing over its first g(h) terms.

eH(x, y) := ⌘

g(h)X

l=1

�

l

f(x, y, l). (2)

The approximation error can be bounded as follows.

|H(x, y)� eH(x, y)| = ⌘

1X

l=g(h)+1

�

l

f(x, y, l)  ⌘

1X

l=ah+b+1

�

l

�

l

= ⌘(��)

ah+b+1
(1� ��)

�1
.

In practice, a small �� and a large a lead to a faster decreasing speed. Next we will prove that three
popular high-order heuristics: Katz, rooted PageRank and SimRank, are all �-decaying heuristics
which satisfy the properties in Theorem 2. First, we need the following lemma.
Lemma 1. Any walk between x and y with length l  2h+ 1 is included in G

h

x,y

.

Proof. Given any walk w = hx, v1, · · · , vl�1, yi with length l, we will show that every node v

i

is included in G

h

x,y

. Consider any v

i

. Assume d(v

i

, x) � h + 1 and d(v

i

, y) � h + 1. Then,
2h+1 � l = |hx, v1, · · · , vii|+ |hv

i

, · · · , v
l�1, yi| � d(v

i

, x) + d(v

i

, y) � 2h+2, a contradiction.
Thus, d(v

i

, x)  h or d(v
i

, y)  h. By the definition of Gh

x,y

, v
i

must be included in G

h

x,y

.

Next we will analyze Katz, rooted PageRank and SimRank one by one.

3.1 Katz index

The Katz index [29] for (x, y) is defined as

Katz
x,y

=

1X

l=1

�

l|walkshli(x, y)| =
1X

l=1

�

l

[A

l

]

x,y

, (3)

where walkshli(x, y) is the set of length-l walks between x and y, and A

l is the l

th power of the
adjacency matrix of the network. Katz index sums over the collection of all walks between x and y

where a walk of length l is damped by �

l (0 < � < 1), giving more weight to shorter walks.

Katz index is directly defined in the form of a �-decaying heuristic with ⌘ = 1, � = �, and
f(x, y, l) = |walkshli(x, y)|. According to Lemma 1, |walkshli(x, y)| is calculable from G

h

x,y

for
l  2h+ 1, thus property 2 in Theorem 2 is satisfied. Now we show when property 1 is satisfied.
Proposition 1. For any nodes i, j, [A

l

]

i,j

is bounded by d

l

, where d is the maximum node degree of

the network.

Proof. We prove it by induction. When l = 1, A
i,j

 d for any (i, j). Thus the base case is correct.
Now, assume by induction that [Al

]

i,j

 d

l for any (i, j), we have

[A

l+1
]

i,j

=

|V |X

k=1

[A

l

]

i,k

A

k,j

 d

l

|V |X

k=1

A

k,j

 d

l

d = d

l+1
.

Taking � = d, we can see that whenever d < 1/�, the Katz index will satisfy property 1 in Theorem
2. In practice, the damping factor � is often set to very small values like 5E-4 [1], which implies that
Katz can be very well approximated from the h-hop enclosing subgraph.

4

3.2 PageRank

The rooted PageRank for node x calculates the stationary distribution of a random walker starting at
x, who iteratively moves to a random neighbor of its current position with probability ↵ or returns
to x with probability 1 � ↵. Let ⇡

x

denote the stationary distribution vector. Let [⇡
x

]

i

denote the
probability that the random walker is at node i under the stationary distribution.

Let P be the transition matrix with P

i,j

=

1
|�(v

j

)| if (i, j) 2 E and P

i,j

= 0 otherwise. Let e
x

be a
vector with the x

th element being 1 and others being 0. The stationary distribution satisfies
⇡

x

= ↵P⇡

x

+ (1� ↵)e
x

. (4)

When used for link prediction, the score for (x, y) is given by [⇡

x

]

y

(or [⇡
x

]

y

+ [⇡

y

]

x

for symmetry).
To show that rooted PageRank is a �-decaying heuristic, we introduce the inverse P-distance theory
[30], which states that [⇡

x

]

y

can be equivalently written as follows:

[⇡

x

]

y

= (1� ↵)

X

w:x y

P [w]↵

len(w)
, (5)

where the summation is taken over all walks w starting at x and ending at y (possibly touching x

and y multiple times). For a walk w = hv0, v1, · · · , vki, len(w) := |hv0, v1, · · · , vki| is the length
of the walk. The term P [w] is defined as

Q
k�1
i=0

1
|�(v

i

)| , which can be interpreted as the probability of
traveling w. Now we have the following theorem.
Theorem 3. The rooted PageRank heuristic is a �-decaying heuristic which satisfies the properties

in Theorem 2.

Proof. We first write [⇡

x

]

y

in the following form.

[⇡

x

]

y

= (1� ↵)

1X

l=1

X

w:x y

len(w)=l

P [w]↵

l

. (6)

Defining f(x, y, l) :=

P
w:x y

len(w)=l

P [w] leads to the form of a �-decaying heuristic. Note that f(x, y, l)

is the probability that a random walker starting at x stops at y with exactly l steps, which satisfiesP
z2V

f(x, z, l) = 1. Thus, f(x, y, l)  1 <

1
↵

(property 1). According to Lemma 1, f(x, y, l) is
also calculable from G

h

x,y

for l  2h+ 1 (property 2).

3.3 SimRank

The SimRank score [10] is motivated by the intuition that two nodes are similar if their neighbors are
also similar. It is defined in the following recursive way: if x = y, then s(x, y) := 1; otherwise,

s(x, y) := �

P
a2�(x)

P
b2�(y) s(a, b)

|�(x)| · |�(y)| (7)

where � is a constant between 0 and 1. According to [10], SimRank has an equivalent definition:

s(x, y) =

X

w:(x,y)((z,z)

P [w]�

len(w)
, (8)

where w : (x, y) ((z, z) denotes all simultaneous walks such that one walk starts at x, the other walk
starts at y, and they first meet at any vertex z. For a simultaneous walk w = h(v0, u0), · · · , (vk, uk

)i,
len(w) = k is the length of the walk. The term P [w] is similarly defined as

Q
k�1
i=0

1
|�(v

i

)||�(u
i

)| ,
describing the probability of this walk. Now we have the following theorem.
Theorem 4. SimRank is a �-decaying heuristic which satisfies the properties in Theorem 2.

Proof. We write s(x, y) as follows.

s(x, y) =

1X

l=1

X

w:(x,y)((z,z)
len(w)=l

P [w]�

l

, (9)

Defining f(x, y, l) :=

P
w:(x,y)((z,z)

len(w)=l

P [w] reveals that SimRank is a �-decaying heuristic. Note

that f(x, y, l)  1 <

1
�

. It is easy to see that f(x, y, l) is also calculable from G

h

x,y

for l  h.

5

Discussion There exist several other high-order heuristics based on path counting or random walk
[6] which can be as well incorporated into the �-decaying heuristic framework. We omit the analysis
here. Our results reveal that most high-order heuristics inherently share the same �-decaying heuristic
form, and thus can be effectively approximated from an h-hop enclosing subgraph with exponentially
smaller approximation error. We believe the ubiquity of �-decaying heuristics is not by accident –
it implies that a successful link prediction heuristic is better to put exponentially smaller weight on
structures far away from the target, as remote parts of the network intuitively make little contribution
to link existence. Our results build the foundation for learning heuristics from local subgraphs, as they
imply that local enclosing subgraphs already contain enough information to learn good graph
structure features for link prediction which is much desired considering learning from the entire
network is often infeasible. To summarize, from the small enclosing subgraphs extracted around
links, we are able to accurately calculate first and second-order heuristics, and approximate a wide
range of high-order heuristics with small errors. Therefore, given adequate feature learning ability of
the model used, learning from such enclosing subgraphs is expected to achieve performance at least
as good as a wide range of heuristics. There is some related work which empirically verifies that local
methods can often estimate PageRank and SimRank well [31, 32]. Another related theoretical work
[33] establishes a condition of h to achieve some fixed approximation error for ordinary PageRank.

4 SEAL: An implemetation of the theory using GNN

In this section, we describe our SEAL framework for link prediction. SEAL does not restrict the
learned features to be in some particular forms such as �-decaying heuristics, but instead learns
general graph structure features for link prediction. It contains three steps: 1) enclosing subgraph
extraction, 2) node information matrix construction, and 3) GNN learning. Given a network, we aim
to learn automatically a “heuristic” that best explains the link formations. Motivated by the theoretical
results, this function takes local enclosing subgraphs around links as input, and output how likely
the links exist. To learn such a function, we train a graph neural network (GNN) over the enclosing
subgraphs. Thus, the first step in SEAL is to extract enclosing subgraphs for a set of sampled positive
links (observed) and a set of sampled negative links (unobserved) to construct the training data.

A GNN typically takes (A,X) as input, where A (with slight abuse of notation) is the adjacency matrix
of the input enclosing subgraph, X is the node information matrix each row of which corresponds
to a node’s feature vector. The second step in SEAL is to construct the node information matrix
X for each enclosing subgraph. This step is crucial for training a successful GNN link prediction
model. In the following, we discuss this key step. The node information matrix X in SEAL has three
components: structural node labels, node embeddings and node attributes.

4.1 Node labeling

The first component in X is each node’s structural label. A node labeling is function f

l

: V ! N
which assigns an integer label f

l

(i) to every node i in the enclosing subgraph. The purpose is to use
different labels to mark nodes’ different roles in an enclosing subgraph: 1) The center nodes x and
y are the target nodes between which the link is located. 2) Nodes with different relative positions to
the center have different structural importance to the link. A proper node labeling should mark such
differences. If we do not mark such differences, GNNs will not be able to tell where are the target
nodes between which a link existence should be predicted, and lose structural information.

Our node labeling method is derived from the following criteria: 1) The two target nodes x and y

always have the distinctive label “1”. 2) Nodes i and j have the same label if d(i, x) = d(j, x) and
d(i, y) = d(j, y). The second criterion is because, intuitively, a node i’s topological position within
an enclosing subgraph can be described by its radius with respect to the two center nodes, namely
(d(i, x), d(i, y)). Thus, we let nodes on the same orbit have the same label, so that the node labels
can reflect nodes’ relative positions and structural importance within subgraphs.

Based on the above criteria, we propose a Double-Radius Node Labeling (DRNL) as follows. First,
assign label 1 to x and y. Then, for any node i with (d(i, x), d(i, y)) = (1, 1), assign label f

l

(i) = 2.
Nodes with radius (1, 2) or (2, 1) get label 3. Nodes with radius (1, 3) or (3, 1) get 4. Nodes with
(2, 2) get 5. Nodes with (1, 4) or (4, 1) get 6. Nodes with (2, 3) or (3, 2) get 7. So on and so forth. In
other words, we iteratively assign larger labels to nodes with a larger radius w.r.t. both center nodes,
where the label f

l

(i) and the double-radius (d(i, x), d(i, y)) satisfy

6

1) if d(i, x)+ d(i, y) 6= d(j, x)+ d(j, y), then d(i, x)+ d(i, y) < d(j, x)+ d(j, y) , f

l

(i) < f

l

(j);

2) if d(i, x) + d(i, y) = d(j, x) + d(j, y), then d(i, x)d(i, y) < d(j, x)d(j, y) , f

l

(i) < f

l

(j).

One advantage of DRNL is that it has a perfect hashing function
f

l

(i) = 1 +min(d

x

, d

y

) + (d/2)[(d/2) + (d%2)� 1], (10)
where d

x

:= d(i, x), d
y

:= d(i, y), d := d

x

+ d

y

, (d/2) and (d%2) are the integer quotient and
remainder of d divided by 2, respectively. This perfect hashing allows fast closed-form computations.

For nodes with d(i, x) = 1 or d(i, y) = 1, we give them a null label 0. Note that DRNL is not
the only possible way of node labeling, but we empirically verified its better performance than no
labeling and other naive labelings. We discuss more about node labeling in Appendix B. After getting
the labels, we use their one-hot encoding vectors to construct X .

4.2 Incorporating latent and explicit features

Other than the structural node labels, the node information matrix X also provides an opportunity to
include latent and explicit features. By concatenating each node’s embedding/attribute vector to its
corresponding row in X , we can make SEAL simultaneously learn from all three types of features.

Generating the node embeddings for SEAL is nontrivial. Suppose we are given the observed network
G = (V,E), a set of sampled positive training links E

p

✓ E, and a set of sampled negative training
links E

n

with E

n

\ E = ?. If we directly generate node embeddings on G, the node embeddings
will record the link existence information of the training links (since E

p

✓ E). We observed that
GNNs can quickly find out such link existence information and optimize by only fitting this part
of information. This results in bad generalization performance in our experiments. Our trick is to
temporally add E

n

into E, and generate the embeddings on G

0
= (V,E[E

n

). This way, the positive
and negative training links will have the same link existence information recorded in the embeddings,
so that GNN cannot classify links by only fitting this part of information. We empirically verified the
much improved performance of this trick to SEAL. We name this trick negative injection.

We name our proposed framework SEAL (learning from Subgraphs, Embeddings and Attributes for
Link prediction), emphasizing its ability to jointly learn from three types of features.

5 Experimental results

We conduct extensive experiments to evaluate SEAL. Our results show that SEAL is a superb and
robust framework for link prediction, achieving unprecedentedly strong performance on various
networks. We use AUC and average precision (AP) as evaluation metrics. We run all experiments for
10 times and report the average AUC results and standard deviations. We leave the the AP and time
results in Appendix F. SEAL is flexible with what GNN or node embeddings to use. Thus, we choose
a recent architecture DGCNN [17] as the default GNN, and node2vec [20] as the default embeddings.
The code and data are available at https://github.com/muhanzhang/SEAL.

Datasets The eight datasets used are: USAir, NS, PB, Yeast, C.ele, Power, Router, and E.coli (please
see Appendix C for details). We randomly remove 10% existing links from each dataset as positive
testing data. Following a standard manner of learning-based link prediction, we randomly sample
the same number of nonexistent links (unconnected node pairs) as negative testing data. We use the
remaining 90% existing links as well as the same number of additionally sampled nonexistent links
to construct the training data.

Comparison to heuristic methods We first compare SEAL with methods that only use graph
structure features. We include eight popular heuristics (shown in Appendix A, Table 3): common
neighbors (CN), Jaccard, preferential attachment (PA), Adamic-Adar (AA), resource allocation (RA),
Katz, PageRank (PR), and SimRank (SR). We additionally include Ensemble (ENS) which trains
a logistic regression classifier on the eight heuristic scores. We also include two heuristic learning
methods: Weisfeiler-Lehman graph kernel (WLK) [34] and WLNM [12], which also learn from
(truncated) enclosing subgraphs. We omit path ranking methods [28] as well as other recent methods
which are specifically designed for knowledge graphs or recommender systems [23, 35]. As all the
baselines only use graph structure features, we restrict SEAL to not include any latent or explicit
features. In SEAL, the hop number h is an important hyperparameter. Here, we select h only from
{1, 2}, since on one hand we empirically verified that the performance typically does not increase

7

after h � 3, which validates our theoretical results that the most useful information is within local
structures. On the other hand, even h = 3 sometimes results in very large subgraphs if a hub node
is included. This raises the idea of sampling nodes in subgraphs, which we leave to future work.
The selection principle is very simple: If the second-order heuristic AA outperforms the first-order
heuristic CN on 10% validation data, then we choose h = 2; otherwise we choose h = 1. For datasets
PB and E.coli, we consistently use h = 1 to fit into the memory. We include more details about the
baselines and hyperparameters in Appendix D.

Table 1: Comparison with heuristic methods (AUC).

Data CN Jaccard PA AA RA Katz PR SR ENS WLK WLNM SEAL
USAir 93.80±1.22 89.79±1.61 88.84±1.45 95.06±1.03 95.77±0.92 92.88±1.42 94.67±1.08 78.89±2.31 88.96±1.44 96.63±0.73 95.95±1.10 96.62±0.72
NS 94.42±0.95 94.43±0.93 68.65±2.03 94.45±0.93 94.45±0.93 94.85±1.10 94.89±1.08 94.79±1.08 97.64±0.25 98.57±0.51 98.61±0.49 98.85±0.47
PB 92.04±0.35 87.41±0.39 90.14±0.45 92.36±0.34 92.46±0.37 92.92±0.35 93.54±0.41 77.08±0.80 90.15±0.45 93.83±0.59 93.49±0.47 94.72±0.46
Yeast 89.37±0.61 89.32±0.60 82.20±1.02 89.43±0.62 89.45±0.62 92.24±0.61 92.76±0.55 91.49±0.57 82.36±1.02 95.86±0.54 95.62±0.52 97.91±0.52
C.ele 85.13±1.61 80.19±1.64 74.79±2.04 86.95±1.40 87.49±1.41 86.34±1.89 90.32±1.49 77.07±2.00 74.94±2.04 89.72±1.67 86.18±1.72 90.30±1.35
Power 58.80±0.88 58.79±0.88 44.33±1.02 58.79±0.88 58.79±0.88 65.39±1.59 66.00±1.59 76.15±1.06 79.52±1.78 82.41±3.43 84.76±0.98 87.61±1.57
Router 56.43±0.52 56.40±0.52 47.58±1.47 56.43±0.51 56.43±0.51 38.62±1.35 38.76±1.39 37.40±1.27 47.58±1.48 87.42±2.08 94.41±0.88 96.38±1.45
E.coli 93.71±0.39 81.31±0.61 91.82±0.58 95.36±0.34 95.95±0.35 93.50±0.44 95.57±0.44 62.49±1.43 91.89±0.58 96.94±0.29 97.21±0.27 97.64±0.22

Table 1 shows the results. Firstly, we observe that methods which learn from enclosing subgraphs
(WLK, WLNM and SEAL) generally perform much better than predefined heuristics. This indicates
that the learned “heuristics” are better at capturing the network properties than manually designed
ones. Among learning-based methods, SEAL has the best performance, demonstrating GNN’s
superior graph feature learning ability over graph kernels and fully-connected neural networks. From
the results on Power and Router, we can see that although existing heuristics perform similarly to
random guess, learning-based methods still maintain high performance. This suggests that we can
even discover new “heuristics” for networks where no existing heuristics work.

Table 2: Comparison with latent feature methods (AUC).

Data MF SBM N2V LINE SPC VGAE SEAL
USAir 94.08±0.80 94.85±1.14 91.44±1.78 81.47±10.71 74.22±3.11 89.28±1.99 97.09±0.70
NS 74.55±4.34 92.30±2.26 91.52±1.28 80.63±1.90 89.94±2.39 94.04±1.64 97.71±0.93
PB 94.30±0.53 93.90±0.42 85.79±0.78 76.95±2.76 83.96±0.86 90.70±0.53 95.01±0.34
Yeast 90.28±0.69 91.41±0.60 93.67±0.46 87.45±3.33 93.25±0.40 93.88±0.21 97.20±0.64
C.ele 85.90±1.74 86.48±2.60 84.11±1.27 69.21±3.14 51.90±2.57 81.80±2.18 89.54±2.04
Power 50.63±1.10 66.57±2.05 76.22±0.92 55.63±1.47 91.78±0.61 71.20±1.65 84.18±1.82
Router 78.03±1.63 85.65±1.93 65.46±0.86 67.15±2.10 68.79±2.42 61.51±1.22 95.68±1.22
E.coli 93.76±0.56 93.82±0.41 90.82±1.49 82.38±2.19 94.92±0.32 90.81±0.63 97.22±0.28

Comparison to latent feature
methods Next we compare SEAL
with six state-of-the-art latent feature
methods: matrix factorization (MF),
stochastic block model (SBM)
[18], node2vec (N2V) [20], LINE
[21], spectral clustering (SPC),
and variational graph auto-encoder
(VGAE) [36]. Among them, VGAE

uses a GNN too. Please note the difference between VGAE and SEAL: VGAE uses a node-level
GNN to learn node embeddings that best reconstruct the network, while SEAL uses a graph-level
GNN to classify enclosing subgraphs. Therefore, VGAE still belongs to latent feature methods. For
SEAL, we additionally include the 128-dimensional node2vec embeddings in the node information
matrix X . Since the datasets do not have node attributes, explicit features are not included.

Table 2 shows the results. As we can see, SEAL shows significant improvement over latent feature
methods. One reason is that SEAL learns from both graph structures and latent features simulta-
neously, thus augmenting those methods that only use latent features. We observe that SEAL with
node2vec embeddings outperforms pure node2vec by large margins. This implies that network
embeddings alone may not be able to capture the most useful link prediction information located
in the local structures. It is also interesting that compared to SEAL without node2vec embeddings
(Table 1), joint learning does not always improve the performance. More experiments and discussion
are included in Appendix F.

6 Conclusions

Learning link prediction heuristics automatically is a new field. In this paper, we presented theoretical
justifications for learning from local enclosing subgraphs. In particular, we proposed a �-decaying
theory to unify a wide range of high-order heuristics and prove their approximability from local
subgraphs. Motivated by the theory, we proposed a novel link prediction framework, SEAL, to
simultaneously learn from local enclosing subgraphs, embeddings and attributes based on graph
neural networks. Experimentally we showed that SEAL achieved unprecedentedly strong performance
by comparing to various heuristics, latent feature methods, and network embedding algorithms. We
hope SEAL can not only inspire link prediction research, but also open up new directions for other
relational machine learning problems such as knowledge graph completion and recommender systems.

8

Acknowledgments

The work is supported in part by the III-1526012 and SCH-1622678 grants from the National Science
Foundation and grant 1R21HS024581 from the National Institute of Health.

References

[1] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. Journal of the

American society for information science and technology, 58(7):1019–1031, 2007.

[2] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social networks, 25(3):211–230,
2003.

[3] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender systems.
Computer, (8):30–37, 2009.

[4] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational machine
learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

[5] Tolutola Oyetunde, Muhan Zhang, Yixin Chen, Yinjie Tang, and Cynthia Lo. Boostgapfill: Improving
the fidelity of metabolic network reconstructions through integrated constraint and pattern-based methods.
Bioinformatics, 2016.

[6] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: Statistical

Mechanics and its Applications, 390(6):1150–1170, 2011.

[7] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science, 286(5439):
509–512, 1999.

[8] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via local information. The European

Physical Journal B, 71(4):623–630, 2009.

[9] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hypertextual web search engine.
Computer networks, 56(18):3825–3833, 2012.

[10] Glen Jeh and Jennifer Widom. Simrank: a measure of structural-context similarity. In Proceedings of the

eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 538–543.
ACM, 2002.

[11] István A Kovács, Katja Luck, Kerstin Spirohn, Yang Wang, Carl Pollis, Sadie Schlabach, Wenting Bian,
Dae-Kyum Kim, Nishka Kishore, Tong Hao, et al. Network-based prediction of protein interactions.
bioRxiv, page 275529, 2018.

[12] Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In Proceedings

of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
575–583. ACM, 2017.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally connected
networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[14] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints.
In Advances in neural information processing systems, pages 2224–2232, 2015.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

[16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning, pages 2014–2023, 2016.

[17] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning architecture
for graph classification. In AAAI, pages 4438–4445, 2018.

[18] Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed membership stochastic
blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014, 2008.

9

[19] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 701–710. ACM, 2014.

[20] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the

22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pages 855–864.
ACM, 2016.

[21] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th International Conference on World Wide Web,
pages 1067–1077. International World Wide Web Conferences Steering Committee, 2015.

[22] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network embedding as matrix
factorization: Unifyingdeepwalk, line, pte, and node2vec. arXiv preprint arXiv:1710.02971, 2017.

[23] Maximilian Nickel, Xueyan Jiang, and Volker Tresp. Reducing the rank in relational factorization models
by including observable patterns. In Advances in Neural Information Processing Systems, pages 1179–1187,
2014.

[24] He Zhao, Lan Du, and Wray Buntine. Leveraging node attributes for incomplete relational data. In
International Conference on Machine Learning, pages 4072–4081, 2017.

[25] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[26] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In Proceedings of The 33rd International Conference on Machine Learning, pages 2702–2711, 2016.

[27] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message
passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

[28] Ni Lao and William W Cohen. Relational retrieval using a combination of path-constrained random walks.
Machine learning, 81(1):53–67, 2010.

[29] Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43, 1953.

[30] Glen Jeh and Jennifer Widom. Scaling personalized web search. In Proceedings of the 12th international

conference on World Wide Web, pages 271–279. Acm, 2003.

[31] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. Local methods for estimating pagerank values. In
Proceedings of the thirteenth ACM international conference on Information and knowledge management,
pages 381–389. ACM, 2004.

[32] Xu Jia, Hongyan Liu, Li Zou, Jun He, Xiaoyong Du, and Yuanzhe Cai. Local methods for estimating
simrank score. In Web Conference (APWEB), 2010 12th International Asia-Pacific, pages 157–163. IEEE,
2010.

[33] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of pagerank and reverse pagerank. In Pro-

ceedings of the 17th ACM conference on Information and knowledge management, pages 279–288. ACM,
2008.

[34] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M Borgwardt.
Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(Sep):2539–2561, 2011.

[35] Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recurrent
multi-graph neural networks. In Advances in Neural Information Processing Systems, pages 3700–3710,
2017.

[36] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[37] Ulrike V Luxburg, Agnes Radl, and Matthias Hein. Getting lost in space: Large sample analysis of the
resistance distance. In Advances in Neural Information Processing Systems, pages 2622–2630, 2010.

[38] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec: Learning node represen-
tations from structural identity. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 385–394. ACM, 2017.

[39] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1025–1035, 2017.

10

[40] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De Lin. Prune: Preserving proximity
and global ranking for network embedding. In Advances in Neural Information Processing Systems, pages
5263–5272, 2017.

[41] Alberto Garcia Duran and Mathias Niepert. Learning graph representations with embedding propagation.
In Advances in Neural Information Processing Systems, pages 5125–5136, 2017.

[42] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[43] Steffen Rendle. Factorization machines. In 10th IEEE International Conference on Data Mining (ICDM),
pages 995–1000. IEEE, 2010.

[44] Vladimir Batagelj and Andrej Mrvar. http://vlado.fmf.uni-lj.si/pub/networks/data/, 2006.

[45] Mark EJ Newman. Finding community structure in networks using the eigenvectors of matrices. Physical

review E, 74(3):036104, 2006.

[46] Robert Ackland et al. Mapping the us political blogosphere: Are conservative bloggers more prominent?
In BlogTalk Downunder 2005 Conference, Sydney. BlogTalk Downunder 2005 Conference, Sydney, 2005.

[47] Christian Von Mering, Roland Krause, Berend Snel, Michael Cornell, Stephen G Oliver, Stanley Fields,
and Peer Bork. Comparative assessment of large-scale data sets of protein–protein interactions. Nature,
417(6887):399–403, 2002.

[48] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. Nature, 393(6684):
440–442, 1998.

[49] Neil Spring, Ratul Mahajan, David Wetherall, and Thomas Anderson. Measuring isp topologies with
rocketfuel. IEEE/ACM Transactions on networking, 12(1):2–16, 2004.

[50] Muhan Zhang, Zhicheng Cui, Shali Jiang, and Yixin Chen. Beyond link prediction: Predicting hyperlinks
in adjacency space. In AAAI, pages 4430–4437, 2018.

[51] Christopher Aicher, Abigail Z Jacobs, and Aaron Clauset. Learning latent block structure in weighted
networks. Journal of Complex Networks, 3(2):221–248, 2015.

[52] Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intelligent Systems and

Technology (TIST), 3(3):57, 2012.

[53] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. Journal of machine learning research, 9(Aug):1871–1874, 2008.

[54] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph kernels.
Journal of Machine Learning Research, 11(Apr):1201–1242, 2010.

[55] Mahito Sugiyama and Karsten Borgwardt. Halting in random walk kernels. In Advances in neural

information processing systems, pages 1639–1647, 2015.

[56] Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Proceedings

of the 26th International Conference on Machine Learning, pages 255–262. Omnipress, 2010.

[57] Nils Kriege and Petra Mutzel. Subgraph matching kernels for attributed graphs. In Proceedings of the 29th

International Conference on Machine Learning (ICML-12), pages 1015–1022, 2012.

[58] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Data Mining, Fifth

IEEE International Conference on, pages 8–pp. IEEE, 2005.

[59] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels:
efficient graph kernels from propagated information. Machine Learning, 102(2):209–245, 2016.

[60] Jure Leskovec and Andrej Krevl. {SNAP Datasets}:{Stanford} large network dataset collection. 2015.

[61] Reza Zafarani and Huan Liu. Social computing data repository at asu, 2009. URL http://socialcomputing.

asu. edu.

[62] Matt Mahoney. Large text compression benchmark, 2011.

[63] Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers.
Biogrid: a general repository for interaction datasets. Nucleic acids research, 34(suppl_1):D535–D539,
2006.

11

