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Abstract

Graph matching has received persistent attention over several decades, which can
be formulated as a quadratic assignment problem (QAP). We show that a large
family of functions, which we define as Separable Functions, can approximate
discrete graph matching in the continuous domain asymptotically by varying the
approximation controlling parameters. We also study the properties of global
optimality and devise convex/concave-preserving extensions to the widely used
Lawler’s QAP form. Our theoretical findings show the potential for deriving new
algorithms and techniques for graph matching. We deliver solvers based on two
specific instances of Separable Functions, and the state-of-the-art performance of
our method is verified on popular benchmarks.

1 Introduction

Given two graphs, graph matching algorithms (GM) seek to find node-to-node correspondences by
optimizing a pre-defined affinity score function. This problem falls into the category of quadratic
assignment problem (QAP) [1], and has wide applications from object categorization [2] to protein
alignment [3]. While a line of works using combinatorial heuristics [4, 5] attempt to solve graph
matching, relaxation of original problem into the continuous domain is mostly employed and solved
with different optimization techniques e.g. gradient [6] or multiplication [7, 8] based methods. The
dominance of continuous relaxation may be partly because it is easier to analyze the local behavior of
continuous functions, and one can often find a local optimum. In this paper, we focus on continuous
relaxation of graph matching.

Graph matching seeks the solution to the quadratic assignment problem maxX vec(X)>Avec(X),
where vec(X) ∈ {0, 1}n2

is the column-wise vectorized version of the binary (partial) assignment
matrix X ∈ {0, 1}n×n and the so-called affinity matrix A ∈ <n2×n2

in the real domain consists of
the affinity score measuring how one edge in one graph is similar to another from the other graph.
Traditionally, the common practice is relaxing vec(X) into the continuous real domain vec(X) ∈ <n2

[9, 7, 10].

In this paper, we show that a large family of functions, defined as Separable Functions, can asymptoti-
cally approximate the discrete matching problem by varying the approximation controlling parameters.
With this function family, there exist infinite modelings of graph matching problem, thereby providing
the feasibility of adapting different practical problems with different models. This provides a new
perspective of considering graph matching. We also give analysis on the conditions based on which
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these approximations have good properties. Novel solvers on instances of Separable Functions are
proposed based on the path-following and multiplicative techniques respectively.

Notations We use bold lower-case x and upper-case A to represent vector and matrix, respectively.
Function vec(·) transforms a matrix to its column-wise vectorized replica. Conversely, function
mat(·) transfers a vector back to its matrix form. Denote <+, S as non-negative real numbers and
symmetric matrices respectively. Function K = diag(k) transforms a vector k into a diagonal matrix
K such that Kij = ki if i = j, and Kij = 0 otherwise.

2 Related Work

Different from linear assignment [11], the quadratic assignment problem (QAP) in terms of graph
matching in the literature is often formulated in two forms: i) the Koopmans-Beckmann’s QAP [12]:
tr(X>AiXAj)+tr(A>p X) where X is the assignment matrix, Ai and Aj are the weighted adjacency
matrices, and Ap is the node-to-node similarity matrix. Methods based on this formula include
[13, 14, 15], to name a few; ii) the more general Lawler’s QAP [16] by vec(X)>Avec(X). Note
that the Koopmans-Beckmann’s QAP can always be represented as a special case of the Lawler’s by
setting A = Aj ⊗Ai, and many previous works [9, 10, 6, 17] adopt the Lawler’s form, which is also
the main focus of this paper for its generality. A recent survey [18] provides a more comprehensive
literature review.

Though there are a few (quasi-)discrete methods [5, 19, 20] that directly work in the binary domain,
the major line of research falls into the following tracks in the continuous domain. Our relaxation
techniques do not fall into any of these categories and opens up new possibility for new algorithms.

Spectral relaxation: The authors of the seminal work in [7] proposed to relax X to be of unit length
‖vec(X)‖22 = 1, and the resulting optimization problem can be efficiently solved by computing the
leading eigen-vector of the affinity matrix A. Better approximation has been made in [21] by adding
an affine constraint. In contrast to the above Lawler’s QAP based models, there are a few earlier
methods [13, 22] based on the Koopmans-Beckmann’s QAP, and the relxation is often fulfilled by
setting X>X = I, where I is the identify matrix. In general, spectral relaxation is efficient while not
tight, which hinders the matching accuracy.

Semi-definite programming relaxation: SDP has been a standard tool for combinatorial problem,
and it has been adopted to tackle the graph matching problem. In existing work, a variable Y subject
to Y = vec(X)vec(X)> is introduced. As a result, the raw problem is approximated by SDP which
relaxes the non-convex constraint on Y into a semi-definite one: Y � vec(X)vec(X)>. The final
matching X is then recovered by different heuristics such as winner-take-all [23] or randomization
[24]. However, the SDP solver is not very popular in graph matching, as the variable Y squares the
raw variable size, resulting in high complexity.

Doubly-stochastic relaxation: Based on the fact that doubly-stochastic matrix is the convex hull of
the permutation matrix, various methods have been proposed in this line to formulate the relaxed
problem into a non-convex quadratic programming problem for both Koopmans-Beckmann’s and
Lawler’s QAP. Linear programming is adopted in [25] to approximate the quadratic problem, followed
by more complex path following methods [14, 15] to approximate the relaxed quadratic problem –
all are based on the Koopmans-Beckmann’s QAP. For the more general Lawler’s QAP, the seminal
work termed graduated assignment [9] approximates the relaxed QAP via solving a series of linear
approximations via iterative Taylor expansions. A random walk perspective to the graph matching
problem is adopted in [10], whereby the method can also be seen as a weighting solution by [9] and
the multiplication method [7]. More recently factorized graph matching is devised in [17], which
also follows the doubly-stochastic relaxation on top of other relaxations on the objective function.

Finally we also briefly review recent advances on hyper and multiple graph matching. There are
studies addressing the more general hypergraph matching problem, whereby the third-order or higher
is considered in the objective and usually an affinity tensor is adopted. Many current hypergraph
matching methods approximate the third-order objective via iterative approximations. In each
iteration, often a Lawler’s QAP is involved [26, 27]. Moreover, the Lawler’s QAP model solvers can
also be used in matching a batch of graphs beyond two graphs. In [28], an alternating optimization
method was proposed, whereby in each iteration a Lawler’s QAP problem is derived and solved.
[29] further extends multi-graph matching problem to an online version. These connections further
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highlight the importance of the Lawler’s QAP for not only traditional graph matching, but also
hypergraph matching and multiple graph matching.

3 Generalizing the QAP for Graph Matching

We re-visit the graph matching problem in this section. We propose an equivalent model to the
discrete one over continuous domain [0, 1], provided the relaxation gap is 0. This gives rise to the
possibility to relax graph matching with much tighter ways. Mathematically, graph matching can be
formulated as the following quadratic assignment problem which is also called Lawler’s QAP1 [16]:

max
X

vec(X)>Avec(X)

s.t. X1 = 1,X>1 = 1,xia ∈ {0, 1}
(1)

where A ∈ <n
2×n2

+ is a non-negative affinity matrix, which encodes node similarities on diagonal
elements and edge similarities on the rest. Note xia denotes the element of X indexed by row i and
column a indicating the matching status of node i to node a from the other graph. If we break down
problem (1) into element-wise product, it becomes:

max
x

∑
i,j,a,b

Aij:abxiaxjb

s.t. Hx = 1,x ∈ {0, 1}n
2

(2)

where Aij:ab corresponds to the edge similarity between edge (i, j) ∈ G1 and (a, b) ∈ G2. Here
H ∈ {0, 1}2n×n2

is a selection matrix over the elements of x sufficing assignment constraints
according to (1).

In particular, we relax x into continuous domain and let fprod(xia,xjb) = xiaxjb:

max
x

∑
i,j,a,b

Aij:abfprod(xia,xjb)

s.t. Hx = 1,x ∈ [0, 1]n
2

(3)

We generalize problem (3) by replacing fprod with fδ:

max
x

∑
i,j,a,b

Aij:abfδ(xia,xjb)

s.t. Hx = 1,x ∈ [0, 1]n
2

(4)

where fδ is a 2D quasi-delta function in the continuous domain (fδ(x, y) = 1 if x = 1 and y = 1,
and fδ = 0 otherwise). We have the following theorem that establishes the connection between (2)
and (4):

Theorem 1 The optimal objective p∗ to problem (2) is equal to the optimal objective p∗δ to problem
(4).

Remark Based on Theorem 1, one can devise a sampling procedure to find the optimal solution to
problem (2) from the solution to problem (4): Given optimal x∗δ to problem (4), if all the elements
are in the set {0, 1}, then x∗δ is automatically optimal to problem (2). If not, we first remove all 1
elements and corresponding columns and rows, yielding a subvector (submatrix) x† with all elements
in range [0, 1). Then any sampling subject to one-to-one constraint on x†, together with the removed
discrete values, forms the optimal solution to problem (2).

For the time being, a discrete assignment problem (2) is relaxed into (4) with continuous feasible
domain. However, function fδ is not continuous as there is a jump at value (1, 1), ending up with
much difficulty to solve (recall (4) is equivalent to (2)). In the next section, we will show some
approximate techniques to tackle problem (4).

1Here the number of nodes in two graphs are assumed the same. In case m 6= n one can add dummy nodes
as a standard technique as in literature [10, 17].
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(a) hLap (b) hGauss (c) hPoly

Figure 1: Three examples of approximations (Laplacian, Gaussian, Polynomial) to function fδ with
varying θ. The closer for θ → 0 (from red to green), the better approximation to fδ .

4 Separable Functions

4.1 Separable Approximation Function Family

It is important to find an appropriate approximate function for fδ , otherwise it may lead to intractable
models to solve. To avoid high computational cost, we narrow our focus on a specific family of
functions, called Separable Functions.

Definition 1 A function fθ(x, y) is called Separable Function (SF)2 if it satisfies the following
properties:

1. fθ(x, y) = hθ(x)× hθ(y) where hθ is defined on [0, 1].

2. hθ(0) = 0 and hθ(1) = 1. hθ ∈ C1.

3. hθ is non-decreasing and limθ→0 hθ(x)− hδ(x) = 0 for any x ∈ [0, 1], where hδ is defined on
[0, 1], hδ(x) = 1 if x = 1 and hδ(x) = 0 otherwise.

We also call such a function hθ univariate SF, where θ is a controlling parameter. Being seemingly
a simple formulation, SF has three fine properties for computation.

Firstly, SF shows similar behavior as a probabilistic distribution on two independent variables. That
is, if two nodes are impossible to match, then any pair of edges containing the two nodes will never
match neither. Mathematically, assuming the matching score of node pair 〈i, a〉 is hθ(xia), we have
fθ(xia,xjb) = 0 for any 〈j, b〉 if hθ(xia) = 0.

Secondly, the definition of SF eases gradient computing. For a given SF fθ(x, y) = hθ(x)hθ(y), the
approximate version of problem (4) can be expressed in matrix form as:

max
x

h>θ Ahθ

s.t. Hx = 1,x ∈ [0, 1]n
2

(5)

where hθ = [hθ(x1), ..., hθ(xn2)]>. The gradient of objective (5) with respect to x is∇x = 2GAh,
where G is a diagonal matrix with the ith element ∂hθ(xi)/∂xi.

The third advantage of SF is that we can construct new approximation functions via reweighted
summation and multiplication of existing ones, e.g. if h1 and h2 are two univariate SFs, it can be
trivially verified that αh1 + (1− α)h2 for 0 ≤ α ≤ 1 and h1 × h2 are also univariate SFs.

If we keep the constraints on x intact as in problem (5), and let p∗θ = maxx hθ(x)
>Ahθ(x), where

hθ(x) = [hθ(x1), ..., hθ(xn)]
>, we have the following theorem:

Theorem 2 limθ→0 p
∗
θ = p∗δ

See supplementary material for proof details. The above theorem guarantees that, if we approximate
the quasi-delta function by letting θ → 0, problem (4) can also be approximated asymptotically. As
hθ ∈ C1, gradient-base algorithms can be applied to such approximations.

2In fact separable function has its traditional meanings in mathematics, we re-define it in the graph matching
context.
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4.2 Approximations to Function fδ

Though we have proved that using fδ can derive an equivalent problem i.e. (4), finding its optimal
solution is still notoriously difficult. Instead of solving (4) directly, based on the analysis in Sec.
4.1, we introduce approximation functions to fδ. To simplify the expression, we only present the
univariate SF h, and the SF f can be obtained using definition (1). It is trivial to show that the SFs
derived from the following functions approximate fδ when θ → 0+ under the properties in definition
(1):

hLap(x) =
1

m

{
exp

(
x− 1

θ

)
− d
}

(6a)

hGauss(x) =
1

m

{
exp

(
− (x− 1)2

θ

)
− d
}

(6b)

hPoly(x) = x
1
θ (6c)

where d = exp(− 1
θ ) and m = 1 − d. The usage of m and d is to normalize the SFs to satisfy the

second property. Figure 1 shows some examples of such functions with varying θ values. Note that
traditional quadratic graph matching model in fact is a special case of our model, which seeks to
optimize a model where the SF is derived from hPoly and θ = 1. Specifically, for the univariate SFs
(6a) and (6c), we also have the following proposition.

Proposition 1 For univariate SF hLap, hPoly, suppose p∗1 and p∗2 are the optimal objectives for (5)
with θ1 and θ2, respectively. Then we have p∗1 ≥ p∗2 if 0 < θ2 < θ1.

Together with Theorem 2, this claim means that, given univariate SF hLap or hPoly, the optimal
objective of (5) will converge as θ → 0+ monotonically.

4.3 Convexity/Concavity Analysis

Section 4.1 and 4.2 show that original problem (4) can be asymptotically approximated using SFs as
θ → 0. In this section, we analyze the properties of convexity/concavity under such approximations.
We believe this effort is worthwhile as one can employ techniques e.g. self-amplification [30], to
convert non-convex/non-concave problems into convex/concave ones with the beneficial properties
of convexity/concavity. We first show the equivalence of problem (3) and (5) under global convexity.

Theorem 3 Assume that affinity A is positive definite. If the univariate SF hθ(x) ≤ x on [0, 1], then
the global maxima of problem (2), which is discrete, must also be the global maxima of problem (5).

The above theorem builds up a link from problem (2) to problem (5) when A is positive definite. In
this case, we first conclude that the optimum to problem (3) is discrete, hence also optimal to (2).
Then as long as hθ(x) < x on [0, 1] and hθ satisfies the second property in Definition 1, this solution
is also optimal to problem (5). In this case the optimal objective gap of these three problems becomes
0. We give the following proposition showing under mild conditions, the generalized problem (5) is
convexity/concavity-preserving.

Proposition 2 Assume affinity maxtrix A is positive/negative semi-definite, then as long as the
univariate SF hθ is convex, the objective of (5) is convex/concave.

Any matrix A can be transformed to positive definite by adding up a diagonal matrix λI. The lower
bound of λ is λ ≥ |λ†|, where λ† is the smallest eigenvalue of A below 0. We define A† = A+ λI.

Proposition 3 Assume affinity matrix A is positive definite and univariate SF hθ is convex. The
optimal value to the following problem is:

Econv = max
x

h>θ A
†hθ (7)

Then there exists a permutation x∗, s.t. Econv−E(x∗) ≤ nλ where E(x∗) is the objective value w.r.t.
problem (5).
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5 Two Optimization Strategies for Generalized GM

Algorithm 1 Path following for GGM
Input: A, hθ, θ0, 0 < α < 1, initial x0, k;
Output: x
x← x0, θ ← θ0
repeat

make problem according to (5) with θ
repeat

compute V using formula (8)
x = x+ εvec(V)

until Converge
θ ← αθ

until θ < k

Algorithm 2 Multiplicative strategy for GGM
Input: A, hθ, initial x0; Output: x
x← x0

repeat
h← hθ(x)
h← Ah
x← h−1θ (h)

until Converge

5.1 Path Following Strategy

It is observed that solving the problem when θ is too close to 0 is highly non-convex, suggesting
the existence of many local optima. Instead, moderate smoothness is desired when we initiate the
optimization. This naturally leads to the path following strategy. Such optimization is involved
in [9, 17, 31]. In our implementation, we start by obtaining a local optimum x∗1 from a relatively
tractable problem Pθ1 , then we shrink the value of θ1 by letting θ2 = αθ1 where 0 < α < 1. Let the
starting point for next iteration be x∗1, we solve the updated problem Pθ2 . The iteration continues until
convergence condition is satisfied. To verify the convergence, we calculate the energy gap between
two consecutive iterations. Formally, for current x(t) at iteration t, we calculate the corresponding
energy E(t) = x(t)>Ax(t). The energy at previous iteration t − 1 is analogously calculated as
E(t−1) = x(t−1)>Ax(t−1). Then if

∣∣E(t) − E(t−1)∣∣ < η, where η is a small positive value, we
identify the convergence of the iteration. If there is no such t, the algorithm stops when reaching the
pre-defined maximal iteration number. In all the following experiments, we let η = 10−8.

Note the problem Pθ is a general objective with affine constraints. For any gradient-based strategy,
projection is necessary to mapping the current solution back to the feasible set. As discussed in [8],
projection in variable domain may lead to weak optima. Instead, we use Iterative Bregmann Gradient
Projection (IBGP), which is performed in the gradient domain and the convergence is guaranteed
[32]. Given current gradient U = mat(∇x), previous matching X and step length ε, IBGP performs
the following calculations iteratively to obtain V until convergence:

V = U− 1

n
U11T − 1

n
11>U+

2

n2
11>U11> (8a)

Vij = −Xij/ε if Vij < −Xij/ε (8b)

Vij = (1−Xij)/ε if Vij > (1−Xij)/ε (8c)

where V is the update direction within the feasible set. Note the iterative procedure in the above
equation is a projection. As the constraint set is convex (affinity set), the projection convergence is
ensured. Thus in each iteration of update, the algorithm seeks a direction V with ascending guarantee
and proceeds a fixed length ε. This procedure iterates until convergence or maximal step number.
The path following method is summarized in Algorithm 1.

5.2 Multiplication Strategy

Multiplicative strategy on optimizing quadratic objective proved to be convergent under the assump-
tion that A is positive semi-definite [33]. In this strategy, each step amounts to a multiplication
x(t+1) = Ax(t) and the objective score over the solution path is non-decreasing. There are works
[10, 9, 6] falling into this category. However, in general affinity A is barely positive semi-definite.
While some methods handle this circumstance by adding reweighted identity matrix to A [34],
others simply neglect the non-decreasing constraint including some popular algorithms [10, 9]. The
empirical success of such methods suggests pursuing objective ascending and enhancing matching
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accuracy sometimes are paradox. Moreover, the recent study [35] further shows due to noise and the
parametric modeling limitation of the affinity function, high accuracy may even corresponds to lower
affinity score. Inspired by these observations, we devise a simple yet effective multiplicative strategy
by omitting the non-decreasing check. The procedure is shown in Algorithm 2. In this strategy, the
update rule involves calculating inverse function of hθ. While it is found the multiplicative method
converges much faster and hence the overall run time is less compared with the path following
method.

6 Experiments

Three popular benchmarks are used including Random Graph Matching [10], CMU house sequence
[36] and Caltech-101/MSRC object matching [10]. accuracy, score and ratio are evaluated, where ac-
curacy measures the portion of correctly matched nodes with respect to all nodes, score represents the
value of the objective function and ratio emphasizes the ratio between current objective value and the
maximal one. The algorithms for comparison include Spectral Matching (SM) [7], Integer Projected
Fixed Point (IPFP) [19], Graduated Assignment (GAGM) [9], Reweighted Random Walk (RRWM)
[10], Soft-restricted Graduated Assignment (SRGA) [6], Factorized Graph Matching (FGM) [17]
and Branching Path Following Matching (BPM) [31]. We term our algorithm Generalized Graph
Matching (GGM) with a subscript indicating the corresponding Separable Function and optimization
strategy. Namely, GGMxy represents the method with Separable Function x ∈ {l : hLap; p : hPoly}
and optimizing strategy y ∈ {p : Path following;m : Multiplication}. In all the experiments, the
algorithms with any updating rules are initialized with a uniform matching. For path following
strategy of GGM , we set θ0 = 2, α = 0.5, k = 0.2.
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Figure 2: Performance on random graphs. Note BPM [31]’s runtime is
significantly more expensive than other methods (empirically an order
higher than ours using the public source code) as it simultaneously seeks
multiple paths for the best score (though accuracy is similar to ours). In
contrast, our method focus on one path no matter the path following or
multiplicative strategy is used.
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vergence speed vs itera-
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by frame gap.

Random Graph Matching This test is performed following the protocol in [10]. For each trial,
source graph GS and destination graph GD with nin inlier nodes are generated, consisting of vector
attributes aSij and aDij for both nodes and edges (note aii is a node attribute and aij is an edge attribute
when i 6= j.). In the initial setting, GD is the replica of GS . Three types of sub-experiments are
conducted with varying graph deformation σ, number of outliers nout and edge density ρ. To deform
a graph, we add an independent Gaussian noise ε ∼ N (0, σ) to attribute aDij such that aDij = aSij + ε.
Thus the resulting affinity is calculated by Aij:ab = exp(−|aSij − aDab|2/σ2

s). The parameter σs is
empirically set to be 0.15. In outlier test, we generate the same number of outlier nodes for both
graph. In edge density test, we randomly sample ρ portion of corresponding edges from two fully
connected graphs. Each type of sub-experiment is independently carried out 500 times, while average
accuracy and score are calculated.

Results are shown in Fig 2. In the deformation and the edge density tests, GGMpp and GGMlp

achieve competitive performance compared to state-of-the-art algorithms. Especially when there
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(a) RRWM: 13/20

(b) RRWM: 4/20

(c) FGM: 14/20

(d) FGM: 11/20

(e) GGMlp: 16/20

(f) GGMlp: 18/20

Figure 4: Top and bottom row shows examples on CMU house sequence with gap 20 and 80
respectively, by setting (nS = 30, nD = 20).

is combination of severe deformation and edge density is low, GGMpp and GGMlp outperform the
selected counterparts. On the other hand, GGMpm and GGMlm reach significant performance close
to state-of-the-art e.g. BPM [31]. Though multiplicative strategies cannot guarantee ascending
objective in each iteration, GGMpm and GGMlm are still effective. This supports the discussion of
the paradox between matching accuracy and objective score in Section 5.2. We only show results of
GGMlp in the following experiments, as we see no notable performance gap compared to the other
settings.

To examine the algorithm sensitivity to the parameters, we also conduct an extra Random Graph
Matching experiment with SFs SFs hPoly and hLap on Algorithm 1. In this test, we let deformation
noise 0.15 and edge density 0.8, 20 inliers and 5 outliers. Test is carried out independently for 20
times and the average accuracy is reported. For both the SFs, we observe that k = 0.2 is sufficient
to produce satisfying matching accuracy. Thus we conduct the test by varying the values of θ0 and
α. The results are demonstrated in Table 1. As larger θ0 and α indicate more iterations, and θ0 < 2
and α < 0.5 result in decreasing behavior, we employ the setting θ0 = 2 and α = 0.5 throughout all
experiments.

Table 1: Sensitivity test on hPoly and hLap

hPoly
α

0.7 0.6 0.5 0.4 0.3

θ0
3 0.842 0.839 0.841 0.721 0.610
2 0.905 0.905 0.904 0.848 0.725
1 0.910 0.905 0.908 0.851 0.717

0.5 0.823 0.814 0.770 0.652 0.422

hLap
α

0.7 0.6 0.5 0.4 0.3

θ0
4 0.912 0.909 0.910 0.872 0.685
3 0.911 0.907 0.903 0.836 0.672
2 0.904 0.904 0.906 0.811 0.567
1 0.853 0.844 0.810 0.728 0.472

CMU House Sequence We perform feature point matching on widely used CMU house sequence
dataset following the settings in [36, 10]. The dataset consists of 111 house images with gradually
changing view points. There are 30 landmark points in each frame. Following the protocol in
[10, 31], matching test is conducted on totally 560 pairs of images, spaced by varying frame gaps
(10, 20, ..., 100). We use 2 settings of nodes (nS , nD) = (30, 30) and (20, 30). In case nS < 30,

Table 2: Performance on natural images from Caltech-101 and MSRC dataset.

Method GAGM IPFP SRGA RRWM SM FGM BPM GGMlp
accuracy (%) 73.66 75.77 72.86 72.95 65.78 76.35 75.14 76.69

score ratio 0.933 0.942 0.940 0.946 0.735 0.969 1 0.972
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(a) car pair

(b) face pair

(c) RRWM: 27/36

(d) RRWM: 32/40

(e) FGM: 29/36

(f) FGM: 33/40

(g) GGMlp: 30/36

(h) GGMlp: 35/40
Figure 5: Examples of matchings on selected Caltech-101 and MSRC dataset.

nS nodes are randomly sampled from the source graph. The affinity is conducted by Aij:ab =
exp(−|aSij − aDab|2/σ2

s), where aSij measures the Euclidean distance between point i and j, and
σ2
s = 2500. The edge density is set by ρ = 1. One can see when there is no outlier, all methods

except for IPFP and SM achieve perfect matching on any gap setting, and we only show the results
with outliers. Figure 4 and Figure 3 depict the matching samples and performance curve, respectively.
We also show typical converging behavior of GGMlp and GGMlm on the upper of Figure 3. We note
our path following strategy (Alg. 1) converges slower than multiplicative one (Alg. 2) and they
obtain similar final accuracy. One can see when there exist outlier points, GAGM and RRWM suffer
notable degraded performance. Our algorithm, on the other hand, achieves competitive performance
to state-of-the-arts and behaves stably even under severe degradations.

Natural Image Matching This is a challenging dataset as it includes natural images in arbitrary
backgrounds. In line with the protocol in [10], 30 pairs of images are included in this test collected
from Caltech-101 [37] and MSRC3. In each pair of images, MSER detector [38] and SIFT descriptor
[39] are used to obtain the key points and the corresponding node feature. Mutual projection error
function [40] is further adopted to calculate the edge affinity. The ground-truth are manually labeled.
The results are shown in Table 2 and matching examples are shown in Fig. 5. Our method outperforms
selected algorithms w.r.t. accuracy regardless of objective score. This also suggests the paradox
between accuracy and score under complex affinity modeling as discussed in [35].

7 Conclusion

By using Separable Functions, we present a family of continuous approximations to the vanilla QAP
formulation widely used in graph matching. We explore the relation of such approximations to the
original discrete matching problem, and show convergence properties under mild conditions. Based
on the theoretical anslysis, we propose a novel solver GGM, which achieves remarkable performance
in both synthetic and real-world image tests. This gives rise to the possibility of solving graph
matching with many alternative approximations with different solution paths.
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