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Abstract

We use differential equations based approaches to provide some physics insights
into analyzing the dynamics of popular optimization algorithms in machine learning.
In particular, we study gradient descent, proximal gradient descent, coordinate
gradient descent, proximal coordinate gradient, and Newton’s methods as well
as their Nesterov’s accelerated variants in a unified framework motivated by a
natural connection of optimization algorithms to physical systems. Our analysis is
applicable to more general algorithms and optimization problems beyond convexity
and strong convexity, e.g. Polyak-Łojasiewicz and error bound conditions (possibly
nonconvex).

1 Introduction

Many machine learning problems can be cast into an optimization problem of the following form:
x∗ = argmin

x∈X
f(x), (1.1)

where X ⊆ Rd and f : X → R is a continuously differentiable function. For simplicity, we assume
that f is convex or approximately convex (more on this later). Perhaps, the earliest algorithm for
solving (1.1) is the vanilla gradient descent (VGD) algorithm, which dates back to Euler and Lagrange.
VGD is simple, intuitive, and easy to implement in practice. For large-scale problems, it is usually
more scalable than more sophisticated algorithms (e.g. Newton).

Existing state-of-the-art analysis shows that VGD achieves an O(1/k) convergence rate for smooth
convex functions and a linear convergence rate for strongly convex functions, where k is the number
of iterations [11]. Recently, a class of Nesterov’s accelerated gradient (NAG) algorithms have gained
popularity in statistical signal processing and machine learning communities. These algorithms com-
bine the vanilla gradient descent algorithm with an additional momentum term at each iteration. Such
a modification, though simple, has a profound impact: the NAG algorithms attain faster convergence
than VGD. Specifically, NAG achievesO(1/k2) convergence for smooth convex functions, and linear
convergence with a better constant term for strongly convex functions [11].

Another closely related class of algorithms is randomized coordinate gradient descent (RCGD)
algorithms. These algorithms conduct a gradient descent-type step in each iteration, but only with
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respect to a single coordinate. RCGD has similar convergence rates to VGD, but has a smaller
overall computational complexity, since its computational cost per iteration of RCGD is much smaller
than VGD [10, 7]. More recently, [5, 2] applied Nesterov’s acceleration to RCGD, and proposed
accelerated randomized coordinate gradient (ARCG) algorithms. Accordingly, they established
similar accelerated convergence rates for ARCG.

Another line of research focuses on relaxing the convexity and strong convexity conditions for alterna-
tive regularity conditions, including restricted secant inequality, error bound, Polyak-Łojasiewicz, and
quadratic growth conditions. These conditions have been shown to hold for many optimization prob-
lems in machine learning, and faster convergence rates have been established (e.g. [8, 6, 9, 20, 3, 4]).

Although various theoretical results have been established, the algorithmic proof of convergence and
regularity conditions in these analyses rely heavily on algebraic tricks that are sometimes arguably
mysterious to understand. To this end, a popular recent trend in the analysis of optimization algorithms
has been to study gradient descent as a discretization of gradient flow; these approaches often provide
a clear interpretation for the continuous approximation of the algorithmic systems [16, 17]. In
[16], authors propose a framework for studying discrete algorithmic systems under the limit of
infinitesimal time step. They show that Nesterov’s accelerated gradient (NAG) algorithm can be
described by an ordinary differential equation (ODE) under the limit that time step tends to zero. In
[17], authors study a more general family of ODE’s that essentially correspond to accelerated gradient
algorithms. All these analyses, however, lack a natural interpretation in terms of physical systems
behind the optimization algorithms. Therefore, they do not clearly explain why the momentum leads
to acceleration. Meanwhile, these analyses only consider general convex conditions and gradient
descent-type algorithms, and are NOT applicable to either the aforementioned relaxed conditions or
coordinate-gradient-type algorithms (due to the randomized coordinate selection).

Our Contribution (I): We provide novel physics-based insights into the differential equation ap-
proaches for optimization. In particular, we connect the optimization algorithms to natural physical
systems through differential equations. This allows us to establish a unified theory for understanding
optimization algorithms. Specifically, we consider the VGD, NAG, RCGD, and ARCG algorithms.
All of these algorithms are associated with damped oscillator systems with different particle mass
and damping coefficients. For example, VGD corresponds to a massless particle system while NAG
corresponds to a massive particle system. A damped oscillator system has a natural dissipation of
its mechanical energy. The decay rate of the mechanical energy in the system is connected to the
convergence rate of the algorithm. Our results match the convergence rates of all algorithms consid-
ered here to those known in existing literature. We show that for a massless system, the convergence
rate only depends on the gradient (force field) and smoothness of the function, whereas a massive
particle system has an energy decay rate proportional to the ratio between the mass and damping
coefficient. We further show that optimal algorithms such as NAG correspond to an oscillator system
near critical damping. Such a phenomenon is known in the physical literature that the critically
damped system undergoes the fastest energy dissipation. We believe that this view can potentially
help us design novel optimization algorithms in a more intuitive manner. As pointed out by the
anonymous reviewers, some of the intuitions we provide are also presented in [13]; however, we give
a more detailed analysis in this paper.
Our Contribution (II): We provide new analysis for more general optimization problems beyond
general convexity and strong convexity, as well as more general algorithms. Specifically, we provide
several concrete examples: (1) VGD achieves linear convergence under the Polyak-Łojasiewicz
(PL) condition (possibly nonconvex), which matches the state-of-art result in [4]; (2) NAG achieves
accelerated linear convergence (with a better constant term) under both general convex and quadratic
growth conditions, which matches the state-of-art result in [19]; (3) Coordinate-gradient-type algo-
rithms share the same ODE approximation with gradient-type algorithms, and our analysis involves
a more refined infinitesimal analysis; (4) Newton’s algorithm achieves linear convergence under
the strongly convex and self-concordance conditions. See Table 1 for a summary. Due to space
limitations, we present the extension to the nonsmooth composite optimization problem in Appendix.
Table 1: Our contribution compared with [16, 17].

 
 

[15]/[16]/Ours VGD NAG RCGD ARCG Newton 
General Convex --/--/R R/R/R --/--/R --/--/R --/R/-- 
Strongly Convex --/--/R --/--/R --/--/R --/--/R --/--/R 
Proximal Variants --/--/R R/--/R --/--/R --/--/R --/--/R 
PL Condition --/--/R --/--/R --/--/R --/--/R --/--/-- 
Physical Systems --/--/R --/--/R --/--/R --/--/R --/--/R 

 
 

Recently, an independent work considered
a framework similar to ours for analyzing
the first-order optimization algorithms [18];
while the focus there is on bridging the gap
between discrete algorithmic analysis and
continuous approximation, we focus on un-
derstanding the physical systems behind the

optimization algorithms. Both perspectives are essential and complementary to each other.
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Before we proceed, we first introduce assumptions on the objective f .
Assumption 1.1 (L-smooth). There exists a constant L > 0 such that for any x, y ∈ Rd, we have
‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.
Assumption 1.2 (µ-strongly convex). There exists a constant µ such that for any x, y ∈ Rd, we
have f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ

2 ‖x− y‖
2.

Assumption 1.3 . (Lmax-coordinate-smooth) There exists a constant Lmax such that for any x, y ∈
Rd, we have |∇jf(x)−∇jf(x\j , yj)| ≤ Lmax(xj − yj)2 for all j = 1, ..., d.

The Lmax-coordinate-smooth condition has been shown to be satisfied by many machine learning
problems such as Ridge Regression and Logistic Regression. For convenience, we define κ =
L/µ and κmax = Lmax/µ. Note that we also have Lmax ≤ L ≤ dLmax and κmax ≤ κ ≤ dκmax.

2 From Optimization Algorithms to ODE

We develop a unified representation for the continuous approximations of the aforementioned opti-
mization algorithms. Our analysis is inspired by [16], where the NAG algorithm for general convex
function is approximated by an ordinary differential equation under the limit of infinitesimal time step.
We start with VGD and NAG, and later show that RCGD and ARCG can also be approximated by
the same ODE. For self-containedness, we present a brief review for popular optimization algorithms
in Appendix A (VGD, NAG, RCGD, ARCG, and Newton).

2.1 A Unified Framework for Continuous Approximation Analysis

By considering an infinitesimal step size, we rewrite VGD and NAG in the following generic form:
x(k) = y(k−1) − η∇f(y(k−1)) and y(k) = x(k) + α(x(k) − x(k−1)). (2.1)

For VGD, α = 0; For NAG, α =

√
1/(µη)−1√
1/(µη)+1

when f is strongly convex, and α = k−1
k+2 when f is

general convex. We then rewrite (2.1) as(
x(k+1) − x(k)

)
− α

(
x(k) − x(k−1)

)
+ η∇f

(
x(k) + α(x(k) − x(k−1))

)
= 0. (2.2)

When considering the continuous-time limit of the above equation, it is not immediately clear how
the continuous-time is related to the step size k. We thus let h denote the time scaling factor and
study the possible choices of h later on. With this, we define a continuous time variable

t = kh with X(t) = x(dt/he) = x(k), (2.3)
where k is the iteration index, and X(t) from t = 0 to t = ∞ is a trajectory characterizing the
dynamics of the algorithm. Throughout the paper, we may omit (t) if it is clear from the context.

Note that our definition in (2.3) is very different from [16], where t is defined as t = k
√
η, i.e.,

fixing h =
√
η. There are several advantages by using our new definition: (1) The new definition

leads to a unified analysis for both VGD and NAG. Specifically, if we follow the same notion as
[16], we need to redefine t = kη for VGD, which is different from t = k

√
η for NAG; (2) The new

definition is more flexible, and leads to a unified analysis for both gradient-type (VGD and NAG)
and coordinate-gradient-type algorithms (RCGD and ARCG), regardless of their different step sizes,
e.g η = 1/L for VGD and NAG, and η = 1/Lmax for RCGD and ARCG; (3) The new definition
is equivalent to [16] only when h =

√
η. We will show later that, however, h � √η is a natural

requirement of a massive particle system rather than an artificial choice of h.

We then proceed to derive the differential equation for (2.2). By Taylor expansion(
x(k+1) − x(k)

)
= Ẋ(t)h+

1

2
Ẍ(t)h2 + o(h),(

x(k) − x(k−1)
)

= Ẋ(t)h− 1

2
Ẍ(t)h2 + o(h),

and η∇f
[
x(k) + α

(
x(k) − x(k−1)

)]
= η∇f(X(t)) +O(ηh).

where Ẋ(t) = dX(t)
dt and Ẍ(t) = d2X

dt2 , we can rewrite (2.2) as
(1 + α)h2

2η
Ẍ(t) +

(1− α)h

η
Ẋ(t) +∇f(X(t)) +O(h) = 0. (2.4)
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Taking the limit of h→ 0, we rewrite (2.4) in a more convenient form,
mẌ(t) + cẊ(t) +∇f(X(t)) = 0. (2.5)

Here (2.5) describes exactly a damped oscillator system in d dimensions with

m := 1+α
2

h2

η as the particle mass,
c := (1−α)h

η as the damping coefficient,
and f(x) as the potential field.

Let us now consider how to choose h for different settings. The basic principle is that both m and
c are finite under the limit h, η → 0. In other words, the physical system is valid. Taking VGD
as an example, for which we have α = 0. In this case, the only valid setting is h = Θ(η), under
which, m → 0 and c → c0 for some constant c0. We call such a particle system massless. For
NAG, it can also be verified that only h = Θ(

√
η) results in a valid physical system and it is massive

(0 < m <∞, 0 ≤ c <∞). Therefore, we provide a unified framework of choosing the correct time
scaling factor h.

2.2 A Physical System: Damped Harmonic Oscillator

In classic mechanics, the harmonic oscillator is one of the first mechanic systems, which admit an
exact solution. This system consists of a massive particle and restoring force. A typical example is a
massive particle connecting to a massless spring.

The spring always tends to stay at the equilibrium position. When it is stretched or compressed, there
will be a force acting on the object that stretches or compresses it. The force is always pointing
toward the equilibrium position. The energy stored in the spring is

V (X) :=
1

2
KX2,

where X denotes the displacement of the spring, and K is the Hooke’s constant of the spring. Here
V (x) is called the potential energy in existing literature on physics.

m A

F1 = kx1

m B

x1

B : Equilibrium position m C

x2

F2 = kx2

m A

m B

m C

Damping coefficient: c

Figure 1: An illustration of
the harmonic oscillators: A
massive particle connects to
a massless spring. (Top) Un-
damped harmonic oscillator;
(Bottom) Damped harmonic
oscillator.

When one end of spring is attached to a fixed point, and the other
end is attached to a freely moving particle with mass m, we obtain a
harmonic oscillator, as illustrated in Figure 1. If there is no friction
on the particle, by Newton’s law, we write the differential equation
to describe the system:

mẌ +KX = 0

where Ẍ := d2X/dt2 is the acceleration of the particle. If we
compress the spring and release it at point x0, the system will start
oscillating, i.e., at time t, the position of the particle is X(t) =

x0 cos(ωt), where ω =
√
K/m is the oscillating frequency.

Such a system has two physical properties: (1) The total energy
E(t) := V (X(t)) +K(X(t)) = V (x0)

is always a constant, where K(X) := 1
2mẊ

2 is the kinetic energy
of the system. This is also called energy conservation in physics; (2)
The system never stops.
The harmonic oscillator is closely related to optimization algorithms.
As we will show later, all our aforementioned optimization algorithms
simply simulate a system, where a particle is falling inside a given
potential. From a perspective of optimization, the equilibrium is
essentially the minimizer of the quadratic potential function V (x) =
1
2Kx

2. The desired property of the system is to stop the particle at
the minimizer. However, a simple harmonic oscillator would not be
sufficient and does not correspond to a convergent algorithm, since
the system never stops: the particle at the equilibrium has the largest
kinetic energy, and the inertia of the massive particle would drive it
away from the equilibrium.

One natural way to stop the particle at the equilibrium is adding damping to the system, which
dissipates the mechanic energy, just like the real-world mechanics. A simple damping is a force
proportional to the negative velocity of the particle (e.g. submerge the system in some viscous fluid)
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defined as
Ff = −cẊ,

where c is the viscous damping coefficient. Suppose the potential energy of the system is f(x), then
the differential equation of the system is,

mẌ + cẊ +∇f(X) = 0. (2.6)
For the quadratic potential, i.e., f(x) = K

2 ‖x− x
∗‖2, the energy exhibits exponential decay, i.e.,

E(t) ∝ exp(−ct/(2m))

for under damped or nearly critical damped system (e.g. c2 . 4mK).

For an over damped system (i.e. c2 > 4mK), the energy decay is

E(t) ∝ exp
(
− 1

2

[ c
m
−
√

c2

m2
− 4K

m

]
t
)
.

For extremely over damping cases, i.e., c2 � 4mK, we have c
m −

√
c2

m2 − 4K
m →

2K
c . This decay

does not depend on the particle mass. The system exhibits a behavior as if the particle has no mass.
In the language of optimization, the corresponding algorithm has linear convergence. Note that the
convergence rate does only depend on the ratio c/m and does not depend on K when the system is
under damped or critically damped. The fastest convergence rate is obtained, when the system is
critically damped, c2 = 4mK.

2.3 Sufficient Conditions for Convergence

For notational simplicity, we assume that x∗ = 0 is a global minimum of f with f(x∗) = 0. The
potential energy of the particle system is simply defined as V (t) := V (X(t)) := f(X(t)). If an
algorithm converges to optimal, a sufficient condition is that the corresponding potential energy
V decreases over time. The decreasing rate determines the convergence rate of the corresponding
algorithm.

Theorem 2.1. Let γ(t) > 0 be a nondecreasing function of t and Γ(t) ≥ 0 be a nonnegative function.
Suppose that γ(t) and Γ(t) satisfy

d(γ(t)(V (t) + Γ(t)))

dt
≤ 0 and lim

t→0+
γ(t)(V (t) + Γ(t))) <∞.

Then the convergence rate of the algorithm is characterized by 1
γ(t) .

Proof. By d(γ(t)(V (t)+Γ(t)))
dt ≤ 0, we have

γ(t)(V (t) + Γ(t)) ≤ γ(0+)(f(X(0+)) + Γ(0+)).

This further implies f(X) ≤ V (t) + Γ(t) ≤ γ(0+)(f(X(0+))+Γ(0+))
γ(t) .

In words, γ(t)[V (t) + Γ(t)] serves as a Lyapunov function of system. We say that an algorithm is
(1/γ)-convergent, if the potential energy decay rate is O(1/γ). For example, γ(t) = eat corresponds
to linear convergence, and γ = at corresponds to sublinear convergence, where a is a constant and
independent of t. In the following section, we apply Theorem 2.1 to different problems by choosing
different γ’s and Γ’s.

3 Convergence Rate in Continuous Time

We derive the convergence rates of different algorithms for different families of objective functions.
Given our proposed framework, we only need to find γ and Γ to characterize the energy decay.

3.1 Convergence Analysis of VGD

We study the convergence of VGD for two classes of functions: (1) General convex function — [11]
has shown that VGD achieves O(L/k) convergence for general convex functions; (2) A class of
functions satisfying the Polyak-Łojasiewicz (PŁ) condition, which is defined as follows [14, 4].
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Assumption 3.1 . We say that f satisfies the µ-PŁ condition, if there exists a constant µ such that
for any x ∈ Rd, we have 0 < f(x)

‖∇f(x)‖2 ≤
1

2µ .

[4] has shown that the PŁ condition is the weakest condition among the following conditions: strong
convexity (SC), essential strong convexity (ESC), weak strong convexity (WSC), restricted secant
inequality (RSI) and error bound (EB). Thus, the convergence analysis for the PŁ condition naturally
extends to all the above conditions. Please refer to [4] for more detailed definitions and analyses as
well as various examples satisfying such a condition in machine learning.

3.1.1 Sublinear Convergence for General Convex Function

By choosing Γ(t) = c‖X‖2
2t and γ(t) = t, we have

d(γ(t)(V (t) + Γ(t)))

dt
= f(X(t)) + t

〈
∇f(X(t)), Ẋ(t)

〉
+
〈
X(t), cẊ(t)

〉
= f(X(t))− 〈∇f(X(t)), X(t)〉 − t

c
‖∇f(X(t))‖2 ≤ 0,

where the last inequality follows from the convexity of f . Thus, Theorem 2.1 implies

f(X(t)) ≤ c‖x0‖2

2t
. (3.1)

Plugging t = kh and c = h/η into (3.1) and set η = 1
L , we match the convergence rate in [11]:

f(x(k)) ≤ c ‖x0‖2

2kh
=
L ‖x0‖2

2k
. (3.2)

3.1.2 Linear Convergence Under the Polyak-Łojasiewicz Condition

Equation (2.5) implies Ẋ = − 1
c∇f(X(t)). By choosing Γ(t) = 0 and γ(t) = exp

(
2µt
c

)
, we obtain

d(γ(t)(V (t) + Γ(t)))

dt
= γ(t)

(
2µ

c
f(X(t)) +

〈
∇f(X(t)), Ẋ(t)

〉)
= γ(t)

(
2µ

c
f(X(t))− 1

c
‖∇f(X(t))‖2

)
.

By the µ-PŁ condition: 0 < f(X(t))

‖∇f(X(t))‖2 ≤
1

2µ for some constant µ and any t, we have

d(γ(t)(V (t) + Γ(t)))

dt
≤ 0.

By Theorem 2.1, for some constant C depending on x0, we obtain

f(X(t)) ≤ C ′ exp

(
−2µt

c

)
, (3.3)

which matches the behavior of an extremely over damped harmonic oscillator. Plugging t = kh and
c = h/η into (3.3) and set η = 1

L , we match the convergence rate in [4]:

f(xk) ≤ C exp

(
−2µ

L
k

)
(3.4)

for some constant C depending on x(0).

3.2 Convergence Analysis of NAG

We study the convergence of NAG for a class of convex functions satisfying the Polyak-Łojasiewicz
(PŁ) condition. The convergence of NAG has been studied for general convex functions in [16], and
therefore is omitted. [11] has shown that NAG achieves a linear convergence for strongly convex
functions. Our analysis shows that the strong convexity can be relaxed as it does in VGD. However,
in contrast to VGD, NAG requires f to be convex.

For a L-smooth convex function satisfying µ-PŁ condition, we have the particle mass and damping
coefficient as m = h2

η and c =
2
√
µh√
η = 2

√
mµ. By [4], under convexity, PŁ is equivalent to

quadratic growth (QG). Formally, we assume that f satisfies the following condition.
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Assumption 3.2 . We say that f satisfies the µ-QG condition, if there exists a constant µ such that
for any x ∈ Rd, we have f(x)− f(x∗) ≥ µ

2 ‖x− x
∗‖2.

We then proceed with the proof for NAG. We first define two parameters, λ and σ. Let

γ(t) = exp(λct) and Γ(t) =
m

2
‖Ẋ + σcX‖2.

Given properly chosen λ and σ, we show that the required condition in Theorem 2.1 is satisfied.
Recall that our proposed physical system has kinetic energy m

2 ‖Ẋ(t)‖2. In contrast to an un-damped
system, NAG takes an effective velocity Ẋ + σcX in the viscous fluid. By simple manipulation,

d(V (t) + Γ(t))

dt
= 〈∇f(X), Ẋ〉+m〈Ẋ + σcX, Ẍ + σcẊ〉.

We then observe

exp(−λct)td(γ(t)(V (t) + Γ(t)))

dt
=
[
λcf(X) +

λcm

2
‖Ẋ + σcX‖2 +

d(V (t) + Γ(t))

dt

]
≤
[
λc

(
1 +

mσ2c2

µ

)
f(X) + 〈Ẋ,

(
λcm

2
+mσc

)
Ẋ +∇f(X) +mẌ〉

+ 〈X, (λσmc2 +mσ2c2)Ẋ +mσcẌ〉
]
.

Since c2 = 4mµ, we argue that if positive σ and λ satisfy

m(λ+ σ) = 1 and λ

(
1 +

mσ2c2

µ

)
≤ σ, (3.5)

then we guarantee d(γ(t)(V (t)+Γ(t)))
dt ≤ 0. Indeed, we obtain

〈Ẋ,
(
λcm

2
+mσc

)
Ẋ +∇f(X) +mẌ〉 = −λmc

2
‖Ẋ‖2 ≤ 0 and

〈X, (λσmc2 +mσ2c2)Ẋ +mσcẌ〉 = −σc〈X,∇f(X)〉.
By convexity of f , we have λc

(
1+mσ2c2

µ

)
f(X)−σc〈X,∇f(X)〉 ≤ σcf(X)−σc〈X,∇f(X)〉 ≤ 0.

To make (3.5) hold, it is sufficient to set σ = 4
5m and λ = 1

5m . By Theorem 2.1, we obtain

f(X(t)) ≤ C ′′ exp

(
− ct

5m

)
(3.6)

for some constant C ′′ depending on x(0). Plugging t = hk, m = h2

η , c = 2
√
mµ, and η = 1

L into
(3.6), we have that

f(xk) ≤ C ′′ exp

(
−2

5

√
µ

L
k

)
. (3.7)

Comparing with VGD, NAG improves the constant term on the convergence rate for convex functions
satisfying PŁ condition from L/µ to

√
L/µ. This matches with the algorithmic proof of [11] for

strongly convex functions, and [19] for convex functions satisfying the QG condition.

3.3 Convergence Analysis of RCGD and ARCG

Our proposed framework also justifies the convergence analysis of the RCGD and ARCG algorithms.
We will show that the trajectory of the RCGD algorithm converges weakly to the VGD algorithm, and
thus our analysis for VGD directly applies. Conditioning on x(k), the updating formula for RCGD is

x
(k)
i = x

(k−1)
i − η∇if(x(k−1)) and x

(k)
\i = x

(k−1)
\i , (3.8)

where η is the step size and i is randomly selected from {1, 2, . . . , d} with equal probabilities. Fixing
a coordinate i, we compute its expectation and variance as

E
(
x

(k)
i − x

(k−1)
i

∣∣x(k)
i

)
= −η

d
∇if

(
x(k−1)

)
and

Var
(
x

(k)
i − x

(k−1)
i

∣∣x(k)
i

)
=
η2(d− 1)

d2

∥∥∥∇if (x(k−1)
)∥∥∥2

.

We define the infinitesimal time scaling factor h ≤ η as it does in Section 2.1 and denote X̃h(t) :=

x(bt/hc). We prove that for each i ∈ [d], X̃h
i (t) converges weakly to a deterministic function Xi(t)
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as η → 0. Specifically, we rewrite (3.8) as,

X̃h(t+ h)− X̃h(t) = −η∇if(X̃h(t)). (3.9)
Taking the limit of η → 0 at a fix time t, we have

|Xi(t+ h)−Xi(t)| = O(η) and
1

η
E
(
X̃h(t+ h)− X̃h(t)

∣∣X̃h(t)
)

= −1

d
∇f(X̃h(t)) +O(h).

Since ‖∇f(X̃h(t))‖2 is bounded at the time t, we have 1
η Var

(
X̃h(t+h)− X̃h(t)

∣∣X̃h(t)
)

= O(h).

Using an infinitesimal generator argument in [1], we conclude that X̃h(t) converges to X(t) weakly
as h → 0, where X(t) satisfies, Ẋ(t) + 1

d∇f(X(t)) = 0 and X(0) = x(0). Since η ≤ 1
Lmax

, by
(3.4), we have

f(xk) ≤ C1 exp
(
− 2µ

dLmax
k
)
.

for some constant C1 depending on x(0). The analysis for general convex functions follows similarly.
One can easily match the convergence rate as it does in (3.2), f(x(k)) ≤ c‖x0‖2

2kh = dLmax‖x0‖2
2k .

Repeating the above argument for ARCG, we obtain that the trajectory X̃h(t) converges weakly to
X(t), where X(t) satisfies

mẌ(t) + cẊ(t) +∇f(X(t)) = 0.

For general convex function, we have m = h2

η′ and c = 3m
t , where η′ = η

d . By the analysis of [16],
we have f(xk) ≤ C2d

k2 , for some constant C2 depending on x(0) and Lmax.

For convex functions satisfying µ-QG condition, m = h2

η′ and c = 2
√

mµ
d . By (3.7), we obtain

f(xk) ≤ C3 exp
(
− 2

5d

√
µ

Lmax

)
for some constant C3 depending on x(0).

3.4 Convergence Analysis for Newton

Newton’s algorithm is a second-order algorithm. Although it is different from both VGD and NAG, we
can fit it into our proposed framework by choosing η = 1

L and the gradient asL
[
∇2f(X)

]−1∇f(X).
We consider only the case f is µ-strongly convex, L-smooth and ν-self-concordant. By (2.5), if h/η
is not vanishing under the limit of h→ 0, we achieve a similar equation,

CẊ +∇f(X) = 0,

where C = h∇2f(X) is the viscosity tensor of the system. In such a system, the function f not only
determines the gradient field, but also determines a viscosity tensor field. The particle system is as
if submerged in an anisotropic fluid that exhibits different viscosity along different directions. We
release the particle at point x0 that is sufficiently close to the minimizer 0, i.e. ‖x0 − 0‖ ≤ ζ for
some parameter ζ determined by ν, µ, and L. Now we consider the decay of the potential energy
V (X) := f(X). By Theorem 2.1 with γ(t) = exp( t

2h ) and Γ(t) = 0, we have
d(γ(t)f(X))

dt
= exp

(
t

2h

)
·
[

1

2h
f(X)− 1

h

〈
∇f(X), (∇2f(X))−1∇f(X)

〉]
.

By simple calculus, we have ∇f(X) = −
∫ 0

1
∇2f((1− t)X)dt · X . By the self-concordance

condition, we have

(1− νt ‖X‖X)2∇2f(X) � ∇2f((1− t)X)dt � 1

(1− νt ‖X‖X)2
∇2f(X),

where ‖v‖X =
(
vT∇2f(X)v

)
∈ [µ ‖v‖2 , L ‖v‖2]. Let β = νζL ≤ 1/2. By integration and the

convexity of f , we have

(1− β)∇2f(X) �
∫ 1

0

∇2f((1− t)X)dt � 1

1− β
∇2f(X)

and
1

2
f(X)−

〈
∇f(X), (∇2f(X))−1∇f(X)

〉
≤ 1

2
f(X)− 1

2
〈∇f(X), X〉 ≤ 0.

Note that our proposed ODE framework only proves a local linear convergence for Newton method
under the strongly convex, smooth and self concordant conditions. The convergence rate contains
an absolute constant, which does not depend on µ and L. This partially justifies the superior local
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convergence performance of the Newton’s algorithm for ill-conditioned problems with very small
µ and very large L. Existing literature, however, has proved the local quadratic convergence of the
Newton’s algorithm, which is better than our ODE-type analysis. This is mainly because the discrete
algorithmic analysis takes the advantage of “large” step sizes, but the ODE only characterizes “small”
step sizes, and therefore fails to achieve quadratic convergence.

4 Numerical Simulations

We present an illustration of our theoretical analysis in Figure 2. We consider a strongly convex
quadratic program

f(x) =
1

2
x>Hx, where H =

[
300 1
1 50

]
.

Obviously, f(x) is strongly convex and x∗ = [0, 0]> is the minimizer. We choose η = 10−4 for
VGD and NAG, and η = 2× 10−4 for RCGD and ARCG. The trajectories of VGD and NAG are
obtained by the default method for solving ODE in MATLAB.

5 Discussions

Figure 2: The algorithmic iter-
ates and trajectories of a simple
quadratic program.

We then give a more detailed interpretation of our proposed
system from a perspective of physics:

Consequence of Particle Mass — As shown in Section 2, a
massless particle system (mass m = 0) describes the simple
gradient descent algorithm. By Newton’s law, a 0-mass particle
can achieve infinite acceleration and has infinitesimal response
time to any force acting on it. Thus, the particle is “locked”
on the force field (the gradient field) of the potential (f ) – the
velocity of the particle is always proportional to the restoration
force acting on the particle. The convergence rate of the algo-
rithm is only determined by the function f and the damping
coefficient. The mechanic energy is stored in the force field (the potential energy) rather than in the
kinetic energy. Whereas for a massive particle system, the mechanic energy is also partially stored
in the kinetic energy of the particle. Therefore, even when the force field is not strong enough, the
particle keeps a high speed.

Damping and Convergence Rate — For a quadratic potential V (x) = µ
2 ‖x‖

2, the system has a
exponential energy decay, where the exponent factor depends on mass m, damping coefficient c, and
the property of the function (e.g. PŁ-conefficient). As discussed in Section 2, the decay rate is the
fastest when the system is critically damped, i.e, c2 = 4mµ. For either under or over damped system,
the decay rate is slower. For a potential function f satisfying convexity and µ-PŁ condition, NAG
corresponds to a nearly critically damped system, whereas VGD corresponds to an extremely over
damped system, i.e., c2 � 4mµ. Moreover, we can achieve different acceleration rate by choosing
different m/c ratio for NAG, i.e., α = 1/(µη)s−1

1/(µη)s+1 for some absolute constant s > 0. However
s = 1/2 achieves the largest convergence rate since it is exactly the critical damping: c2 = 4mµ.

Connecting PŁ Condition to Hooke’s law — The µ-PŁ and convex conditions together naturally
mimic the property of a quadratic potential V , i.e., a damped harmonic oscillator. Specifically, the
µ-PŁ condition

Hooke’s constant

Displacement

Potential EnergyPotential Energy of Spring
µ

2

����
rV
µ

����
2 � V (x)

guarantees that the force field is strong enough, since the left hand side of the above equation is
exactly the potential energy of a spring based on Hooke’s law. Moreover, the convexity condition
V (x) ≤ 〈∇V (x), X〉 guarantees that the force field has a large component pointing at the equilibrium
point (acting as a restoration force). As indicated in [4], PŁ is a much weaker condition than the
strong convexity. Some functions that satisfy local PŁ condition do not even satisfy convexity, e.g.,
matrix factorization. The connection between the PŁ condition and the Hooke’s law indicates that
strong convexity is not the fundamental characterization of linear convergence. If there is another
condition that employs a form of the Hooke’s law, it should employ linear convergence as well.
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