
Synaptic Strength For Convolutional Neural Network

Chen Lin
SenseTime Research

linchen@sensetime.com

Zhao Zhong ∗
NLPR, CASIA

University of Chinese Academy of Sciences
zhao.zhong@nlpr.ia.ac.cn

Wei Wu
SenseTime Research

wuwei@sensetime.com

Junjie Yan
SenseTime Research

yanjunjie@sensetime.com

Abstract

Convolutional Neural Networks(CNNs) are both computation and memory inten-
sive which hindered their deployment in mobile devices. Inspired by the relevant
concept in neural science literature, we propose Synaptic Pruning: a data-driven
method to prune connections between input and output feature maps with a newly
proposed class of parameters called Synaptic Strength. Synaptic Strength is de-
signed to capture the importance of a connection based on the amount of informa-
tion it transports. Experiment results show the effectiveness of our approach. On
CIFAR-10, we prune connections for various CNN models with up to 96% , which
results in significant size reduction and computation saving. Further evaluation on
ImageNet demonstrates that synaptic pruning is able to discover efficient models
which is competitive to state-of-the-art compact CNNs such as MobileNet-V2 and
NasNet-Mobile. Our contribution is summarized as following: (1) We introduce
Synaptic Strength, a new class of parameters for CNNs to indicate the importance
of each connections. (2) Our approach can prune various CNNs with high com-
pression without compromising accuracy. (3) Further investigation shows, the
proposed Synaptic Strength is a better indicator for kernel pruning compared with
the previous approach in both empirical result and theoretical analysis.

1 Introduction

In recent years, Convolutional Neural Networks(CNNs) gradually become dominant in the computer
vision community. Despite their good performance, CNNs have a huge number of parameters,
resulting in high resource demand for storage and computation. Modern CNNs can reach hundreds
of millions of parameters and billions of operations, which makes it difficult to deploy. To alle-
viate aforementioned problem, various methods have been proposed to increase the efficiency of
CNNs. These include knowledge distillation [12, 28], low-rank decomposition [24, 7], network
quantization/binarization [38, 5, 4, 27] and weight pruning [9]. Recent work shows that there exists
large amount of redundancy in CNNs[9, 13]. Accordingly, we can reduce the model size without
compromising accuracy with some appropriate schemes.

Meanwhile, in neural science literature, tremendous redundancy is believed to exist in human
brain [2]. A process of synapse elimination called synaptic pruning removes unnecessary neuronal
structures occurs from birth to adolescence. The pruning process is believed essential to the flexibility
required for the adaptive capabilities of the developing mind [6]. The key element of the brain’s
pruning procedure is the synaptic strength. Synaptic pruning in brain follows a "use it or lose it"

∗This work is done when Zhao Zhong is intern at SenseTime Research

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

𝑟
"

the 𝒊-th kernel of
𝒋-th filter

" 	𝛾

the 𝒊-th input channel
𝑠 = 𝑟 " 𝛾

scale factor

unified
kernel

L2-norm

Synaptic Strength

Figure 1: The analogy between neural synapses and CNNs’ connections. The normalized and
rectified input feature channel(green) is regarded as the information from axon(left). The unified
kernel(blue) is regarded as the processing operator on dendrite(right). Synaptic Strength is defined
as the combined scaling factor which makes it a good indicator for connection importance

principle, which is achieved by increasing synaptic strength if the synapse is used, and the opposite
if not [31]. Inspired by this mechanism, we proposed a new class of parameters in convolution
layer called Synaptic Strength as shown in Figure 1. The main idea of Synaptic Strength is to
represent how much information the connection will provide to the final result. This is achieved by
imposing normalization on both weight and input data. The analog between biological neural network
and CNNs is built by regarding a single channel of the feature map produced by the intermediate
convolution layer as a single neuron. Suppose feature channel is produced by a filter contains C
kernels and the feature map in the previous layer(also contains C channels). The kernel could be seen
as C synapse connected with C previous neurons. Thus the removal of synapse in a biological neural
network is analog to disconnect the input channel and its corresponding kernel(s). "Disconnect" can
be easily achieved by "zero out" kernel. Thus our synaptic pruning produces kernel-level sparse
CNNs.

We evaluate the proposed method on CIFAR-10 and ImageNet. Experiment shows our approach
can achieve much higher compression rates while brings less impact on performance compared
with existing pruning methods. On CIFAR-10, we can remove up to 96% synaptic connections
without decreasing accuracy. On ImageNet, our pruned ResNet-50 achieves competitive or even
better efficiency compared with state-of-the-art compact models [29, 39] in term of accuracy and
parameters. For compactness, we discuss the practicability of leveraging kernel-level sparsity for
acceleration. In particular, we point out that the winograd convolution [18] is ideal to accelerate
kernel-level sparse models. We also compare our approach with recent proposed winograd native
pruning methods [20, 21] for comparison.

2 Related works

Network Pruning The idea of network pruning originated form Yann LeCun and Solla [34]. After
deep learning starts to thrive, Han et al. [9] propose to prune the useless weights with small absolute
value in model which is trained with L2-regularization and an iterative pruning and finetuning process.
Their models achieve high sparse rate at weight-level. They reduce the model size with a large margin
while run-time speed up requires specially designed hardware [10]. Recent works [19, 26, 11] focus
on the idea of pruning the entire filter. Different filter importance indicator have been proposed.
Anwar and Sung [1] first propose to prune parameters at kernel level. They achieve storage saving
and acceleration in MRI tasks. Mao et al. [25] apply method proposed in [9] on different granularity
to explore the tradeoff between regularity and accuracy. Wen et al. [32] propose to learn a structured
sparsity. They use group lasso regularization to prune entire row or column of the weight matrix.

2

Liu et al. [22] utilize L1 regularization on scale factors in batch-normalization layer to learn the
importance indicator for channel pruning. Huang and Wang [15] add sparsity regularization and
a modified Accelerated Proximal Gradient on scaling factors in the training stage. They remove
unimportant parts of CNN based on scaling factors value. Our synapse pruning is also in an end-to-
end manner which is closely related to these ideas. Besides L1 and L2 norm, [23] propose a practical
method for L0 norm regularization for CNNs. In order to achieve that, they include a collection of
non-negative stochastic gates.

Neural architecture learning Optimizing network architecture is explored intensively in the litera-
ture. Stanley and Miikkulainen [30] proposed to optimize network typologies and parameter weights
at the same time through evolution strategy starting with a minimum neural network. Recently, Zhong
et al. [37] and Zoph and Le [39] adopt reinforcement learning for neural architecture search, each
of which trains massive amount of different neural networks and treats test accuracy as the reward.
Differ with these approaches, our synapse pruning starting with an existing human designed CNN
and learning a compact structure through the "use it or lose it" principle. So the proposed method can
be regarded as an architecture learning method.

Irregular connection pattern Recent proposed efficient CNN architectures aim to reduce both
computation and size. These architectures usually conduct special connection patterns between
input and out feature channel. Non-dense connection patterns including depth-wise [13, 29], group
convolution [33], interleaved group connection[35, 36]. These predefined architecture achieve
competitive accuracy with better efficiency. Huang et al. [14] tries to learning the input layers for
group convolution in training stage. They impose a constraint on group size. In contrast, synapse
pruning has no restriction on the connection pattern at all. We argue that this will give more flexibility
to the model.

𝒚𝟏 𝒚𝟐

𝒙𝟏 0.0 0.2

𝒙𝟐 0.0 0.5

𝒙𝟑 0.4 0.0

𝑥'

𝑥(

𝑥)

𝑦'

𝑦(

𝑥'

𝑥(

𝑥)

𝑦'

𝑦(

(𝒊+ 𝟏)-th conv-layer𝒊-th conv-layer(𝒊+ 𝟏)-th conv-layer𝒊-th conv-layer

Synaptic Strength

Dense Sparse

Figure 2: We introduce a new class of parameter called Synaptic Strength associated with connection
in convolutional layers (middle). Sparsity regularization is applied on these parameters to automat-
ically identify useless connections. Connections with small Synaptic Strength will be pruned to
produce a compact model with kernel-level sparsity.

3 Method

3.1 Biological Analogy for CNNs

In biology, synaptic strength is a measure of the connectivity between axon and dendrite. Synaptic
strength is a changing attribute which represents the activeness of the connection. If a connection is
hardly used by the overall processing procedure, synaptic strength is decreased which would finally
cause disconnection. In order to adopt the same mechanism for modern CNNs, two question should
be answered: (1) How to analog the same mechanism in CNNs. (2) How to define the usefulness of
certain connection.

To answer the first question, we provide a demonstration of a convolution layer in Figure 2 (left). This
convolution layer takes 3 input feature channel(green). It contains 2 filter, each of which produces a
single output feature channel(blue) by adding up the 2D-convolution results produced by each kernel
inside the filter and the kernel’s corresponding input feature channel. Here, we analogize a single

3

output feature channel to a biological neuron with 3 dendrites, each of which relates itself with an
axon(input feature channel) through 2D-convolution. Kernel for the 2D-convolution decides how the
dendrite will process the input. Figure 1 is the close-up version. The "axon"(left) delivers information
which is the input feature channel to the receiving "dendrite" on the(right). The "dendrite" perform
convolution utilizing the kernel. For the second question, we introduce a new class of parameters to
realize the function of synaptic strength.

3.2 Define Synaptic Strength for CNNs

Suppose the input feature map contains C channels. The convolution layer has K filters, each of
which is consist of C kernels one-to-one assigned to its input feature channel. This convolution
operation generates K output feature channels. In general, we have that

xoutk = f

(
C∑

c=1

xinc ∗ kk,c + bk

)
(1)

where f represents the activation function and xinj represents the j-th channel among the input feature
map. kk,c represents the c-th kernel inside the k-th filter. bk is the bias. Batched Normalization(BN)
has been adopted by most modern CNNs as a standard approach for fast convergence and better
generalization [16]. We assume the target model perform batch normalization after a convolution
layer, before the non-linearity. Particularly, in the training stage, BN layer normalize the activation
distribution using mini-batch statistics. Suppose xin and xout is the input and output of a BN layer,
B denotes the mini-batch data samples. BN perform normalization by:

BN(x) =
xin − µB√
σ2
B + ε

;xout = γ ·BN(x) + β (2)

where µB and σB are the mean and standard deviation values computed across each elements in
xin over B. The normalized activation N(x) is linear transformed by learnable affine transformation
parameterized by γ and β(scale and shift). We also assume that the non-linearity f is homogeneous,
which indicates that f(a · x) = a · f(x) for any scalar a. The definition of Synaptic Strength
could be derived with two modification to the original model. First, we discard channel scaling
factor γ from BN layers. Second, we reparameterize each individual kernel k. We decomposed
the kernel as k = r · k′, where r = ||k|| denotes the Frobenius-norm of the kernel and k′ = k

||k||
is the normalized(unit) kernel. Utilizing Equation 1 and 2, we show that the modified model has
the same representation capacity. Without loss of generality, we consider a sub module consist
with "BN-f -Conv". Due to the normalization in the BN layer, the bias term in convolution layer is
redundant, and thus it has been discarded from the model:

xoutk =

C∑
c=1

f
(
γc ·BN(xinc) + βc

)
∗ kk,c (3)

=

C∑
c=1

γcf
(
BN(xinc) +

βc
γc

)
∗ (rk,c · k′k,c) (4)

=

C∑
c=1

γc · rk,c · f
(
BN(xinc) +

βc
γc

)
∗ k′k,c (5)

We define Synaptic Strength as the production of BN’s scaling factor and the Frobinus-norm of kernel:

sk,c = γc · rk,c (6)
Equation 3 to 5 show the function of our modified model remain identical to the original model.

3.3 Intuition and Analysis

The importance of the connection should be measured with how much amount of information it
provided. However, estimating information entropy for each dendrite is not efficient. Variance
which is also an uncertainty measurement could be regarded as an acceptable compromise. Synaptic

4

Strength is explicitly designed to be a good indicator to the variance of the intermediate feature
produced by a single kernel, which is immediately reduced by summation across C input channels.
As shown in Equation 3 to 5, the data distribution coming through BN without the scale factor is
convoluted by the kernel. At inference time, BN normalized each data examples using a smoothed
version of batch mean and variance, which should be close to the overall statistics for data distribution.
By integrating the scale factor into Synaptic Strength, we force the variance of the output of the BN
layer stays close to 1. Thus Synaptic Strength controls the variance from data. On the other hand,
convolution with kernel certainly affects the variance of the feature. We restrict the kernel to lie on
the Unit Sphere. Thus Synaptic Strength parameters are forced to represent the multiplication of data
variance and kernel norm which makes it a good indicator of information.

3.4 Optimization

In additional to classification loss, we impose sparsity-inducing regularization on the Synaptic
Strength s. After training, we prune the synapses whose strength is smaller than threshold τ . Finally,
we fine-tune the pruned network. Precisely, the training objective function is given by

L =
1

N

N∑
i=1

l(yi, f(xi,W)) + λ
∑
s∈S

g(s) (7)

where xi, yi denote the i-th training data and label, W denotes all the trainable weights in the model, l
is the classification loss, the second sum-term is the sparse-inducing regularization, and s the Synaptic
Strength. λ is a scalar factor which controls the scale of the sparsity constraint. We choose g(s) = |s|
in our experiments and use sub-gradient descent due to non-smooth point at 0.

4 Experiments

Dataset In order to evaluate the effectiveness of synapse pruning, we experiment with CIFAR-10
and ImageNet. CIFAR-10 dataset contains 50,000 train examples and 10,000 test examples. Each
example contains a single object draw from 10 classes with resolution 32× 32. In each experiment,
we perform standard data augmentation including random flip and random crop. ImageNet dataset is
a large-scale image recognition benchmark which contains 1.2 million images for training and 50,000
for validation, each image belongs to one out of the total 1,000 classes. Both top1 and top5 single
center crop accuracy is reported.

4.1 Training Detail

Baseline We train all models we are going to prune from scratch as the baseline model. All the
networks are optimized with Stochastic Gradient Descent(SGD) with momentum 0.9 and weight
decay 10−4. For CIFAR-10 models, we train them with batch size 128 for 240 epochs in total. The
initial learning rate is set to 0.1 and divided by 10 at the beginning of 120 and 180 epoch. For
ImageNet models, we train them with batch size 256 for 100 epochs in total. The initial learning rate
is set to 0.1 and dived ed by 10 at the beginning of 30, 60 and 90 epoch.

Guidelines for Picking λ For CIFAR-10 models, we pick different sparsity regularization rate λ
as defined in Section 3.4 for different architectures. We pick λ equals to 10−4 for VGGNet, while
10−5 and 5× 10−6 for ResNet-18 and DenseNet-40. Other settings remain identical to CIFAR-10
baseline models. For ImageNet models, more flexibility is required for fitting train data. Thus the
sparsity constraint rate is set to 10−6. The rest of the setting is the same as the baseline routine. Our
empirical experience suggests that a higher regularization rate would lead to more pruned kernels
with no cost at pruning procedure. But if the regularization is too strong, the accuracy before pruning
would be compromised. A basic strategy is to start with a small λ and enlarge it until the performance
of the model starts to decrease.

Pruning and finetune Since Synaptic strength could represent the information extracted by its
owner kernel from the corresponding input channel, we apply a simple pruning strategy which is to
remove all the synapse connection under threshold t. The threshold for pruning is decided by the
desired sparsity k%. The value of least k% synaptic strength in the network will become the threshold.

5

Table 1: Errors and pruning ratio on CIFAR-10

Model Error(%) Kernels Pruned(%) Flops Pruned(%)

VGG base 6.66 2,224,320 0.00 398M 0.00
VGG pruned 6.23 88,972 96.00 94M 76.38

ResNet-18 base 6.45 1,392,832 0.00 555M 0.00
ResNet-18 pruned A 5.06 113,436 90.00 137M 75.32
ResNet-18 pruned B 5.80 64,477 95.00 88M 84.14

DenseNet-40 base 5.24 226,728 0.00 282M 0.00
DenseNet-40 pruned 5.58 45,345 80.00 71M 74.82

Empirically, we prune the network using different k% and choose the best model considering its size
and accuracy. We create a mask which indicates remain kernels for simplicity. For deployment, Block
Compressed Row Storage could be applied to save memory space. Finetuning should be applied if
accuracy drop is observed after pruning, which takes 50 epochs and 20 epochs for CIFAR-10 and
ImageNet models respectively.

4.2 Results on CIFAR

Compared to baseline The motivation of our synapse pruning is to minimize the computation and
storage cost for CNNs. Each of our pruned models could achieve up to 95% sparsity taking 2D-kernel
as a unit, while still maintaining similar accuracy compared with baselines. The parameter saving in
convolution layers and FLOPs reductions is shown. For VGGNet and ResNet-18 we pruned 96% and
90% of the total synapse with a slight increase in test accuracy. We attribute this to the regularization
effect provided by L1 loss. Even for DenseNet-40, a relatively compact model which conduct feature
reuse between layers intensively, synapse pruning could still remove a majority of synapses (about
80%) with 0.34% loss in accuracy. For computation reduction, synapse pruning is able to reduce up
to 80% of FLOPs. Notably, the proportion of FLOPs reduction is less than kernel reduction due to
the different kernel and input size. It is possible to adjust λ based on the amount of calculation per
layer to alleviate the problem. Table 1 shows the resulted models after pruning compared to baseline
on CIFAR-10. Figure 3(Left) visualize the amount of connection we pruning relative to the baseline
model.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
layer

0

3

6

9

12

15

18

21

24

27

ke
rn

el
 a

m
ou

nt
 ×

1
0

4

Remaining kernels each layer
Total
Remain

Model Error(%) Paras Flops

VGG [22] 6.20 2.30M 195M
VGG ours 6.23 0.80M 94M

ResNet-56 [19] 6.94 0.73M 90M
ResNet-101 [19] 6.45 1.68M 213M
ResNet-164 [22] 5.27 1.21M 124M
ResNet-18 ours 5.06 1.01M 137M
ResNet-18 ours 5.56 0.49M 88M

CondenseNetlight-94 5.00 0.33M 122M
DenseNet-40 [22] 5.19 0.66M 190M
DenseNet-40 ours 5.58 0.21M 72M

Figure 3: (Left) Remaining kernels of ResNet-18 pruned B. (Right) Compare with other compression
methods on CIFAR-10

Compared with other methods As shown in Figure 3(Right), compared to state-of-the-art filter-
level weight pruning methods, synapse pruning achieves similar accuracy with roughly 1/3 parameters
and at most 1/2 flops for all three models. Compared to recent proposed compact model CondenseNet,
our model could save 30% parameters and 50% computations with an accuracy drop of 0.58%.
Condensenet [14] also take advantage of irregular connection patterns using a special indexing layer
followed by group convolutions, which also introduce extra computation burdens compared with
filter-level pruning.

6

Table 2: Compare with existing pruning based methods for Resnet-50 on ImageNet

Model Top1 error(%) Top5 error(%) Parameters

ResNet-50 24.70 7.80 25.6M

ResNet-50 [15] ∼26.80 - ∼16.5M
ResNet-50 [17] 31.58 11.70 8.66M
ResNet-50 [25] - 7.93 ∼10.22M
ResNet-50 ours 25.32 7.20 5.9M

Table 3: Compare with state-of-the-art compact models on ImageNet

Model Top1 error(%) Top5 error(%) Parameters

ShuffleNet 2×5.3M 29.10 10.2 5.3M
CondenseNet 26.20 8.3 4.8M
NasNet-A Mobile 26.00 8.4 5.3M
MobileNet-v2 1.4× 25.30 - 6.9M

ResNet-50 pruned ours 25.32 7.2 5.9M

4.3 Results on ImageNet

To further evaluate the performance of synapse pruning on a larger dataset, we perform our method on
ImageNet dataset with ResNet-50. Our pruned models removed about 87% connections compared to
base models with only 0.6% accuracy drop. As shown in Table 2, we obtain better accuracy with fewer
parameters while maintaining the lowest error rate compared to the existing method. Furthermore,
we compare the pruned model with state-of-the-art compact models in terms of parameter numbers
as shown in Table 3.

4.4 Analysis

In this section, we first compare the robustness between the proposed method and SSL[32]. Fur-
thermore, ablation studies by (1)excluding γ from Synaptic strength and (2)omitting the kernel
reparameterization are performed. Finally, we analysis the effect of hyper-parameter λ, which is
the sparsity regularization rate(see Equation 7). All the experiment is performed with ResNet-18 on
CIFAR-10.

Sensitivity Wen et al. [32] adopted group-LASSO regularization to push the weight in predefined
groups towards zero, which is applicable to kernel pruning. Kernel pruning is based on a global
threshold across all layers. Kernels with the mean absolute value less than the threshold are pruned.
The motivation of this experiment is to compare the robustness of two approaches at different pruning
rate. In order to alleviate the performance gap generated by randomness in training, instead of
accuracy, we show the result by plot accuracy drop(caused by pruning) against sparsity. Fine-tuning
is performed after each pruning procedure. The results are summarized in Figure 4(a). The sparsity
of connections we plotted is 70%, 80%, 90%, 95%, 97.5%. Our approach starts to outperform SSL
from 90% sparsity. From 90% to 97.5%, the gap between the two methods become larger. If we
constraint the accuracy drop no be less than 1%, the proposed method could produce a model with
roughly 2× fewer kernels.

Ablation There are two modifications to the original model in order to perform synaptic pruning
(1) discard the scale factor from previous batch-norm layer γ and (2) apply normalization to the
kernel and explicitly parameterize kernel’s L2-norm. We train two variants of synaptic pruning
each of which omitted one of the aforementioned modifications to show the necessity. We refer the
model trained without discarding the scale factor as "non fix γ", the other one as "non kernel-norm".
The plot sparsity of connections is chosen as 60%, 70%, 80%, 90%. From the accuracy-sparsity
curve showed in Figure 4(b), the full version of the proposed method gets the highest accuracy when
pruning rate greater than 80%. Omitting either one of these modification degrades the performance.
In order to highlight the disparity, finetuning is not performed.

7

(A) (B)

Figure 4: (A) The Accuracy drop-Sparsity curve. Compare to SSL, synaptic pruning is better at
preserving accuracy for high pruning rate. Which show that compared with SSL, our Synaptic Strength
is more accurate as the indicator to connection importance. (B) Ablation study by modifying the
definition of Synaptic Strength. Excluding either component has lead to performance degrade,which
shows the optimist of our approach.

Table 4: Compare with winograd-domain sparse models on CIFAR-10

Model Error(%) Density

VGG-nagadomi base 6.30 100%
VGG-nagadomi 7.40(+1.1) 25%
VGG base 6.20 100%
VGG ours 6.23(+0.03) 4%

5 Practicability

Convolution operation in CNNs is commonly computed by GEneral Matrix Multiplication(GEMM).
The computation routine of GEMM requires lowering weight tensor and input tensor to 2D matri-
ces [3]. Using this method, the weight tensor of kernel sparse layer is transformed to a "strip" sparse
metrics, which can be accelerated using block sparse matrix multiplication algorithms on gpu [8].

In another track, Winograd convolution, which is adopted recently in convolutional computation [18],
optimizes 2D convolution using Winograd decomposition and take summation over multiple 2D
convolutions. Several works have been proposed to prune individual weights directly in Winograd
domain since fine-grained level sparsity preserved does not preserve after Winograd transform being
applied. However, kernel level sparsity remains unchanged after being transformed into "wino-grad
domain". Thus we compared our method with the Winograd direct pruning method proposed by [21]
in Table 4. Our method could achieve a significantly higher rate of sparsity (about 8×) with almost
no drop in accuracy.

6 Conclusion

Inspired by the synaptic pruning mechanism inside the human brain, we introduced a new class of
parameters called Synaptic Strength. We show that we can achieve high pruning with almost no cost
at performance using Synaptic Strength. Further analysis proves that Synaptic Pruning is a better
indicator of importance compared with the existing method. We will continue to investigate our
method by exploring efficient inference methods for kernel sparse CNNs.

References
[1] Sajid Anwar and Wonyong Sung. Compact deep convolutional neural networks with coarse

pruning. arXiv preprint arXiv:1610.09639, 2016.

[2] Gal Chechik, Isaac Meilijson, and Eytan Ruppin. Synaptic pruning in development: A compu-
tational account. 10:1759–77, 11 1998.

8

[3] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In Advances in Neural Information
Processing Systems, pages 3123–3131, 2015.

[5] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

[6] Fergus Craik and Ellen Bialystok. Cognition through the lifespan: Mechanisms of change. 10:
131–8, 04 2006.

[7] J. Bruna Y. LeCun E. L. Denton, W. Zaremba and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. Advances in Neural Information Processing
Systems, 2014.

[8] Scott Gray, Alec Radford, and Diederik P. Kingma. Gpu kernels for block-sparse weights.
2017. URL https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/
blocksparsepaper.pdf.

[9] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in Neural Information Processing Systems, pages
1135–1143, 2015.

[10] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William J
Dally. Eie: efficient inference engine on compressed deep neural network. In Proceedings of the
43rd International Symposium on Computer Architecture, pages 243–254. IEEE Press, 2016.

[11] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural
networks. arXiv preprint arXiv:1707.06168, 2017.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[14] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. arXiv preprint arXiv:1711.09224, 2017.

[15] Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
arXiv preprint arXiv:1707.01213, 2017.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[17] Jianxin Wu Jian-Hao Luo and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. arXiv preprint arXiv:1707.06342, 2017.

[18] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks, 2016.

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

[20] Sheng Li, Jongsoo Park, and Ping Tak Peter Tang. Enabling sparse winograd convolution by
native pruning. arXiv preprint arXiv:1702.08597, 2017.

[21] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Efficient sparse-winograd convolutional
neural networks. arXiv preprint arXiv:1802.06367, 2018.

9

https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/blocksparsepaper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/blocksparse/blocksparsepaper.pdf

[22] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In 2017 IEEE Interna-
tional Conference on Computer Vision, pages 2755–2763. IEEE, 2017.

[23] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l0 regularization. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=H1Y8hhg0b.

[24] A. Vedaldi M. Jaderberg and A. Zisserman. Speeding up convolutional neural networks with
low rank expansions. BMVC, 2014.

[25] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu Liu, Yu Wang, and William J Dally.
Exploring the granularity of sparsity in convolutional neural networks, 2017.

[26] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[27] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pages 525–542. Springer, 2016.

[28] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[29] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Inverted residuals and linear bottlenecks: Mobile networks for classification, detection and
segmentation. arXiv preprint arXiv:1801.04381, 2018.

[30] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[31] Pierre Vanderhaeghen and Hwai-Jong Cheng. Guidance molecules in axon pruning and cell
death. Cold Spring Harbor perspectives in biology, 2(6):a001859, 2010.

[32] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Systems 29,
pages 2074–2082. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6504-learning-structured-sparsity-in-deep-neural-networks.pdf.

[33] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, pages 5987–5995. IEEE, 2017.

[34] John S Denker Yann LeCun and Sara A Solla. Optimal brain damage. page 598–605, 1990.

[35] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. Interleaved group convolutions for deep
neural networks. CoRR, abs/1707.02725, 2017. URL http://arxiv.org/abs/1707.02725.

[36] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083, 2017.

[37] Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. Practical network blocks design with q-learning.
CoRR, abs/1708.05552, 2017. URL http://arxiv.org/abs/1708.05552.

[38] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quanti-
zation: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044,
2017.

[39] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578, 2016.

10

https://openreview.net/forum?id=H1Y8hhg0b
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf
http://papers.nips.cc/paper/6504-learning-structured-sparsity-in-deep-neural-networks.pdf
http://arxiv.org/abs/1707.02725
http://arxiv.org/abs/1708.05552

