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Abstract

The high-dimensional convolution is widely used in various disciplines but has a
serious performance problem due to its high computational complexity. Over the
decades, people took a handmade approach to design fast algorithms for the Gaus-
sian convolution. Recently, requirements for various non-Gaussian convolutions
have emerged and are continuously getting higher. However, the handmade acceler-
ation approach is no longer feasible for so many different convolutions since it is a
time-consuming and painstaking job. Instead, we propose an Acceleration Network
(AccNet) which turns the work of designing new fast algorithms to training the
AccNet. This is done by: 1, interpreting splatting, blurring, slicing operations as
convolutions; 2, turning these convolutions to gCP layers to build AccNet. After
training, the activation function g together with AccNet weights automatically
define the new splatting, blurring and slicing operations. Experiments demonstrate
AccNet is able to design acceleration algorithms for a ton of convolutions including
Gaussian/non-Gaussian convolutions and produce state-of-the-art results.

1 Introduction

The high-dimensional convolution undoubtedly is a common and elementary computation unit in
machine learning, computer vision and computer graphics. Krähenbühl and Koltun [2011] conducted
efficient message passing in the fully connected CRFs inference by the high-dimensional Gaussian
convolution. Elboer et al. [2013] expressed the generalized Laplacian distance for visual matching as
cascaded convolutions. Paris and Durand [2009] converted the bilateral filter [Tomasi and Manduchi,
1998] into convolution in an elevated high-dimensional space. However, the computational complexity
for a d-D convolution (1) is proportional to rd, where r denotes the radius of the box filtering window
Ω, Kpq represents the weight between p and q, Ip and I ′p are the values of input I and output I ′
at p. Therefore the running cost will become unacceptable for large r or d.

I ′p = (K ∗ I)p =
∑
q∈Ωp

KpqIq (1)

A lot of work was devoted to solving the computational shortcoming. But most of them focus on the
Gaussian filtering. This is because not only the Gaussian convolution itself serves as building blocks
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for many algorithms [Baek and Jacobs, 2010, Yang et al., 2015] but also its acceleration approaches
play important roles in defocus [Barron et al., 2015], segmentation [Gadde et al., 2016], edge-aware
smoothing [Barron and Poole, 2016], video propagation [Jampani et al., 2017].

In the literature, the most popular Gaussian blur acceleration algorithm should be the Splatting-
Blurring-Slicing pipeline (SBS), which is first proposed by Paris and Durand [2006], Adams et al.
[2010] coined its current name. We attribute its success to data reduction and separable blurring. In
SBS, pixels are “splatted”(downsampled) onto the grid to reduce the data size, then those vertexes
are blurred, finally the filtered values for each pixel are produced via “slicing”(upsampling). Due to
the separable blurring kernel, the d-D Gaussian blurring performed on those vertexes can be deemed
as a sum of separable 1-D filters [Szeliski, 2011] and therefore the computational complexity per
pixel is reduced from O(rd) to O(rd). As the filtering window becomes small after splatting, the
computational complexity can be roughly viewed as O(d) which is irrelevant to the radius r.

According to our investigation SBS has two problems: 1, how to approximate non-Gaussian blur?
SBS is designed for the Gaussian convolution. However, the requirements for non-Gaussian blurs
emerge from local Laplacian filtering [Aubry et al., 2014] and mean-field inference [Vineet et al.,
2014] recently. 2, how to improve the approximation error? Previous SBS based methods just claim
that their results are good approximations for the Gaussian filtering and prove this by experiments.
Since current SBS has drawbacks, how can we generalize SBS to get a better result?

We recast SBS as a neural network (AccNet) to address above two problems in this paper. The
benefits are threefold: 1, our AccNet offers a unified perspective for SBS based acceleration methods;
2, the layer weights together with the activation function g define the splatting, blurring and slicing
convolution. So we can easily derive new splatting, blurring and slicing operations from the trained
network for arbitrary convolutions. This ability entitles our network the End-to-End feature; 3, the
optimal approximation error is guaranteed by AccNet in training.

2 Related Work

Few papers discussed acceleration algorithms for general high-dimensional convolution. Szeliski
[2011] recorded a separable filtering method by SVD. Extending SVD to high-dimensional cases,
we can generalize the separable filtering to high-dimensional convolution. In bilateral filtering
literatures [Chaudhury and Dabhade, 2016, Dai et al., 2016], shiftable functions are exploited to
approximate 1-D range kernels. This technique can also be extended to high-dimensional cases via
outer product. However, its approximation terms are same as the separable filtering method and will
exponentially increase with the dimension.

Current interest for fast high-dimensional convolution algorithms limits to Gaussian blur. Greengard
and Strain [1991] provided the first fast Gaussian blur algorithm. Since the inception of the bilateral
filter (BF) [Tomasi and Manduchi, 1998], the study for fast Gaussian convolution emerges in computer
vision and computer graphics. Durand and Dorsey [2002] computed intermediate filtered images and
synthesized final results by interpolation. The same approach was adopted by Porikli [2008] and
Yang et al. [2009]. Paris and Durand [2006] implemented the first SBS which hints at more general
approaches (bilateral grid and permutohedral lattice).

The bilateral grid [Chen et al., 2007] is a dense data structure that voxelizes the input space into a
regular hypercubic lattice. By embedding inputs within the discretized space (splatting), they mix the
values with a conventional Gaussian blur (blurring). The output image is extracted by resampling
back into image space (slicing). The permutohedral lattice [Adams et al., 2010] is a sparse lattice that
tessellates the space with simplices. By exploiting the fact that the number of vertices in a simplex
grows slowly, it avoids the exponential growth of runtime that the bilateral grid suffers.

3 Design by Training for Fast High-Dimensional Convolution

Different from traditional output-focused neural networks, our AccNet implements the design-by-
training strategy to automatically produce fast convolution pipeline and thus only interests in the
activation function and weights as they define new splatting, blurring and slicing operations. In the
following sections, we discuss how to transform the SBS into an AccNet as well as extensions for
AccNets.
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(a) Splatting (b) Blurring (c) Slicing

Figure 1: The splatting-blurring-slicing pipeline demonstration for bilateral grid and permutohedral
lattice. The bilateral grid accumulates input values on a grid and factors the Gaussian-weighted gather
into a separable Gaussian blur followed by multilinear sampling. The permutohedral lattice operates
uses the permutohedral lattice. Barycentric weights within each simplex are used to resample into
and out of the lattice. The separable blur is conducted along each axis.

3.1 Splatting, Blurring and Slicing Operations as Convolutions

Splatting voxelizes the space into a regular lattice and embeds inputs within the discretized vertices
of the lattice to reduce the data size. Figure 1a illustrates the splatting operation of both bilateral
grid and permutohedral lattice. The bilateral grid acceleration method trades accuracy for speed by
accumulating constant values. The permutohedral lattice acceleration algorithm uses barycentric
weights within each simplex to resample into the lattice. So the value of each vertice is the weighted
sum of its nearby inputs. That is to say, the splatting operation conducts convolutions with a stride of
s. Here s denotes the interval of lattice vertices.

Slicing as illustrated in Figure 1c is the inverse operation of splatting. SBS employs it to synthesize
filtering results from the smoothed lattice values. The bilateral grid method does this by trilinear
interpolation and the permutohedral lattice algorithm takes barycentric weights to resample out of
the lattice. Since the slicing values are the weighted sum of neighbor vertices, the slicing operation
equals to the convolution operation. Intuitively, slicing behaves as the deconvolution layer of the fully
convolutional network [Shelhamer et al., 2017] which performs upsampling by convolution.

Blurring is an alias of convolution. In the d-D case, the full kernel implementation for a convolution
requires rd (multiply-add) operations per pixel, where r is the radius of the convolution kernel.
This operation can be sped up by sequentially performing 1-D convolutions along each axis (which
requires a total of dr operations per pixel) if the kernel is separable. Mathematically, a separable

K = k1 ◦ k2 · · · ◦ kd (2)

I ′ = K ∗ I = k1 ∗ k2 · · ·kd ∗ I (3)

kernel K is the rank-one tensor (the outer product of d vectors {kn, n = 1, . . . , d} (2)). Then the
convolution with K becomes (3). For arbitrary kernels, we can reformulate it as the sum of rank-one
tensors by Canonical Polyadic (CP) decomposition [Sidiropoulos et al., 2017]. In this way, we have
(4) and the computational complexity per pixel for the d-D case becomes O(Ndr). Note that the

K =

N∑
i=1

wi ◦ ki
1 ◦ ki

2 · · · ◦ ki
d (4)

I ′ = K ∗ I =

N∑
i=1

wi · ki
1 ∗ ki

2 · · · ∗ ki
d ∗ I (5)

smoothing window usually is small after splatting, the computational complexity can be viewed as
O(Nd) which is irrelevant to r.
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(a) gCP layer
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(b) Cascaded gCP layers
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Splatting Blurring Slicing

(c) AccNet

Figure 2: Demonstration for gCP layer, cascaded gCP layers and AccNet. The inputs of (a) (b) are
matrices formed by [lpi

1 , . . . , l
pi

d ] (refer to section 3.2.2) and their outputs are scalars. The color cube
in (c) stands for Lj (refer to section 3.2.4) and the color slice in the cube represents Lj

pi
, where the

outputs of (a)(b)(c) are scalars, the stripes in (a)(b) and the slices in (c) with the same color present
the input-output relationship.

3.2 Design by Training Acceleration Network (AccNet)

Essentially, our design-by-training approach is to decompose the filtering kernel (a tensor) by neural
networks because a convolution can be fast computed according to (5) once (4) is obtained. In both
equations, basic building blocks are multiplication and addition. If one of them is substituted by other
operations, we obtain new CP decomposition (4) and separable convolution (5). That is to say, we get
new kinds of splatting, blurring and slicing operations. In this section we follow the way of Cohen
and Shashua [2016] to generalize (4) to gCP decomposition and provide corresponding g-convolution.
The gCP layer and cascaded gCP layers are proposed for gCT and gHT decompositions.

3.2.1 gCP (g Canonical Polyadic) Decomposition & g-Convolution

In (4) each element Kj1,j2,...,jd is formulated as
∑N

i=1 wik
i
1,j1

ki
2,j2
· · ·ki

d,jd
. Assuming the

activation function g : R × R → R denotes multiplication, we have ki
1,j1

ki
2,j2
· · ·ki

d,jd
=

ki
1,j1
×g ki

2,j2
×g · · · ×g ki

d,jd
, where a ×g b = g(a, b) = ab. Let g be an activation function

such that ∀a, b, c ∈ R : g(g(a, b), c) = g(a, g(b, c)), g(a, b) = g(b, a), the tensor decomposition (4)
can be generalized by defining Kj1,j2,...,jd =

∑N
i=1 wi ×g k

i
1,j1
×g · · · ×g k

i
d,jd

. So we have gCP
decomposition (6), where ◦g denotes the generalized outer product by replacing multiplication with
the activation function g.

K =

N∑
i=1

wi ×g k
i
1 ◦g ki

2 · · · ◦g ki
d (6)

Further, we substitute g for multiplication in (1) and obtain the g-convolution (7).

I ′p = (K ∗g I)p =
∑
q∈Ωp

Kpq ×g Iq (7)

Applying (6) to (7), we get (8) which sequentially performs N 1-D g-convolutions.

I ′ = K ∗g I =

N∑
i=1

wi ×g k
i
1 ∗g ki

2 · · · ∗g ki
d ∗g I (8)

3.2.2 gCP Layer as gCP Decomposition

Kpq and Iq in (7) form two d-order tensors. Taking K̂ and Î to denote them and putting (6) into (8),
we have (9). Letting lj be a vector and putting Îv1,...,vd =

∏d
j=1 lj,vj = lj,v1×g lj,v2×g · · ·×g lj,vd

into (9), we obtain (10) which is consisted of three operations: 1, the g-affine mapping (g-aff mapping)
defined by

∑
v k

i
j,v ×g lj,v; 2, the g-multiplication pooling (g-mul pooling) described by

∏d
j=1; 3,

the weighted average pooling (g-avg pooling) given by
∑N

i=1 wi. The activation function g introduces
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I ′p = (K ∗g I)p =
∑

j1,...,jd

K̂j1,...,jd ×g Îj1,...,jd

=
∑

v1,...,vd

N∑
i=1

wi ×g

d∏
j=1

ki
j,vj
×g Îv1,...,vd

(9)

Î
′
p =

N∑
i=1

wi ×g

d∏
j=1

∑
v

ki
j,v ×g lj,v (10)

nonlinearity to the three operations. Figure 2a plots the architecture, where the input is a matrix, the
g-aff mapping transforms lj,v denoted by the black line in the input to a new black vector in m1, the
g-mul pooling maps each red vector in m1 to a scaler in vector v1 and the g-avg pooling reduces the
element number of v1 to 1. In fact, the three operations belong to two categories. the g-avg pooling
just is a special case of g-aff mapping. At last, we coin this layer as gCP layer as it implements the
gCP decomposition for K.

3.2.3 Cascaded gCP Layers as gHT (g Hierarchical Turker) Decomposition

The expressive power of neural network has a close connection with the depth of layers. We cascade
multiple gCP layers to extend the expressive ability in this section. The gCP layer maps a matrix to a
scalar. As illustrated in Figure 2a, the g-aff mapping changes the element number of each red fiber,
the g-mul pooling reduces the number of channels to 1 and the g-avg pooling decreases the element
number of v1 to 1. If we replace the global pooling in the g-mul pooling by the local pooling, the
output will become a matrix. Similarly, if we increase the output number of the last operation (the
g-avg pooling is turned to the g-aff mapping), the output will be a vector. In this way, the gCP layer
maps a matrix to another matrix and we can cascade two CP-layers together. Figure 2b provides a
demo of two cascaded gCP layers, where the last g-aff mapping of the first gCP layer and the first
g-aff mapping of the second gCP layer are merged as one g-aff mapping.

Cascaded gCP layers implement g hierarchical tucker decomposition [Hackbusch and Kühn, 2009],
which replaces the multiplication by g in hierarchical tucker decomposition as we do for gCP.
For example, a g hierarchical turker decomposition for a 4-order tensor K with two layers can

K =

N2∑
m=1

wm ×g

2∏
n=1

Km
n with Km

n =

N1∑
i=1

wm
ni ×g

2∏
j=1

kmi
nj (11)

be expressed as (11). Put (11) into convolution formula, we have (12). Comparing (12) to the

I ′p =

N2∑
m=1

wm ×g

2∏
n=1

Î
m

n with Î
m

n =

N1∑
i=1

wm
ni ×g

2∏
i=1

∑
v

kmi
nj,v ×g lj,v (12)

architecture in Figure 2b, we can find that the operators
∑

v k
mi
nj,v,

∏2
i=1,

∑N1

i=1 w
m
ni,

∏2
n=1 and∑N2

m=1 wm corresponds the first g-aff mapping and g-mul pooling, the second g-aff mapping and
g-mul pooling, the g-avg pooling, respectively.

3.2.4 Proposed AccNet

Input: in sections (3.2.2) (3.2.3) we assumed Ipi
= lpi

1 ◦g· · ·◦gl
pi

d and form the matrix [lpi

1 , · · · , l
pi

d ]

as the network input for each point pi. To relax this assumption, we suppose Ipi =
∑l

j=1 I
j
pi

and
Ij

pi
= lpi

1j ◦g · · · ◦g l
pi

dj . The blurring value of each vertice pi on the bilateral grid or permutohedral
lattice depends on the values of its neighborhoods (an image batch Ipi

). For slicing, we need m
vertices pi surrounding the target point to interpolate its filtering result. So total m image batches
{Ipi

, 1 ≤ i ≤ m} are required to compute the results of target points encircled by {pi, 1 ≤ i ≤ m}.
To synthesize filtering values of target points encircled by {pi}, we compose Lj by concatenating
{Lj

pi
= [lpi

1j , · · · , l
pi

dj ], 1 ≤ i ≤ m} vertically. Further {Lj , 1 ≤ j ≤ l} are stacked together and
serves as our AccNet input. Figure 2c illustrates this, where color regions denote different parts
{Lj

pi
} of Lj and the light cube represents the 3-order input tensor.

Splatting: the splatting layer conducts the strided convolution. Theoretically, the convolution kernel
K is arbitrary. Here, we assume K = k1 ◦g · · · ◦g kd is a rank-one tensor in AccNet due to the
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Figure 3: Illustration for fast filtering approaches based on gCP and gHT decompositions. Taking
different tensor decomposition methods for the filtering kernel, we achieve different fast filtering
algorithms. (a) plots the computation graph of fast filtering scheme (7) for the gCP decomposition
K =

∑4
i=1

∏4
j=1 k

i
j . The path indicated by arrows presents the convolution sequence with kernels

{ki
j}. Final result is the sum of the outputs of all 4 paths. (b) shows the flow chart of fast filtering

scheme (12) for the gHT decomposition K =
∏2

m=1 Km with Km =
∑4

j=1

∏2
i=1 k

m
ij . Each input

connects to four outputs and thus produces four outputs. The red line indicates a convolution path.
Final result is the sum of the outputs of all 16 paths.

reasons: 1, AccNet takes three layers to approximate the convolution result. Even though the splatting
layer is simple, the approximation error can be reduced by increasing the complexity of the blurring
layer; 2, each slice of the input tensor of the blurring layer must be a rank-one matrix and the filtering
result I ′jpi

with a rank-one kernel K for a rank-one input tensor Ij
pi

= lj,1pi
◦g · · · ◦g lj,dpi

is also a
rank-one tensor.

Blurring: we prefer to employ cascaded gCP-layers to compose the blurring layer of AccNet as it
has more powerful expressive ability than single gCP-layer. Figure 2c provides a two gCP-layers
example. For each slice Lj

pi
= [lpi

1j , · · · , l
pi

dj ], the blurring layer produces a scalar value zjpi
.

Slicing: let zj = [zjp1
, . . . , zjpm

], the slicing layer maps zj to a vector tj , where each element of tj

corresponds to the interpolated values of the pixels surrounded by {pi} and the value of each pi are
from Ij

pi
. Since Ipi

=
∑l

j=1 I
j
pi

, there are total l different zj and therefore we obtain l different
tj . The final result is the sum of {tj , 1 ≤ j ≤ l}.
g function: the function plays an important role in our AccNet. First, it introduces nonlinearity to
AccNet. This strengthens the expressive power of our AccNet. Second, it defines new convolutions.
Employing g-conv operation, we can easily define novel splatting, blurring and slicing operations.
There are many possible g functions meeting the associativity g(g(a, b), c) = g(a, g(b, c)) and
commutativity g(a, b) = g(b, a) requirements. Here we list two of them used in AccNet: 1, g(a, b) =
max{a, 0}max{b, 0}; 2, g(a, b) = max{ab, 0}.
Gradients: The gradients of both sum and g function can be easily obtained. Therefore, AccNet as a
composition of the two basis calculations can be easily trained by the back-propagation algorithm.

4 Approximation & Fast Filtering

In section 3, we discussed the layers of AccNet as well as the way to transform the SBS to an AccNet.
Here, we describe an approach to compose an expressive powerful AccNet and to turn it back to SBS.

Expressive Powerful AccNet: the expressive power of AccNet determines the approximation error.
We have two ways to increase this power. One is to introduce the nonlinear activation function to
AccNet. Unlike traditional SBS taking the CP decomposition for acceleration, we implement gCP
decomposition in AccNet. Another way is to make AccNet deeper. In this way, gCP becomes gHT.
At last, we note that we can choose different activation functions in different layers. This is because
splatting, blurring and slicing operations are essentially convolutions therefore we can take different
gCTs and gHTs to accelerate their computation.

From AccNet to SBS: the weights as well as the activation function of three AccNet layers define the
splatting, blurring and slicing kernels. The correspondences between AccNet weights and convolution
kernels are determined by (7) (8) for the gCP decomposition and (11) (12) for the gHT decomposition.
For easy understanding, we visualize the computation graph of an AccNet in Figure 3. Figure 3a
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Table 1: Filtering accuracy comparison for the bilateral grid acceleration method (BG), the permuto-
hedral lattice acceleration method (PL) and our AccNet, where the sampling period of splatting is 3,
the radius of blurring is 1 and the radius of original convolution is 5.

2D 3D 5D
σ = 2 σ = 4 σ = 8 σ = 16 σ = 2 σ = 4 σ = 8 σ = 16 σ = 2 σ = 4 σ = 8 σ = 10

BG 0.952 0.768 0.587 0.288 1.225 1.085 0.813 0.668 1.804 1.552 1.179 0.878
AccNet 0.309 0.249 0.165 0.054 0.336 0.276 0.267 0.171 0.853 0.465 0.349 0.259

PL 0.541 0.657 0.419 0.239 1.107 0.893 0.733 0.604 1.712 1.488 1.005 0.854
AccNet 0.273 0.175 0.142 0.051 0.381 0.243 0.203 0.153 0.528 0.423 0.299 0.213

takes the gCT decomposition K =
∑4

i=1

∏4
j=1 k

i
j to implement the fast convolution algorithm and

Figure 3b records the fast convolution for the gHT decomposition K =
∏2

m=1

∑4
j=1

∏2
i=1 k

m
ij ,

where circles denote convolution operations with specific filtering kernels k and arrows indicate the
computation order.

The two examples in Figure 3 disclose the superiority of gHT decomposition based acceleration
algorithms. In Figure 3a, each convolution kernel is only used by one computation path. In contrast,
the convolution kernel in Figure 3b is used by multiple times. The reuse advantages are twofold: 1, we
can reduce the approximation error because more terms can be used to approximate original kernels;
2, we can reduce the execution time by reusing the convolution result sharing the same convolution
node. For example, the filtering path k1

11 → k1
21 → k2

11 → k2
21 and k1

11 → k1
21 → k2

12 → k2
22 share

the filtering results of k1
11 → k1

21.

5 Experiments

AccNet is the first neural network producing fast convolution algorithms. To reveal its advantages,
three experiments are conducted: 1, we compare our AccNet designed acceleration method to the
handmade bilateral grid and permutohedral lattice acceleration methods; 2, we provide a new neural
network to automatically design fast algorithm and compare it to AccNet; 3, we employ AccNet to
design new acceleration algorithms for non-Gaussian convolution and demonstrate their applications.
In the following experiments, the blurring layer of AccNet is composed by two cascaded gCP layers
and the activation function is g(a, b) = max(ab, 0).

Fast Gaussian convolution comparison: Both bilateral grid acceleration method (BG) and permu-
tohedral lattice acceleration method (PL) are designed for fast Gaussian convolution. The major
difference between them is the underlying grid. Our AccNet can be applied to both bilateral grid
and permutohedral lattice. To illustrate the filtering accuracy of the methods produced by AccNet,
we keep their convolution number same to BG and PL and evaluate their filtering accuracy. Table 1
records the quantitative comparison results, where the first row denotes the dimension of the Gaussian
kernel, σ denotes the bandwidth of kernel, the accuracy is measured by MSE (the mean-square error),
the first two rows record the results of BG and AccNet on the bilateral grid and the last two rows plot
the results of PL and AccNet on the permutohedral lattice.

Acceleration network comparison: SBS sequentially conducts three convolutions. We can turn it
to a CNN with three layers and further transform each CNN layer to d cascaded 1-D convolution
according to the CP decomposition (4) (5). The differences between this network and our AccNet are
that: 1, the depth of each layer of this CNN model is proportional to the dimension of filtering kernel.
In contrast, the layer depth of AccNet only depends on the desired expressive power of the layer and
the expressive power of the simplest AccNet layer equal to the expressive power of CNN layer. 2, the
CNN model is hard to express the gHT decomposition (11) as its straightforward processing pipeline
is similar to Figure 3a and could not reuse intermediate results as AccNet does in Figure 3b.

The first shortcoming makes the CNN model deeper for high-dimensional convolution. We thus have
to spend more time to tweak it. What’s worse, the depth does not increase the expressive power of

Table 2: Two acceleration neural networks (CNN and AccNet) comparisons. The bandwidth of target
Gaussian kernel is 5 and the underlying lattice is the bilateral grid.

2D 3D 5D
Filtering Error Training Time Filtering Error Training Time Filtering Error Training Time

CNN 0.245 12.5h 0.283 13.1h 0.473 14h
AccNet 0.239 7.2h 0.271 7.3h 0.461 7.6h
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this model because its expressive power is determined by the number N of cascaded 1-D convolution
pipelines. The second weakness causes its inferiority of the expressive power when we limits its
convolution number equal to AccNet. This usually means larger filtering errors in filtering. To prove
these, we plot Table 2 which records the training time as well as the filtering error measured by MSE,
where the dimension of filtering kernel varies from 2-D to 5-D.

Fast non-Gaussian filtering: Non-Gaussian blur becomes popular recently. To illustrate the power
of our AccNet, we demonstrate three applications of fast non-Gaussian filtering in machine learning,
computer vision and computer graphics, respectively.

(a) Input (b) Krähenbühl (c) Ours

Figure 4: Pixel-level segmentation results of two
fully connected CRF implementations. (a) is in-
put images. (b) is the segmentation results of
Krähenbühl. (c) records our segmentation results.

(a) Input (b) Paris (c) Ours

Figure 5: Detail enhancement of two local
Laplace filtering implementations. (a) is input
images. (b) is the filtering results of Paris. (c)
denotes our results.

Table 3: Stereo matching quantitative comparison.
All NoOcc

bad 1% MAE RMS bad 1% MAE RMS
[Zbontar and LeCun, 2015] 20.07 5.93 18.36 10.42 1.94 9.07

[Barron and Poole, 2016] 19.49 2.81 8.44 11.33 1.40 5.23
Ours 19.21 2.13 7.79 10.41 1.34 4.96

CRF inference: The pairwise edge potentials used in the fully connected CRFs [Krähenbühl and
Koltun, 2011] is the Gaussian mixture kernels. Krähenbühl and Koltun [2011] provided a highly
efficient approximate inference algorithm by showing a mean field update of all variables in a fully
connected CRF can be performed using Gaussian filtering in the feature space. In order to speed up
the computation via the separability of the Gaussian kernel Gi, Krähenbühl has to perform multiple
times Gaussian filtering. Employing AccNet, we can accelerate the Gaussian mixture kernels directly.
Compared to the original method, we save 60% of the time while producing the same segmentation
results as shown in Figure 4.

Bilateral solver: Bilateral solver [Barron and Poole, 2016] allows for some optimization problems
with bilateral affinity terms to be solved quickly, and also guarantees that the solutions are smoothed
within objects, but not smooth across edges. Although the prior used by bilateral solver is arbitrary in
theory, bilateral solver can only take the Gaussian function as it is the only function can be presented
by SBS before our work. Here we take the smooth exponential family prior [Zhang and Allebach,
2008] to construct non-Guassian bilateral solver and apply it stereo post-processing procedure of
MC-CNN [Zbontar and LeCun, 2015] following the way of [Barron and Poole, 2016]. In Table 3,
we record the quantitative results, where “bad 1%” presents the percent of pixels whose disparities
are wrong by more than 1, “MAE” stands for the mean absolute error and “RMS” is the root mean
square error.

Local Laplace filtering: Local Laplacian filter [Paris et al., 2011] is an edge-aware operator that
defines the output image Ī by constructing its Laplacian pyramid {L[Ī]} coefficient by coefficient.
Aubry et al. [2014] present the Laplacian coefficient at level l and position p as the nonlinear
convolution {Ll[Ī](p)} =

∑
q∈Ωp

Dl(q − p)f(Iq − g)(Iq − g), where f is a continuous function,
Dl is the difference-of-Gaussians filter defining the pyramid coefficients at level l and g is the
coefficient of the Gaussian pyramid at (l,p). Obviously, this convolution can be accelerated by
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AccNet and achieves speed-ups on the order of 100 times. Figure 5 visualizes the similar detail
enhancement results of Paris and ours.

6 Conclusion

In this paper, we propose the first neural network producing fast high-dimensional convolution
algorithms. We take AccNet to express the approximation function of SBS and generalize SBS by
changing the architecture of AccNet. Once training is finished, new fast convolution algorithm can
be easily derived from the weights and activation functions of each layer. Experiments prove the
effectiveness of our algorithm.
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