
A Examples of Optimized Feature Maps

Assume that a feature map φ : (X)→ L2(ω,Ω, ν) satisfies that φ(ω;x) is bounded for all ω and x.
We can always convert it to an optimized feature map using the method proposed by Bach [2017].
We rephrase it using our notation as follows.

Define

p(ω) =
‖(Σ + µI)−1/2φ(·;ω)‖2L2(X ,P)∫

Ω
‖(Σ + µI)−1/2φ(·;ω)‖2L2(X ,P) dν(ω)

. (2)

Since φ is bounded, its L2 norm is finite. The function p defined above is a probability density
function with respect to ν. Then the new feature map is given by φ̃(ω;x) = φ(ω;x)/

√
p(ω) together

with the measure p(ω)dν(ω). With φ̃, we have

sup
ω∈Ω

∥∥∥(Σ + µI)−1/2φ̃(·;ω)
∥∥∥2

= sup
ω∈Ω

∥∥(Σ + µI)−1/2φ(·;ω)
∥∥2

p(ω)
(3)

=

∫
Ω

‖(Σ + µI)−1/2φ(·;ω)‖2L2(X ,P) dν(ω) (4)

= tr(Σ(Σ + µI)−1) . (5)

When the feature map is constructed mapping into L2(X ,P) as described in Section 2, it is optimized.
Indeed, we can compute

sup
ω∈X

∥∥∥(Σ + µI)−1/2φ(·;ω)
∥∥∥2

= sup
ω∈X

∥∥∥∥∥
∞∑
i=1

√
λi√

λi + µ
ei(·)

∥∥∥∥∥
2

(6)

=

∞∑
i=1

λi
λi + µ

. (7)

As an example for this type of feature map, we can consider {ei} to be the Walsh system, which
is an orthonormal basis for L2([0, 1]). Any Bayes classifier with finitely many discontinuities and
discontinuous only at dyadic, namely points expressable by finite bits, points, will be a finite linear
combination of Walsh basis. This guarantees that the assumptions in Theorem 1 can be satisfied. Our
first experiment also make use of this construction.

The construction above is inspired by the use of spline kernel in Rudi and Rosasco [2017]. However,
our situation is more complicated since the target function, Bayes classifier, is discontinuous. While
the functions in the RKHS generated by the spline kernel must be continuous (Cucker and Smale
[2002]). Though we can construct Bayes classifier using the Walsh basis, we have yet to understand
the variety of possible Bayes classifiers in such a space.

B Local Rademacher Complexity of RFSVM

Before the proofs, we first briefly summarize the use of each lemmas and theorems. Theorem 3 and
4 are two fundamental external results for our proof. Lemma 7 and 8 refine results that appeared
in previous works, so that we can apply them to our case. Lemma 3, 4 and 5 are the key results to
establish fast rate for RFSVM, parallel to Steinwarts’ work for KSVM. All other smaller and simpler
lemmas included in the appendices are for the purposes of clarity and completeness. The proofs are
not hard but quite technical.

First, both of our theorems are consequences of the following fundamental theorem. In the theorem,
`1 is the hinge loss clipped at 1, and R1

P,λ is the expected regularized risk of `1.

Theorem 3. (Theorem 7.20 in Steinwart and Christmann [2008]) For a RKHS F , denote
inff∈F R

1
P,λ(f)−R∗ by r∗. For r > r∗, consider the following function classes

Fr := {f ∈ F | R1
P,λ(f)−R∗ ≤ r}

and
Hr := {`1 ◦ f − `1 ◦ f∗P | f ∈ Fr} .
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Assume that there exists V ≥ 1 such that for any f ∈ F ,

EP(`1 ◦ f − `1 ◦ f∗P )2 ≤ V (R1
P(f)−R∗) .

If there is a function ϕm : [0,∞) → [0,∞) such that ϕm(4r) ≤ 2ϕm(r) and Rm(Hr) ≤ ϕm(r)
for all r ≥ r∗, Then, for any δ ∈ (0, 1], f0 ∈ F with ‖`hinge ◦ f0‖∞ ≤ B0, and

r > max

{
30ϕm(r),

72V ln(1/δ)

m
,

5B0 ln(1/δ)

m
, r∗
}
,

we have
R1

P,λ(fm,N,λ)−R∗ ≤ 6
(
RhP,λ(f0)−R∗

)
+ 3r

with probability greater than 1− 3δ.

To establish the fast rate of RFSVM using the theorem above, we must understand the local
Rademacher complexity of RFSVM: that is, find a formula for ϕm(r). B0, r

∗ and f0 are only
related with the approximation error, and we leave the discussion of them to next sections. The
variance condition Equation 1 is satisfied under Assumption 1. With this variance condition, we can
upper bound the Rademacher complexity of RFSVM in terms of number of features and regularization
parameter. It is particularly important to have 1/λ inside the logarithm function.

First, we will need the summation version of Dudley’s inequality using entropy number defined
below, instead of covering number.

Definition 2. For a semi-normed space (E, ‖ · ‖), we define its (dyadic) entropy number by

en(E, ‖ · ‖) := inf

ε > 0 : ∃s1, . . . , s2n−1 ∈ B1 s.t. B1 ⊂
2n−1⋃
i=1

B(si, ε)

 ,

where B1 is the unit ball in E and B(a, r) is the ball with center at a and radius r.

To take off the loss function from the hypothesis class, we have the following lemma. ‖ · ‖L2(D) is
the semi-norm defined by ‖ · ‖L2(D) := ( 1

m

∑
i f

2(xi))
1/2.

Lemma 1. ei(Hr, ‖ · ‖L2(D)) ≤ ei(Fr, ‖ · ‖L2(D))

Proof. Assume that T is an ε-covering over Fr with |T | = 2i. By definition ε ≥ ei(Fr, ‖ · ‖L2(D)).
Then T ′ = `1 ◦ T − `1 ◦ f∗P is a covering overHr. For any f and g in Fr,∥∥`1 ◦ f − `1 ◦ g∥∥

L2(D)
≤ 1 · ‖f − g‖L2(D) ,

because `1 is 1-Lipschitz. And hence the radius of the image of an ε-ball under `1 is less than ε.
Therefore `1 ◦ T − `1 ◦ f∗P is an ε-covering overHr with cardinatily 2i and ε ≤ ei(Fr, ‖ · ‖L2(D)).
By taking infimum over the radius of all such T and T ′, the statement is proved.

Now we need to give an upper bound for the entropy number of Fr with semi-norm ‖ · ‖L2(D) using
a volumetric estimate.

Lemma 2. ei(Fr, ‖ · ‖L2(D)) ≤ 3(2r/λ)1/22−i/2N .

Proof. Since F consists of functions

f(x) =
1√
N

N∑
i=1

wci cos

(
ωi · x
γ

)
+ wsi sin

(
ωi · x
γ

)
,

under the semi-norm ‖ · ‖L2(D) it is isometric with the 2N -dimensional subspace U of Rm spanned
by the vectors{[

cos

(
ωi · x1

γ

)
, . . . , cos

(
ωi · xm
γ

)]ᵀ
,

[
sin

(
ωi · x1

γ

)
, . . . , sin

(
ωi · xm
γ

)]ᵀ}N
i=1
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for fixed m samples. For each f ∈ Fr, we have R1
P,λ(f) − R∗ ≤ r , which implies that ‖f‖F ≤

(2r/λ)1/2 . By the property of RKHS, we get

|f(x)| ≤ ‖f‖F ‖k(x, ·)‖F ≤
(

2r

λ

)1/2

· 1 ,

where we use the fact that k(x, ·) is the evaluation functional in the RKHS.

Denote the isomorphism from F (modulo the equivalent class under the semi-norm) to U by I . Then
we have

I(Fr) ⊂ Bm∞

((
2r

mλ

)1/2
)
∩ U ⊂ Bm2

((
2r

λ

)1/2
)
∩ U .

The intersection region can be identified as a ball of radius (2r/λ)1/2 in R2N . Its entropy number by
volumetric estimate is given by

ei

(
B2N

2

((
2r

λ

)1/2
)
, ‖ · ‖2

)
≤ 3

(
2r

λ

)1/2

2−
i

2N .

With the lemmas above, we can get an upper bound on the entropy number of Hr. However, we
should note that such an upper bound is not the best when i is small. Because the ramp loss `1 is
bounded by 2, the radius ofHr with respect to ‖ · ‖L2(D) is bounded by 1, which is irrelevant with
r/λ. This observation will give us finer control on the Rademacher complexity.
Lemma 3. Assume that λ < 1/2. Then

RD(Hr) ≤
√

(ln 16)N log2 1/λ

m

(
3
√

2ρ+ 18
√
r
)
,

where ρ = suph∈Hr ‖h‖L2(D).

Proof. By Theorem 7.13 in Steinwart and Christmann [2008], we have

RD(Hr) ≤
√

ln 16

m

( ∞∑
i=1

2i/2e2i(Hr ∪ {0}, ‖ · ‖L2(D)) + sup
h∈Hr

‖h‖L2(D)

)
.

It is easy to see that ei(Hr ∪ {0}) ≤ ei−1(Hr) and e0(Hr) ≤ suph∈Hr ‖h‖L2(D). Since ei(Hr) is
a decreasing sequence with respect to i, together with the lemma above, we know that

ei(Hr) ≤ min

{
sup
h∈Hr

‖h‖L2(D), 3

(
2r

λ

)1/2

2−
i

2N

}
.

Even though the second one decays exponentially, it may be much greater than the first term when
2r/λ is huge for small is. To achieve the balance between these two bounds, we use the first one for
first T terms in the sum and the second one for the tail. So

RD(Hr) ≤
√

ln 16

m

(
sup
h∈Hr

‖h‖L2(D)

T−1∑
i=0

2i/2 + 3

(
2r

λ

)1/2 ∞∑
i=T

2i/22−
2i−1
2N

)
.

The first sum is
√

2
T−1√
2−1

. When T is large enough, the second sum is upper bounded by the integral∫ ∞
T−1

2x/22−2x−1/2N dx ≤ 6N

2T/2
· 2− 2T

4N .

To make the form simpler, we bound
√

2
T−1√
2−1

by 3 · 2T/2, and denote suph∈Hr ‖h‖L2(D) by ρ. Taking
T to be

log2

(
2N log2

(
1

λ

))
,
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we get the upper bound of the form

RD(Hr) ≤
√

ln 16

m

(
3ρ

√
2N log2

1

λ
+

18
√
Nr

log2(1/λ)

)
,

When λ < 1/2, log2 1/λ > 1, so we can further enlarge the upper bound to the form

RD(Hr) ≤
√

(ln 16)N log2 1/λ

m

(
3
√

2ρ+ 18
√
r
)
,

Next lemma analyzes the expected Rademacher complexity forHr.
Lemma 4. Assume λ < 1/2 and Eh2(x, y) ≤ V Eh(x, y). Then

Rm(Hr) ≤ C1

√
N(V + 1) log2(1/λ)

m

√
r + C2

N log2(1/λ)

m
.

Proof. With Lemma 3, we can directly compute the upper bound for Rm(Hr) by taking expectation
over D ∼ Pm.

Rm(Hr) = ED∼PmRD(Hr)

≤
√

(ln 16)N log2 1/λ

m

(
3
√

2E sup
h∈Hr

‖h‖L2(D) + 18
√
r

)
.

By Jensen’s inequality and A.8.5 in Steinwart and Christmann [2008], we have

E sup
h∈Hr

‖h‖L2(D) ≤
(
E sup
h∈Hr

‖h‖2L2(D)

)1/2

≤

(
E sup
h∈Hr

1

m

m∑
i=1

h2(xi, yi)

)1/2

≤
(
σ2 + 8Rm(Hr)

)1/2
,

where σ2 := Eh2. When σ2 > Rm(Hr), we have

Rm(Hr) ≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2σ + 18
√
r
)

≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2
√
V r + 18

√
r
)

≤ 36

√
2(ln 16)N(V + 1) log2(1/λ)

m

√
r .

The second inequality is because Eh2 ≤ V Eh and Eh ≤ r for h ∈ Hr.
When σ2 ≤ Rm(Hr), we have

Rm(Hr) ≤
√

(ln 16)N log2(1/λ)

m

(
9
√

2
√
Rm(Hr) + 18

√
r
)

≤ 36

√
(ln 16)N log2(1/λ)

m

√
r + 362 (ln 16)N log2(1/λ)

m
.

The last inequality can be obtained by dividing the formula into two cases, either Rm(Hr) < r or
Rm(Hr) ≥ r and then take the sum of the upper bounds of two cases.

Combining all these inequalities, we finally obtain an upper bound

Rm(Hr) ≤ C1

√
(V + 1)N log2(1/λ)

m

√
r + C2

N log2(1/λ)

m
,

where C1 and C2 are two absolute constants.
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The last lemma gives the explicit formula of ϕm(r). Now we can get the formula for r.
Lemma 5. When

r = (900C2
1 + 120C2)N(V + 1)

ln(1/λ)

m
+ (5B0 + 72V )

ln(1/δ)

m
(8)

we have

r ≥ max{30ϕm(r),
72V ln(1/δ)

m
,

5B0 ln(1/δ)

m
}. (9)

It can be check by simply plugging r into ϕm(r).

C Proof of Theorem 1

With Theorem 3 and Lemma 5, we are almost done with the proof of Theorem 1. The only missing
part is an upper bound of the approximation error RhP,λ(f0) − R∗. This upper bound has been
established in Proposition 1 in Bach [2017]. We rephrase it as below.
Theorem 4. (Proposition 1 of Bach [2017]) Assume that φ is an optimized feature map and f belongs
to the RKHS F of φ. For δ > 0, when

N ≥ 5d(µ) log

(
16d(µ)

δ

)
, (10)

there exists β ∈ RN with norm less than 2, such that

sup
‖f‖F≤1

‖f − β · φN (·)‖L2(X ,P) ≤ 2
√
µ , (11)

with probability greater than 1− δ.

Now we prove two simple lemmas connecting the decay rate of Σ to the magnitude of d(µ).
Lemma 6. If λi(Σ) ≤ c1i−c2 , where c2 > 1, we have

d(µ) ≤ 2c2
c2 − 1

(
c1
µ

)1/c2

, (12)

for µ < c1.

If λi(Σ) ≤ c3 exp(−c4i1/d), we have

d(µ) ≤ 5c−d4 lnd(c3/µ) , (13)

for µ < c3 exp
(
−
(
c4 ∨ 1

c4

)
d2
)

.

Proof. Both results make use the following observation:

d(µ) =

∞∑
i=1

λi
λi + µ

≤ mµ +
1

µ

∞∑
mµ+1

λi , (14)

where mµ = max{i : λi ≤ µ}|.

When λi ≤ c1i−c2 , denote tµ = (c1/µ)1/c2 and then mµ = btµc. For the tail part,

1

µ

∞∑
mµ+1

λi ≤ 1 +
1

µ

∫ ∞
tµ

c1x
−c2 dx (15)

≤ 1 +
1

c2 − 1

(
c1
µ

) 1
c2

. (16)

Combining them together, when c1/µ > 1, the constant 1 can be absorbed by the second term with a
coefficient 2.
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When λi ≤ c3 exp(−c4i1/d), denote tµ = 1
cd4

lnd
(
c3
µ

)
, and then mµ = btµc. For the tail part, we

need to discuss different situations.

First, if d = 1, then we directly have

1

µ

∞∑
mµ+1

λi
λi + µ

≤ 1

µ

(
µ+

∫ ∞
tµ

c3 exp(−c4x) dx

)
(17)

= 1 +
1

c4
. (18)

When µ < c3 exp(−(c4 ∨ 1
c4

)), we can combine these terms into 3tµ.

Second, if d ≥ 2, when µ ≤ c3 exp(−c4e), we have that

exp(−c4x1/d) ≤ exp(−c4
t
1/d
µ

ln tµ
lnx) = x

−c4
t
1/d
µ

ln tµ . (19)

Then,

1

µ

∞∑
mµ+1

λi ≤ 1 +
1

µ

∫ ∞
tµ

c3 exp(−c4x−1/d) dx (20)

≤ 1 +
c3
µ

∫ ∞
tµ

x
−c4

t
1/d
µ

ln tµ (21)

= 1 +
tµ

c4
t
1/d
µ

ln tµ
− 1

. (22)

When c4 ≥ 1, we may assume that µ ≤ c3 exp(−c4d2), and then

c4
t
1/d
µ

ln tµ
− 1 ≥ c4d

2

2d ln d
≥ 4

3
. (23)

So the upper bound has the form 5tµ.

When c4 < 1, we may assume that µ ≤ c3 exp(−d2/c4), and then

c4
t
1/d
µ

ln tµ
− 1 ≥ d2/c4

2d ln(d/c4)
≥ 4

3
. (24)

So the upper bound also has the form 5tµ.

Now with all these preparation, we can complete our proof of Theorem 1

Proof. Under the assumption of Theorem 1, B0 = 1 and r∗ = 0 in Theorem 3. By Lemma 5, we
have

r = (900C2
1 + 120C2)N(V + 1)

ln(1/λ)

m
+ (5 + 72V )

ln(1/δ)

m
. (25)

By Theorem 4, we have

RhP,λ(f0)−R∗ ≤ 2
√
µR+ 4R2λ

2
, (26)

with probability 1− δ when N ≥ 5d(µ) log
(

16d(µ)
δ

)
.

When the spectrum of Σ decays polynomially,

d(µ) ≤ 2c2
c2 − 1

(
c1
µ

)1/c2

. (27)

Assume m > c
−(2+c2)/(2c2)
1 . By choosing µ = c1m

− 2c2
2+c2 < c1 and λ = m−c2/(2+c2), we have

N = 10c1,2m
2

2+c2 (ln(32c1,2m
2

2+c2 ) + ln(1/δ)) , (28)
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and

RhP,λ(fm,N,λ)−R∗ ≤ 12R

m
c2

2+c2

+
12R2

m
c2

2+c2

(29)

+ 30C1,2c1,2(ln 32c1,2 +
2

2 + c2
lnm+ ln(1/δ))(V + 1)

c2
2 + c2

lnm

m
c2

2+c2

(30)

+
15 + 216V

m
ln(1/δ) , (31)

with probability 1− 4δ, where

C1,2 = 900C2
1 + 120C2, c1,2 =

c2c
1/c2
1

c2 − 1
. (32)

When the spectrum of Σ decays sub-exponentially,

d(µ) ≤ 5c−d4 lnd(c3/µ) . (33)

Assume that m > exp(−(c4 ∨ 1
c4

)d2/2). By choosing µ = c3/m
2 and λ = 1/m, we have

N = 25cd,4 lnd(m)(ln(80cd,4 lnd(m)) + ln(1/δ)) , (34)

and

RhP,λ(fm,N,λ)−R∗ ≤
12R
√
c3

m
(35)

+
12R2

m
+ 150C1,2cd,4(ln 160cd,4 + d ln lnm+ ln(1/δ))(V + 1)

lnd+1m

m
(36)

+
15 + 216V

m
ln(1/δ) , (37)

with probability 1− 4δ, where

C1,2 = 900C2
1 + 120C2, cd,4 =

(
2

c4

)d
. (38)

D Proof of Theorem 2

Theorem 2 requires a further analysis of the approximation error of RKHS to the Bayes classifier.
This part adopts Steinwart and Christmann [2008]’s idea of margin noise exponent. We say that the
data distribution P has margin noise exponent β > 0 if there exists a positive constant c such that∫

{x:∆(x)<t}
|y|dP(x, y) ≤ ct−β ∀t ∈ (0, 1) . (39)

Therefore, infinite β corresponds to our separation condition with τ = 1. However, the original proof
of the approximation error that works with the margin noise exponent cannot be generalized to the
case of infinite β, because the coefficient Γ(d+ β)/2d will blow up (see Theorem 8.18 in Steinwart
and Christmann [2008]). This issue can be resolved by modifying the original proof, as shown below.
Lemma 7. Assume that there exists τ > 0 such that∫

{x:∆(x)<t}
|2η(x)− 1| dPX (x) = 0 ,∀t < τ , (40)

where X ⊂ Bd(ρ) and η(x) is a version of P(y = 1|x). Then there exists a function f in the RKHS
generated by the kernel

kγ(x, x′) = exp

(
−‖x− x

′‖2

2γ2

)
(41)
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where γ < τ/
√
d− 1 such that

Rh(f)−R∗ < 4τd−2

Γ(d/2)
exp

(
− τ

2

γ2

)
γd−2 ,

‖f‖F ≤
(
√
π/2ρ2)d/2

Γ(d/2 + 1)
γ−d/2

and
|f(x)| ≤ 1 . (42)

Proof. First we define
Xy := {x : (2η(x)− 1)y > 0} for y = ±1 , (43)

and g(x) := (
√

2πγ)−d/2sign(2η(x) − 1). It is square integrable since η(x) = 1/2 for all x /∈ X .
Then we map g onto the RKHS by the integral operator determined by kγ ,

f(x) :=

∫
Rd
φγ(t;x)g(t) dt , (44)

where

φγ(t;x) =

(
2

πγ2

)d/4
exp

(
−‖x− t‖

2

γ2

)
. (45)

Note that it is a special property of Gaussian kernel that the feature map onto L2(Rd) also has a
Gaussian form. For other type of kernels, we may not have such a convenient characterization.

We know that

‖f‖H = ‖g‖L2 ≤
√

Vol(Bd(ρ))

(
√

2πγ)d/2
=

(
√
π/2ρ2)d/2

Γ(d/2 + 1)
γ−d/2 . (46)

Moreoever,

|f(x)| ≤
∫
Rd
φγ(t;x)(

√
2πγ)−d/2 dt

= (πγ2)−d/2
∫
Rd

exp

(
−‖x− t‖

2

γ2

)
dt

= 1 .

Since f is uniformly bounded by 1, by Zhang’s inequality, we have

Rh(f)−R∗ = EPX (|f(x)− sign(2η(x)− 1)||2η(x)− 1|) . (47)
Now we give an upper bound on |f(x) − sign(2η(x) − 1)|. Assume x ∈ X1. Then we know that
f(x) ≤ sign(2η(x)− 1) = 1,

1− f(x) = 1−
(

1

πγ2

)d/2 ∫
Rd

exp

(
−‖x− t‖

2

γ2

)
sign(2η(t)− 1) dt

= 1−
(

1

πγ2

)d/2 ∫
X1

exp

(
−‖x− t‖

2

γ2

)
dt

+

(
1

πγ2

)d/2 ∫
X−1

exp

(
−‖x− t‖

2

γ2

)
dt

≤ 2− 2

(
1

πγ2

)d/2 ∫
B(x,∆(x))

exp

(
−‖x− t‖

2

γ2

)
dt

≤ 2− 2

(
1

πγ2

)d/2 ∫
B(0,∆(x))

exp

(
−‖t‖

2

γ2

)
dt

= 2

(
1

πγ2

)d/2 ∫
Rd\B(0,∆(x))

exp

(
−‖t‖

2

γ2

)
dt

=
4

Γ(d/2)γd

∫ ∞
∆(x)

exp

(
− r

2

γ2

)
rd−1 dr .
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Here the key is that B(x,∆(x)) ⊂ X1 when x ∈ X1. For x ∈ X−1, we have the same upper bound
for 1 + f(x). Therefore, we have

Rh(f)−R∗ ≤ 4

Γ(d/2)γd

∫
X

∫ ∞
0

1(∆(x),∞)(r) exp

(
− r

2

γ2

)
rd−1|2η(x)− 1| drdPX (x)

=
4

Γ(d/2)γd

∫ ∞
0

∫
X
1(0,r)(∆(x)) exp

(
− r

2

γ2

)
rd−1|2η(x)− 1| dPX (x)dr

≤ 4

Γ(d/2)γd

∫ ∞
τ

exp

(
− r

2

γ2

)
rd−1 dr

To get the last line, we apply the assumption on the expected label clarity. Now we only need to give
an estimate of the integral.∫ ∞

τ

exp

(
− r

2

γ2

)
rd−1 dr ≤

∫ ∞
τ

C exp

(
−α r

2

γ2

)
dr (48)

where
C = τd−1 exp(−(d− 1)/2) α = 1− 2γ2τ−2(d− 1) . (49)

It is required that γ <
√

2τ/
√
d− 1 so that α > 0. And then we can give an upper bound to the

excess risk

Rh(f)−R∗ ≤ 4τd

Γ(d/2)(2τ2 − (d− 1)γ2)
exp

(
− τ

2

γ2

)
γd−2 . (50)

If we further require that γ < τ/
√
d− 1, then we have a simpler upper bound,

4τd−2

Γ(d/2)
exp

(
− τ

2

γ2

)
γd−2 . (51)

Some remarks on this result:

1. The proof follows almost step by step the proof of Steinwart and Christmann [2008]. The
only difference occurs at where we apply our assumption.

2. The approximation error is basically dominated by exp(−c/γ2), and thus leaves us large
room for balancing with the norm of the approximator.

3. The proof here only works for Gaussian kernel. A similar conclusion may hold for General
RBF kernels using the fact that any RBF kernel can be expressed as an average of Gaussian
kernel over different values of γ. A relevant reference is Scovel et al. [2010].

The last component for the proof of Theorem 2 is the sub-exponential decay rate of the spectrum of
Σ determined by the Gaussian kernel. The distribution of the spectrum of the convolution operator
with respect to a distribution density function p has been studied by Widom [1963]. It shows that the
number of eigenvalues of Σ greater than µ is asymptotic to (2π)−d times the volume of{

(x, ξ) : p(x)k̂(ξ) > µ
}
,

where k̂ is the Fourier transform of the kernel function k. By applying Widom [1963]’s work in our
case, we have the following lemma. It is essentially Corollary 27 in Eric et al. [2008], but our version
explicitly shows the dependence on the band width β.

Lemma 8. Assume k̂(ξ) ≤ α exp(−β‖ξ‖2). If the density function p(x) of probability distribution
PX is bounded by B and X is a bounded subset of Rd with radius ρ, then

λi(Σ) ≤ CαB exp

(
−β
(

4Γ4/d(d/2 + 1)

π4/dρ2

)
i2/d

)
,

where λ1 ≥ λ2 ≥ · · · are eigenvalues of Σ in descending order.
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Proof. Denote by Et the set {
(x, ξ) : k̂(ξ)p(x) > t

}
.

The volume, that is, the Lebesgue measure of Et is denoted by Vol(Et). By Theorem II of Widom
[1963], the non-increasing function φ(α) defined on R+ which is equi-measurable with p(x)k̂(ξ)
describes the behaviour of λis. Indeed, λi ≤ Cφ((2π)di). By the volume formula of 2d-dimensional
ball we have the following estimate,

sup{s ∈ R+ : φ(s) > t} = Vol(Et)

≤ Cd,ρ
(

ln(αB/t)

β

)d/2
,

where

Cd,ρ =
ρdπd+2

Γ2(d/2 + 1)
. (52)

Solving for t, we know that

φ(s) ≤ αB exp

(
−β
( s
A

)2/d
)
.

Therefore, we have

λi(Σ) ≤ CαB exp

(
−β
(

(2π)di

A

)2/d
)

(53)

= CαB exp

(
−β
(

4Γ4/d(d/2 + 1)

π4/dρ2

)
i2/d

)
. (54)

Now we can prove Theorem 2.

Proof. Note that, by Lemma 7, we can construct g ∈ F such that RhP,λ −R∗ is controlled. And by
Theorem 4, we can find an f0 ∈ FN with similar risk to g. And this will be our f0 as required by
Theorem 3. So we have

RhP,λ(f0)−R∗ ≤
2(
√
π/2ρ2)d

Γ2(d/2 + 1)

λ

γd
+

2(
√
π/2ρ2)d/2

Γ(d/2 + 1)

√
µ (55)

+
4τd−2

Γ(d/2)
exp

(
τ2

γ2

)
γd−2 , (56)

and ‖f0‖FN ≤ 2, with probability 1− δ, when N = 5d(µ) ln(16d(µ)/δ). We choose γ = τ/
√

lnm
and λ = 1/m. Under the boundedness assumption on the density function and the property of
Gaussian kernel, we know that by Lemma 8,

λi(Σ) ≤ CγB exp

(
−γ2 4Γ4/d(d/2 + 1)

π4/dρ2
i2/d

)
. (57)

And similar to the second part of Theorem 1, by identifying

c3 = CγB = CBτ/
√

lnm c4 =
4τ2Γ4/d(d/2 + 1)

π4/dρ2 lnm
:=

A

lnm
, (58)

and choosing µ = c3/(m
2d2 ∨ exp(d

2

c4
∨ c4d2)), we have

d(µ) ≤ 5d2d(c−2d
4 ∨ 1 ∨ c−d4 2d lndm) . (59)

Then when m ≥ exp(A), we have d(µ) ≤ 5(A2 ∧A/2)−d ln2dm, and

N = 5d(µ)(ln(16d(µ)) + ln(1/δ)) (60)

≤ 25(A2 ∧A/2)−d ln2dm(ln(80(A2 ∧A/2)−d) + 2d ln lnm+ ln(1/δ)) . (61)
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Plug N and λ into Equation 8.

3r = 75C1,2cd,τ,ρ(ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ))(V + 1)
ln2d+1m

m
(62)

+
15 + 216V

m
ln(1/δ) + 3r∗ , (63)

where
C1,2 = 900C2

1 + 120C2, cd = (A2 ∧A/2)−d . (64)

We can bound r∗ by RhP,λ(f0)−R∗. Therefore, the overall upper bound on the excess error is

R1
P,λ(fm,N,λ)−R∗ ≤

18(
√
π/2ρ2)d

Γ2(d/2 + 1)

lnd/2m

τm
+

18(
√
π/2ρ2)d/2

Γ(d/2 + 1)

√
CBτ ln1/4m

md2
(65)

+
36τd−2

Γ(d/2)

τd−2

m lnd/2−1m
(66)

+ 75C1,2cd,τ,ρ(ln(80cd,τ,ρ) + 2d ln lnm+ ln(1/δ))(V + 1)
ln2d+1m

m
(67)

+
15 + 216V

m
ln(1/δ) . (68)

E Learning Rate without Optimized Feature Maps

In this section, we discuss the learning rate of RFSVM without an optimized feature map. As shown
by Rudi and Rosasco [2017], RFKRR can achieve excess risk of O(1/

√
m) using O(

√
m log(m))

features. However, it is inappropriate to directly compare this result with the learning rate in
classification scenario. Because as surrogate loss functions, least square loss has a different calibration
function with for example hinge loss. Basically, O(ε) risk under square loss only implies O(

√
ε) risk

under 0− 1 loss, whileO(ε) risk under hinge loss impliesO(ε) risk under 0− 1 loss. Therefore, Rudi
and Rosasco [2017]’s analysis only implies an excess risk of O(m−1/4) in classification problems
with Õ(

√
m) features.

For RFSVM, we expect a similar result. Without assuming an optimized feature map, the leverage
score can only be upper bounded by κ2/µ, where κ is the upper bound on the function φ(ω;x) for
all ω, x. Substituting κ2/µ for d(µ) in the proofs of learning rates, we need to balance

√
µ with

1/(µm) to achieve the optimal rate. This balance is not affected by the spectrum of Σ or whether
f∗P belongs to F . Obviously, setting µ = m−2/3, we get a learning rate of m−1/3, with Õ(m2/3)
random features. Even though this result is also new for RFSVM in regularized formulation, the gap
to previous analysis like Rahimi and Recht [2008] is too large. Considering that the random features
used in practice that are not optimized also have quite good performance, we need further analysis on
RFSVM without optimized feature map.
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F Supplementary Figures
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Figure 5: Comparison between RFSVMs with KSVM Using Gaussian Kernel.

“ksvm” is for KSVM with Gaussian kernel, “unif” is for RFSVM with direct feature sampling, and “opt” is for
RFSVM with reweighted feature sampling. Error bars represent standard deviation over 10 runs. Each sub-figure
shows the performance of RFSVM with different number of features N .
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Figure 6: The excess risks of RFSVMs with the simple random feature selection (“unif”) and the
reweighted feature selection (“opt”) are shown for different sample sizes in the binary classification
task over 10 dimensional data. The data with probability 0.9 to be -1 are within the 10 dimensional
ball centered at the origin and radius 0.9, and the data with probability 0.9 to be 1 are within the shell
of radius 1.1 to 2. The error rate is the excess risk. The error bars represent the standard deviation
over 10 runs.
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Figure 7: The classification accuracy of RFSVM with the simple random feature selection (“unif”)
and the reweighted feature selection (“opt”) are shown for different sample sizes in the hand-written
digit recognition (MNIST)
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