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S1 Definitions of tensor concepts

In this section we give definitions of the tensor concepts used in the main manuscript and in the
supplementary material. We use the same notations and definitions as in [7]. A tensor X ∈
RI1×I2×···×IN is an array of dimension N , also called an N -way array. Boldface Euler script letters,
e.g. X, will denote tensors of dimension 3 or greater; bold capital letters, e.g. X, will denote matrices;
bold lowercase letters, e.g. x, will denote vectors; and lowercase letters, e.g. x, will denote scalars.
We use a colon to denote all elements along a certain dimension; for example, xn: is the nth row of
X, x:n is the nth column of X, and X::n is the nth so called frontal slice of the 3-way tensor X. The
norm of a tensor X ∈ RI1×I2×···×IN is defined as

‖X‖ =

√√√√ I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

x2i1i2···iN . (S1)

The Kronecker product of two matrices A ∈ RI1×R1 and B ∈ RI2×R2 is denoted by A ⊗ B ∈
RI1I2×R1R2 and is defined by

A⊗B =


a11B a12B · · · a1R1B
a21B a22B · · · a2R1B

...
...

...
aI11B aI12B · · · aI1R1

B

 . (S2)

The Khatri-Rao product of two matrices A ∈ RI1×R and B ∈ RI2×R is denoted by A � B ∈
RI1I2×R and is defined by

A�B = [a:1 ⊗ b:1 a:2 ⊗ b:2 · · · a:R ⊗ b:R] . (S3)

We can “flatten,” or matricize, a tensor into a matrix. The mode-n matricization of a tensor X ∈
RI1×I2×···×IN is denoted by X(n) ∈ RIn×

∏
i6=n Ii and maps the element on position (i1, i2, . . . , iN )

in X to position (in, j) in X(n), where

j = 1 +

N∑
k=1
k 6=n

(ik − 1)Jk with Jk =

k−1∏
m=1
m6=n

Im. (S4)

Similarly, x(:) ∈ R
∏

n In will denote the vectorization of X we get by stacking the columns of
X(1) into a long column vector. The n-mode product of a tensor X ∈ RI1×I2×···×IN and matrix

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



A ∈ RJ×In is denoted by X×n A ∈ RI1×···×In−1×J×In+1×···×IN and defined by

(X×n A)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNajin . (S5)

We can express this definition more compactly using matrix notation as follows:

Y = X×n A ⇔ Y(n) = AX(n). (S6)

S2 Some further information on CountSketch and TensorSketch

As mentioned in the main manuscript, TENSORSKETCH can be seen as restricted kind of COUNTS-
KETCH which can be applied very efficiently to Kronecker products. We first explain how COUNTS-
KETCH can be applied to least-squares problems and for matrix multiplication, and then explain how
these ideas extend to TENSORSKETCH. Nothing in this subsection is our own work; it is simply a
brief introduction to the sketching techniques we use.

The basic idea of applying COUNTSKETCH to least-squares regression is the following. Suppose
A ∈ RI×R, where I � R, and y ∈ RI , and consider solving the overdetermined least-squares
problem

x∗
def
= argmin

x∈RR

‖Ax− y‖2 . (S7)

COUNTSKETCH allows us to reduce the size of this problem by first applying a subspace embedding
matrix S : RI → RJ to A and y, where J is much smaller than I , and so that we instead solve

x′
def
= argmin

x∈RR

‖SAx− Sy‖2 . (S8)

One way to define the matrix S is as S = PD, where

• P ∈ RJ×I is a matrix with ph(i),i = 1, and all other entries equal to 0;

• h : [I]→ [J ] is a random map such that (∀i ∈ [I])(∀j ∈ [J ]) P(h(i) = j) = 1/J ; and
• D ∈ RI×I is a diagonal matrix, with each diagonal entry equal to +1 or −1 with equal

probability.

For a fixed ε > 0, one can ensure that the solution to the sketched problem (S8) satisfies

‖Ax′ − y‖2 ≤ (1 + ε) ‖Ax∗ − y‖2 (S9)

with high probability by choosing the sketch dimension J sufficiently large. Moreover, the matrix S
can be applied in O(nnz(A)) time, where nnz(A) denotes the number of nonzero elements of A,
making it an especially efficient sketch if A is sparse; see [2] for further details.

COUNTSKETCH can also be used for approximate matrix multiplication. Let S ∈ RJ×I denote the
COUNTSKETCH operator. Informally, for matrices A and B with I rows and a fixed ε > 0, one can
ensure that ∥∥A>S>SB−A>B

∥∥
F
≤ ε ‖A‖F ‖B‖F (S10)

with high probability by choosing the sketch dimension J sufficiently large. A formal statement and
proof of this is given in Lemma 32 of [2].

Now suppose the matrix A is of the form A = A(1)⊗A(2)⊗· · ·⊗A(N), where each A(n) ∈ RIn×Rn ,
In > Rn. Then A is of size I × R, where I def

=
∏

n In and R def
=
∏

nRn. TENSORSKETCH is a
restricted variant of COUNTSKETCH which allows us to sketch A without having to first form the
matrix. This is done by instead sketching each factor matrix A(n) individually, and then computing
the corresponding sketch of A, which can be done efficiently using the fast Fourier transform (FFT).

TENSORSKETCH was first introduced in [8] where it is applied to compressed matrix multiplication.
In [9], TENSORSKETCH is used for approximating support vector machine polynomial kernels
efficiently. Avron et al. [1] show that TENSORSKETCH provides an oblivious subspace embedding.
Diao et al. [3] show that an approximate solution to the least-squares problem in the sense of (S9) when
A is a Kronecker product can be obtained with high probability by solving the TENSORSKETCHED
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problem instead of the full problem. The remainder of this subsection will briefly describe how
TENSORSKETCH works.

In the following, in order to adhere to MATLAB notation with indexing starting at 1, some definitions
will differ slightly from those in [3].

Definition S2.1 (k-wise independent). A family H def
= {h : [I]→ [J ]} of hash functions is k-wise

independent if for any distinct x1, . . . , xk ∈ [I], and uniformly random h ∈ H, the hash codes
h(x1), . . . , h(xk) are independent random variables, and the hash code of any fixed x ∈ [I] is
uniformly distributed in [J ]. We also call a function h drawn randomly and uniformly fromH k-wise
independent.

For n ∈ [N ], let

• hn : [In]→ [J ] be 3-wise independent hash functions, and let

• sn : [In]→ {−1,+1} be 4-wise independent sign functions.

Furthermore, define the hash function

H : [I1]× [I2]× · · · × [IN ]→ [J ] : (i1, . . . , iN ) 7→

(
N∑

n=1

(hn(in)− 1) mod J

)
+ 1 (S11)

and the sign function

S : [I1]× [I2]× · · · × [IN ]→ {−1, 1} : (i1, . . . , iN ) 7→
N∏

n=1

sn(in). (S12)

TENSORSKETCH is the same as applying COUNTSKETCH to A with P defined using H instead
of h, and with the diagonal of D given by S. To understand how the maps H and S map a certain
row index, note that there is a bijection between the set of rows i ∈ [

∏
n In] of A and the N -

tuples (i1, i2, . . . , iN ) ∈ [I1] × [I2] × · · · × [IN ]. Specifically, for the ith row, there is a unique
N -tuple (i1, i2, . . . , iN ) such that ai: = a

(1)
i1:
⊗ a

(2)
i2:
⊗ · · · ⊗ a

(N)
iN : . Pagh [8] observed that the

application of COUNTSKETCH based on H and S can be done efficiently—without ever forming
A—by COUNTSKETCHING each factor matrix A(n) using hn and sn, and then computing the
TENSORSKETCH of A using FFT. Let S(n) be the COUNTSKETCH matrix corresponding to using
the hash function hn and the diagonal matrix D(n) with diagonal d(n)ii = sn(i). The application of
S(n) to a

(n)
:rn , the rnth column of A(n), can be represented by the J − 1 degree polynomial

Pn,rn(ω) =

In∑
i=1

sn(i)a
(n)
irn
ωhn(i)−1 =

J∑
j=1

c
(n)
jrn
ωj−1, (S13)

where c(n)rn
def
= (c

(n)
1rn

, . . . , c
(n)
Jrn

) are the polynomial coefficients. With this representation, the elements

of a(n):rn are multiplied with the correct sign given by sn, and then grouped together in different
polynomial coefficients depending on which bucket hn assigns them to. Letting T denote the
TENSORSKETCH operator, the rth column of TA can similarly be represented as the polynomial

Pr(ω) =

I∑
i=1

S(i1, . . . , iN )airω
H(i1,...,iN ) (S14)

=

I∑
i=1

s1(i1) · · · sN (iN )a
(1)
i1r1
· · · a(N)

iNrN
ωh1(i1)+···+hN (iN )−N mod J (S15)

= FFT−1
(

FFT
(
c(1)r1

)
∗ · · · ∗ FFT

(
c(N)
rN

))
, (S16)

where FFT denotes the unpadded FFT, “∗” denotes Hadamard (element-wise) product and where
the i in (S14) corresponds to the N -tuple (i1, i2, . . . , iN ) ∈ [I1] × [I2] × · · · × [IN ]. Similarly, r
corresponds to the N -tuple (r1, r2, . . . , rN ) ∈ [R1] × [R2] × · · · × [RN ]. So each column of TA
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can be computed efficiently from the sketches of the corresponding columns of the factor matrices.
More concisely, we can write

TA = FFT−1

( N⊙
n=1

(
FFT

(
S(n)A(n)

))>)> , (S17)

where FFT is applied columnwise to a matrix argument. Applying T naively to A would, in the
general dense case, cost O

(
J
∏N

n=1 InRn

)
. With the trick above, however, it is straightforward to

compute the reduced cost to be O
(
J
∑N

n=1 InRn + J log J
∑N

n=1Rn + J log J
∏N

n=1Rn

)
.

Theorem 3.1 in [3] gives theoretical guarantees for the optimality of the solution to (S8) when S is
TENSORSKETCH. We have found the sketch dimension of that theorem to be pessimistic in practice,
with much smaller sketch dimensions yielding satisfying results. Indeed, Example 6.1 of [3] also
achieves good accuracy with a significantly smaller sketch dimension than what the theorem dictates.

Approximate matrix multiplication as in (S10) also holds for TENSORSKETCH; see Lemma B.1 in
[3] for a formal statement and proof.

S3 Detailed algorithms

In the detailed algorithms below, we will use the following notations: CS(A, h, s) will denote the
application of COUNTSKETCH to the matrix A using the hash function h and the sign function s.
TS
(
A, {hn}Nn=1 , {sn}

N
n=1

)
will denote the application of TENSORSKETCH to the matrix A with

the set of hash functions {hn}Nn=1 and sign functions {sn}Nn=1. We will overload the function TS in

the following way. With the same notation as in (S17), suppose Â
(n)
s =

(
FFT

(
S(n)A(n)

))>
. We

will define TS with a single argument as

TS
({

Â(n)
s

}N

n=1

)
= FFT−1

( N⊙
n=1

Â(n)
s

)> . (S18)

In Algorithm S1, we give a version of TUCKER-TS where we define a new TENSORSKETCH operator
before each least-squares sketch. In Algorithm S2, we give a detailed version of the TUCKER-TS
algorithm in the main manuscript in the case when the dimension is sufficiently small for double-
sketching to be unnecessary, i.e., when each In ≤ J1 + J2 and the improvement for TUCKER-TS in
Remark 3.2 (c) in the main manuscript is not used. In Algorithm S3, we give a detailed version of
TUCKER-TS for when In ≥ J1 + J2 for all n ∈ [N ] and the improvement in the remark is applied
to all dimensions. In cases when some In are large and some small, it is straightforward to combine
elements from both algorithms to get the optimal algorithm. We give the algorithm for TUCKER-TS
in these two versions to simplify complexity analysis. In Algorithm S4, we give a detailed version of
the TUCKER-TTMTS algorithm in the main manuscript.

S3.1 Orthogonalization

In Algorithms S1 and S2 we orthogonalize using QR factorization in the following way. The
computation

Q(n)R(n) = A(n) reduced QR factorization (S19)

A(n) = Q(n) (S20)

G = G×n R(n) (S21)

ensures that each A(n) is orthogonal, and that the Tucker decomposition remains unchanged. In
Algorithm S3, we cannot do this computation since we only maintain sketched versions of the factor
matrices. We will use the following heuristic instead. After updating G on line 13, we compute an
approximation of the normalization of G as follows: Set Gnormalized = G. For n = 1, . . . , N ,

Q(n)R(n) = A(n)
s2 reduced QR factorization (S22)

Gnormalized = Gnormalized ×n R(n). (S23)
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We then check for convergence based on ‖Gnormalized‖ instead of ‖G‖.

S3.2 Complexity analysis

We analyze the complexity of TUCKER-ALS given in the main paper, as well as Algorithms S1–S4.
One can show that the leading order cost of applying TENSORSKETCH T ∈ RJ×

∏
n In to

⊗N
i=1 A

(i)

with each A(i) ∈ RIn×Rn is O(
∑

n InRn + J log J
∑

nRn + J log J
∏

nRn). For simplicity, we
will assume that In = I and Rn = R for all n ∈ [N ]. We divide costs into costs per iteration of the
main loop, and one-time costs due to computations outside the main loop.

S3.2.1 TUCKER-ALS (algorithm given in main paper)

The dominant cost in TUCKER-ALS is the TTM product. Assuming that I > NR, the cost per
iteration is O(RIN ). The final computation of G also costs O(RIN ). If Y is sparse these costs will
be lower.

S3.2.2 Algorithm S1: TUCKER-TS, multi-pass

Algorithm S1: TUCKER-TS, multi-pass (detailed)

input :Y, (R1, R2, . . . , RN ), (J1, J2)
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 Initialize G, A(2),A(3), . . . ,A(N)

2 repeat
3 for n = 1, . . . , N do
4 For k ∈ [N ] \ n, determine hash functions h(1)k : [Ik]→ [J1] and sign functions

sk : [Ik]→ {−1,+1}

5 M1 = TS

(⊗1
i=N
i6=n

A(i),
{
h
(1)
i

}1

i=N
i 6=n

, {si}1i=N
i 6=n

)

6 Y>(n),s1 = TS

(
Y>(n),

{
h
(1)
i

}1

i=N
i 6=n

, {si}1i=N
i 6=n

)
7 A(n) = argminA

∥∥∥M1G
>
(n)A

> −Y>(n),s1

∥∥∥2
F

8 end
9 For k ∈ [N ], determine hash functions h(2)k : [Ik]→ [J2] and sign functions

sk : [Ik]→ {−1,+1}

10 M2 = TS
(⊗1

i=N A(i),
{
h
(2)
i

}1

i=N
, {si}1i=N

)
11 y(:),s2 = TS

(
y(:),

{
h
(2)
i

}1

i=N
, {si}1i=N

)
12 G = argminZ

∥∥M2z(:) − y(:),s2

∥∥2
2

13 until termination criteria met
14 return G, A(1), . . . ,A(N)

One-time cost Negligible.

Cost per iteration The inner for loop has the following costs:

• Line 5: We can TENSORSKETCH efficiently to a cost of O(NIRJ1 + NRJ1 log J1 +
RN−1J1 log J1).

• Line 6: Since we have to compute this as a COUNTSKETCH, the cost is nnz(Y).
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• Line 7: The cost for computing M1G
>
(n) is O(J1RN ), the cost for QR factorizing this

quantity is O(J1R2), and the cost for solving each of the I least-squares problems is
O(IJ1R+ IR2).

So the cost for the inner for loop is O(N2IRJ1 +N2RJ1 log J1 +NRN−1J1 log J1 +Nnnz(Y) +
NJ1R

N +NIJ1R+NIR2). The cost of the remaining lines are:

• Line 10: We can TENSORSKETCH efficiently to a cost of O(NIRJ2 + NRJ2 log J2 +
RNJ2 log J2).
• Line 11: Since we have to compute this as a COUNTSKETCH, the cost is nnz(Y).
• Line 12: The cost for solving this system using e.g. QR factorization is O(J2R2N ).

The total cost per iteration is therefore, to leading order,

O(Nnnz(Y) +N2IRJ1 +N2RJ1 log J1 +NRN−1J1 log J1 +NJ1R
N (S24)

+NIJ1R+NIR2 +NIRJ2 +NRJ2 log J2 +RNJ2 log J2 + J2R
2N ). (S25)

S3.2.3 Algorithm S2: TUCKER-TS, one-pass with I < J1 + J2

Algorithm S2: TUCKER-TS, one-pass with all In < J1 + J2 (detailed)

input :Y, (R1, R2, . . . , RN ), (J1, J2)
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 For n ∈ [N ], determine hash functions h(l)n : [In]→ [Jl] with l = 1, 2, and
sn : [In]→ {−1,+1}

2 Initialize G. For n ∈ [N ], initialize A(n) and compute Â(n)
s1 =

(
FFT

(
CS
(
A(n), h

(1)
n , sn

)))>
3 For n ∈ [N ], Y>(n),s1 = TS

(
Y>(n),

{
h
(1)
i

}1

i=N
i 6=n

, {si}1i=N
i 6=n

)
4 y(:),s2 = TS

(
y(:),

{
h
(2)
i

}1

i=N
, {si}1i=N

)
5 repeat
6 for n = 1, . . . , N do

7 M1 = TS

({
Â

(i)
s1

}1

i=N
i 6=n

)
8 A(n) = argminA

∥∥∥M1G
>
(n)A

> −Y>(n),s1

∥∥∥2
F

9 Â
(n)
s1 =

(
FFT

(
CS
(
A(n), h

(1)
n , sn

)))>
10 end

11 M2 = TS
(⊗1

i=N A(i),
{
h
(2)
i

}1

i=N
, {si}1i=N

)
12 G = argminZ

∥∥M2z(:) − y(:),s2

∥∥2
2

13 until termination criteria met
14 return G, A(1), . . . ,A(N)

One-time cost

• Line 2: The cost of N − 1 COUNTSKETCHES and FFT of factor matrices is O(NIR +
NRJ1 log J1).

• Lines 3 and 4: The sketching costs O(Nnnz(Y)).

So the total one-time cost is O(Nnnz(Y) +NIR+NRJ1 log J1).
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Cost per iteration In the inner loop, we have the following costs:

• Line 7: The inverse FFT is the dominant cost at O(RN−1J1 log J1).

• Line 8: The cost for computing M1G
>
(n) is O(J1RN ), the cost for QR factorizing this

quantity is O(J1R2), and the cost for solving each of the I least-squares problems is
O(IJ1R+ IR2).

• Line 9: The cost of a COUNTSKETCH and FFT is O(IR+RJ1 log J1).

So the total cost for the inner loop isO(NRN−1J1 log J1 +NJ1R
N +NIJ1R+NIR2). We have

the following additional costs per outer iteration:

• Line 11: We can TENSORSKETCH efficiently to a cost of O(NIRJ2 + NRJ2 log J2 +
RNJ2 log J2).
• Line 12: The cost for solving this system using e.g. QR factorization isO(J2R2N ). However,

since the design matrix in the normal equation formulation of this problem is usually well-
conditioned, we instead choose to solve this step using conjugate gradient, at a costO(R2N ).

The total cost per iteration is therefore, to leading order,

O(NRN−1J1 log J1 +NJ1R
N +NIJ1R+NIR2 +NIRJ2 (S26)

+NRJ2 log J2 +RNJ2 log J2 +R2N ). (S27)

S3.2.4 Algorithm S3: TUCKER-TS, one-pass with I > J1 + J2

One-time costs

• Line 2: The cost of N − 1 COUNTSKETCHES and FFT of factor matrices is O(NIR +
NRJ1 log J1).

• Line 3: The TENSORSKETCH costs O(Nnnz(Y)) and the subsequent smaller COUNTS-
KETCHES cost O(N min(IJ1, nnz(Y)).

• Line 4: Since we have to compute this as a COUNTSKETCH, the cost is nnz(Y).

So the upfront cost is O(Nnnz(Y) + NIR + NRJ1 log J1), but with some additional smaller
computations compared to Algorithm S2. We will also have some additional one-time costs after the
end of the main loop:

• Line 16: The inverse FFT is the dominant cost at O(NRN−1J1 log J1) for N repetitions.

• Line 17: The cost for computing M1G
>
(n) is O(J1RN ), the cost for QR factorizing this

quantity is O(J1R2), and the cost for solving each of the I least-squares problems is
O(IJ1R+IR2). So the dominant cost, forN repetitions, isO(NJ1RN+NIJ1R+NIR2).

• Line 19: The cost of the COUNTSKETCH and the FFT isO(NIR+NRJ1 log J1) forN−1
repetitions.

• Line 22: The cost of applying TENSORSKETCH is O(NIRJ2 + NRJ2 log J2 +
RNJ2 log J2).

• Line 23: The cost for solving this system using e.g. QR factorization is O(J2R2N ).

The total one-time cost is therefore

O(Nnnz(Y) +NRN−1J1 log J1 +NJ1R
N +NIJ1R+NIR2 +NIRJ2 (S28)

+NRJ2 log J2 +RNJ2 log J2 + J2R
2N ). (S29)

Cost per iteration

• Line 7: The inverse FFT is the dominant cost at O(RN−1J1 log J1).

• Line 8: The cost for computing M1G
>
(n) is O(J1RN ), the cost for QR factorizing this

quantity is O(J1R2), and the cost for solving each of the J1 + J2 least-squares problems
is O(J2

1R + J1R
2 + J1J2R + J2R

2). The leading order cost for the line is O(J1RN +
J2
1R+ J1J2R+ J2R

2).
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Algorithm S3: TUCKER-TS, one-pass with all In > J1 + J2 (detailed)

input :Y, (R1, R2, . . . , RN ), (J1, J2)
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 For n ∈ [N ], determine hash functions h(l)n : [In]→ [Jl] with l = 1, 2, and
sn : [In]→ {−1,+1}

2 Initialize G. For n ∈ [N ], initialize A(n) and compute Â(n)
s1 =

(
FFT

(
CS
(
A(n), h

(1)
n , sn

)))>
3 For n ∈ [N ], Y>(n),s1 = TS

(
Y>(n),

{
h
(1)
i

}1

i=N
i 6=n

, {si}1i=N
i6=n

)
, Y(n),s′1

= CS
(
Y(n),s1 , h

(1)
n , sn

)
,

Y(n),s′′1
= CS

(
Y(n),s1 , h

(2)
n , sn

)
4 y(:),s2 = TS

(
Y(:),

{
h
(2)
i

}1

i=N
, {si}1i=N

)
5 repeat
6 for n = 1, . . . , N do

7 M1 = TS

({
Â

(i)
s1

}1

i=N
i 6=n

)
8 [As1 ,As2 ] = argminA

∥∥∥M1G
>
(n)A

> −
[
Y>(n),s′1

,Y>(n),s′′1

]∥∥∥2
F

9 Â
(n)
s1 = (FFT (As1))

>

10 Â
(n)
s2 = (FFT (As2))

>

11 end

12 M2 = FFT−1
((⊙1

i=N Â
(i)
s2

)>)
13 G = argminZ

∥∥M2z(:) − y(:),s2

∥∥2
2

14 until termination criteria met
15 for n = 1, . . . , N do

16 M1 = TS

({
Â

(i)
s1

}1

i=N
i 6=n

)
17 A(n) = argminA

∥∥∥M1G
>
(n)A

> −Y>(n),s1

∥∥∥2
F

18 if n < N then

19 Â
(n)
s1 =

(
FFT

(
CS
(
A(n), h

(1)
n , sn

)))>
20 end
21 end

22 M2 = TS
(⊗1

i=N A(i),
{
h
(2)
i

}1

i=N
, {si}1i=N

)
23 G = argminZ

∥∥M2z(:) − y(:),s2

∥∥2
2

24 return G, A(1), . . . ,A(N)

• Lines 9 and 10: The cost of these two lines is O(RJ1 log J1 +RJ2 log J2).

So the total cost for the inner for loop is therefore O(NRN−1J1 log J1 + NJ1R
N + NJ2

1R +
NJ1J2R+NJ2R

2 +NRJ2 log J2). The cost of the remaining lines are:

• Line 12: The inverse FFT is the dominant cost at O(RNJ2 log J2).

• Line 13: The cost of solving this system e.g. via QR factorization is O(J2R2N ).
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The total cost per iteration is therefore

O(NRN−1J1 log J1 +NJ1R
N +NJ2

1R+NJ1J2R (S30)

+NJ2R
2 +NRJ2 log J2 +RNJ2 log J2 + J2R

2N ). (S31)

S3.2.5 Algorithm S4: TUCKER-TTMTS

Algorithm S4: TUCKER-TTMTS (detailed)

input :Y, (R1, R2, . . . , RN ), (J1, J2)
output :Rank-(R1, R2, . . . , RN ) Tucker decomposition JG;A(1), . . . ,A(N)K of Y

1 For n ∈ [N ], determine hash functions h(l)n : [In]→ [Jl] with l = 1, 2, and
sn : [In]→ {−1,+1}

2 Initialize G. For n ∈ [N ], initialize A(n) and compute Â(n)
s1 =

(
FFT

(
CS
(
A(n), h

(1)
n , sn

)))>
3 For n ∈ [N ], Y>(n),s1 = TS

(
Y>(n),

{
h
(1)
i

}1

i=N
i 6=n

, {si}1i=N
i 6=n

)
4 y(:),s2 = TS

(
y(:),

{
h
(2)
i

}1

i=N
, {si}1i=N

)
5 repeat
6 for n = 1, . . . , N do

7 M1 = TS

({
Â

(i)
s1

}1

i=N
i 6=n

)
8 Z(n) = Y(n),s1M1

9 A(n) = Rn leading left singular vectors of Z(n)

10 end
11 until termination criteria met

12 M2 = TS
(⊗1

i=N A(i),
{
h
(2)
i

}1

i=N
, {si}1i=N

)
13 g(:) = M>2 y(:),s2

14 return G, A(1), . . . ,A(N)

One-time costs

• Line 2: The cost of N − 1 COUNTSKETCHES and FFTs of factor matrices is O(NIR +
NRJ1 log J1).

• Lines 3 and 4: The sketching costs O(Nnnz(Y)).
• Line 12: We can TENSORSKETCH efficiently to a cost of O(NIRJ2 + NRJ2 log J2 +
RNJ2 log J2).
• Line 13: The cost of this matrix-vector multiplication is O(J2RN ).

The total one-time cost is therefore O(NIRJ2 + Nnnz(Y) + NRJ1 log(J1) + NRJ2 log(J2) +
RNJ2 log(J2)).

Cost per iteration

• Line 7: The inverse FFT is the dominant cost at O(RN−1J1 log J1).
• Line 8: The cost of this matrix-matrix multiplication is O(J1IRN−1).
• Line 9: We use the randomized SVD of [5], the cost of which isO(IRN−1 log(R)+RN+1)

Each of these are repeated N times per outer iteration, so the total cost per outer iteration is therefore
O(NRN−1J1 log(J1) +NJ1IR

N−1 +NIRN−1 log(R) +NRN+1).
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S3.2.6 Summary of complexity results

In Tables S1–S4 we summarize the results above. For clarity, we have made the additional assumption
that J1 = KRN−1 and J2 = KRN for some constant K > 1. We have found that this choice
of J1 and J2 often works well in practice. Tables S1 and S2 give the leading order complexities
for one-time costs and per iteration costs, respectively. Tables S3 and S4 give the corresponding
complexities for each of the cases when the variables I , R and K are assumed to be large.

Alg. One-time cost

T.-ALS RIN

S1 Negligible

S2 Nnnz(Y) +NIR+NKRN logK +N2KRN logR

S3 Nnnz(Y) + NR2N−2K logK + N2KR2N−2 logR + NKR2N−1 + NIKRN+1 +
R2NK logK +NKR2N logR+KR3N

S4 NIKRN+1 + Nnnz(Y) + NKRN+1 logK + N2KRN+1 logR + KR2N logK +
KNR2N logR

Table S1: Comparison of computational complexity for one-time computations for TUCKER-ALS
and Algorithms S1–S4. All complexities are to leading order.

Alg. Per iteration cost

T.-ALS RIN

S1 Nnnz(Y) + N2IKRN + N2KRN logK + N3KRN logR + NKR2N−2 logK +
N2KR2N−2 logR+NIKRN+1 +KR2N logK +NKR2N logR+KR3N

S2 NR2N−2K logK+N2KR2N−2 logR+NKR2N−1+NIKRN+1+R2NK logK+
NKR2N logR

S3 NR2N−2K logK+N2KR2N−2 logR+NK2R2N+R2NK logK+NKR2N logR+
KR3N

S4 NKR2N−2 logK +KN2R2N−2 logR+NKIR2N−2

Table S2: Comparison of computational complexity per iteration for TUCKER-ALS and Algo-
rithms S1–S4. All complexities are to leading order.

One-time cost when the given variable is large

Alg. I R K

T.-ALS RIN RIN n/a

S1 Negligible Negligible Negligible

S2 Nnnz(Y) +NIR N2KRN logR NRNK logK

S3 Nnnz(Y) +NIKRN+1 KR3N (NR2N−2 +R2N )
×K logK

S4 Nnnz(Y) +NIKRN+1 KNR2N logR (NRN+1 +R2N )K logK

Table S3: Comparison of computational complexity for one-time computations for TUCKER-ALS
and Algorithms S1–S4 when each of the variables I , R and K are assumed to be large. All
complexities are to leading order.

S4 Proof of Proposition 3.1

Let V be the subspace spanned by the columns of U def
=
⊗1

i=N A(i). Note that since each A(i)

has orthonormal columns, so does U [10]. Suppose J2 ≥ (
∏

nRn)
2(2 + 3N )/(ε2δ). Using
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Per iteration cost when the given variable is large

Alg. I R K

T.-ALS RIN RIN n/a

S1 Nnnz(Y) +N2IKRN

+NIKRN+1
KR3N (N2RN +NR2N−2+R2N )

×K logK

S2 NIKRN+1 NKR2N logR NR2N−2K logK
+R2NK logK

S3 Negligible KR3N NK2R2N

S4 NIKR2N−2 KN2R2N−2 logR NR2N−2K logK

Table S4: Comparison of computational complexity per iteration for TUCKER-ALS and Algo-
rithms S1–S4 when each of the variables I , R and K are assumed to be large. All complexities are to
leading order.

Theorem 4.2.2 in [6], we have that the maximum and minimum eigenvalues of M satisfy

λmax(M) = max
x:‖x‖=1

∥∥∥T(N+1)Ux
∥∥∥2
2
, (S32)

λmin(M) = min
x:‖x‖=1

∥∥∥T(N+1)Ux
∥∥∥2
2
. (S33)

(S34)

Due to Lemma B.1 in [3], we therefore have

λmax(M) ≤ (1 + ε)2 max
x:‖x‖=1

‖Ux‖22 = (1 + ε)2 max
x:‖x‖=1

‖x‖22 = (1 + ε)2, (S35)

λmin(M) ≥ (1− ε)2 min
x:‖x‖=1

‖Ux‖22 = (1− ε)2 min
x:‖x‖=1

‖x‖22 = (1− ε)2, (S36)

(S37)

with probability at least 1 − δ, since Ux ∈ V for all x ∈ R
∏

n Rn . Since M is symmetric and
positive semi-definite, we also have singular values σmax(M) = λmax(M) ≤ (1 + ε)2, σmin(M) =
λmin(M) ≥ (1− ε)2. The result now follows:

κ(M) =
σmax

σmin
≤ (1 + ε)2

(1− ε)2
. (S38)

S5 Formal statement and proof of Proposition 3.3

Let
G = Y×1 A

(1)> ×2 A
(2)> · · · ×N A(N)>. (S39)

Moreover, let A∗ and G∗ be the updated values on lines 5 and 8 in Algorithm 1 in the main manuscript,
and let Ã and G̃ be the corresponding updates in Algorithm 3 in the main manuscript.
Proposition S5.1 (TUCKER-TTMTS). Assume that G(n)G

>
(n) is invertible, with G given in (S39),

and that each TENSORSKETCH operator is redefined prior to being used. If the sketch dimension
J1 ≥ (2 + 3N−1)/(ε2δ), then with probability at least 1− δ it holds that∥∥∥∥∥∥∥

 1⊗
i=N
i 6=n

A(i)

G>(n)Ã
> −Y>(n)

∥∥∥∥∥∥∥
F

≤

∥∥∥∥∥∥∥
 1⊗

i=N
i 6=n

A(i)

G>(n)A
∗> −Y>(n)

∥∥∥∥∥∥∥
F

(S40)

+ ε

∥∥∥∥(G(n)G
>
(n)

)−1∥∥∥∥
F

‖G‖2 ‖Y‖
N∏
i=1
i 6=n

Ri. (S41)
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Moreover, if the sketch dimension J2 ≥ (2 + 3N )/(ε2δ), then with probability at least 1− δ it holds
that ∥∥∥∥∥

(
1⊗

i=N

A(i)

)
g̃(:) − y(:)

∥∥∥∥∥
2

≤

∥∥∥∥∥
(

1⊗
i=N

A(i)

)
g∗(:) − y(:)

∥∥∥∥∥
2

+ ε ‖Y‖

√√√√ N∏
i=1

Ri. (S42)

Proof. It is straightforward to show that A∗ solves

A∗ = argmin
A∈RIn×Rn

∥∥∥∥∥∥∥
 1⊗

i=N
i 6=n

A(i)

G>(n)A
> −X>(n)

∥∥∥∥∥∥∥
2

F

; (S43)

see e.g. the discussion in Subsection 4.2 in [7]. Setting the gradient of the objective function equal to
zero and rearranging, we get that

G(n)G
>
(n)A

∗> = G(n)

 1⊗
i=N
i6=n

A(i)


>

Y>(n). (S44)

By a similar argument, we find

G(n)G
>
(n)Ã

> = G(n)

 1⊗
i=N
i6=n

A(i)


>

T(n)>T(n)Y>(n). (S45)

The matrix Ã> is therefore the solution to a perturbed version of the system in (S44). Using
Lemma B.1 in [3], we get that the perturbation satisfies∥∥∥∥∥∥∥∥G(n)

 1⊗
i=N
i 6=n

A(i)


>

Y>(n) −G(n)

 1⊗
i=N
i6=n

A(i)


>

T(n)>T(n)Y>(n)

∥∥∥∥∥∥∥∥
F

(S46)

≤ ε ‖G‖

∥∥∥∥∥∥∥
1⊗

i=N
i 6=n

A(i)

∥∥∥∥∥∥∥
F

‖Y‖ (S47)

with probability at least 1 − δ if J1 ≥ (2 + 3N−1)/(ε2δ). Standard sensitivity analysis in linear
algebra (see e.g. Subsection 2.6 in [4]) now gives that∥∥∥A∗> − Ã>

∥∥∥
F
≤ ε

∥∥∥∥(G(n)G
>
(n)

)−1∥∥∥∥
F

‖G‖

∥∥∥∥∥∥∥
1⊗

i=N
i 6=n

A(i)

∥∥∥∥∥∥∥
F

‖Y‖ (S48)

with probability at least 1− δ if J1 ≥ (2 + 3N−1)/(ε2δ). It follows that∥∥∥∥∥∥∥
 1⊗

i=N
i 6=n

A(i)

G>(n)Ã
> −Y>(n)

∥∥∥∥∥∥∥
F

(S49)

≤

∥∥∥∥∥∥∥
 1⊗

i=N
i 6=n

A(i)

G>(n)A
∗> −Y>(n)

∥∥∥∥∥∥∥
F

+

∥∥∥∥∥∥∥
1⊗

i=N
i 6=n

A(i)

∥∥∥∥∥∥∥
F

‖G‖
∥∥∥A∗> − Ã>

∥∥∥
F

(S50)

≤

∥∥∥∥∥∥∥
 1⊗

i=N
i 6=n

A(i)

G>(n)A
∗> −Y>(n)

∥∥∥∥∥∥∥
F

+ ε

∥∥∥∥(G(n)G
>
(n)

)−1∥∥∥∥
F

‖G‖2 ‖Y‖
N∏
i=1
i6=n

Ri (S51)

(S52)
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with probability at least 1− δ if J1 ≥ (2+3N−1)/(ε2δ), and where we used the fact that
⊗1

i=N
i 6=n

A(i)

is an orthogonal matrix of size (
∏

i 6=n Ii)× (
∏

i 6=nRi) and therefore∥∥∥∥∥∥∥
1⊗

i=N
i6=n

A(i)

∥∥∥∥∥∥∥
2

F

=

N∏
i=1
i 6=n

Ri. (S53)

For the other claim, Lemma B.1 in [3] gives that

∥∥∥g∗(:) − g̃(:)

∥∥∥
2
=

∥∥∥∥∥∥
(

1⊗
i=N

A(i)

)>
y(:) −

(
T(N+1)

1⊗
i=N

A(i)

)>
T(N+1)y(:)

∥∥∥∥∥∥
F

(S54)

≤ ε

∥∥∥∥∥
1⊗

i=N

A(i)

∥∥∥∥∥
F

‖Y‖ (S55)

with probability at least 1− δ if J2 ≥ (2 + 3N )/(ε2δ). It follows that∥∥∥∥∥
(

1⊗
i=N

A(i)

)
g̃(:) − y(:)

∥∥∥∥∥
2

(S56)

≤

∥∥∥∥∥
(

1⊗
i=N

A(i)

)
g∗(:) − y(:)

∥∥∥∥∥
2

+

∥∥∥∥∥
1⊗

i=N

A(i)

∥∥∥∥∥
2

∥∥∥g∗(:) − g̃(:)

∥∥∥
2

(S57)

≤

∥∥∥∥∥
(

1⊗
i=N

A(i)

)
g∗(:) − y(:)

∥∥∥∥∥
2

+ ε ‖Y‖

√√√√ N∏
i=1

Ri, (S58)

where we again use the fact that
⊗1

i=N A(i) is a (
∏

i Ii)×(
∏

iRi) orthogonal matrix, and its 2-norm
therefore is 1, and its Frobenius norm is equal to

√∏
iRi.

S6 Further experiments

In this section, we present some further experiments. Figures S1 and S2 shows additional examples
of how the error of TUCKER-TS and TUCKER-TTMTS, relative to that of TUCKER-ALS, changes
with the sketch dimension parameter K. The figures also show how the algorithms perform when
each TENSORSKETCH operator is redefined prior to being used (called “multi-pass” in the figures).
We note that our approach of defining the TENSORSKETCH operators upfront consistently leads
to a lower error compared to when the sketch operators are redefined before being used each time.
Figures S3 and S4 show how the algorithms scale with increased dimension size I for 4-way tensors.
TUCKER-ALS, MET and MACH run out of memory when I = 1e+5. For reasons explained in the
main manuscript, FSTD1 does not work well on tensors that are very sparse, which we can observe
here.
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Figure S1: Further examples of how the error of TUCKER-TS, relative to that of TUCKER-ALS,
is impacted by the sketch dimension parameter K. For plot (a), the tensor size is 500× 500× 500
with nnz(Y) ≈ 1e+6, and with both the true and algorithm target rank equal to (10, 10, 10). For
plot (b), the tensor size is 100× 100× 100× 100 with nnz(Y) ≈ 1e+7, and with both the true and
algorithm target rank equal to (5, 5, 5, 5). For plot (c), the tensor size is 100× 100× 100× 100 with
nnz(Y) ≈ 1e+7, with true rank (10, 10, 10, 10) and algorithm target rank (5, 5, 5, 5). For plot (d),
the tensor is dense and of size 500 × 500 × 500, and with both the true and algorithm target rank
equal to (10, 10, 10). For plot (e), the tensor is dense and of size 500× 500× 500, and with true rank
(15, 15, 15) and algorithm target rank (10, 10, 10).
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Figure S2: Further examples of how the error of TUCKER-TTMTS, relative to that of TUCKER-ALS,
is impacted by the sketch dimension parameter K. The tensor properties for each subplot are the
same as in Figure S1.
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Figure S3: Comparison of relative error and run time for random sparse 4-way tensors. The number
of nonzero elements is nnz(Y) ≈ 1e+6. Both the true and target ranks are (5, 5, 5, 5). We used
K = 10 in these experiments.
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Figure S4: Comparison of relative error and run time for random sparse 4-way tensors. The number
of nonzero elements is nnz(Y) ≈ 1e+6. The true rank is (7, 7, 7, 7) and the algorithm target rank is
(5, 5, 5, 5). In these experiments, we used K = 10 and a convergence tolerance of 1e-1.
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