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Abstract

An Euler discretization of the Langevin diffusion is known to converge to the
global minimizers of certain convex and non-convex optimization problems. We
show that this property holds for any suitably smooth diffusion and that different
diffusions are suitable for optimizing different classes of convex and non-convex
functions. This allows us to design diffusions suitable for globally optimizing
convex and non-convex functions not covered by the existing Langevin theory. Our
non-asymptotic analysis delivers computable optimization and integration error
bounds based on easily accessed properties of the objective and chosen diffusion.
Central to our approach are new explicit Stein factor bounds on the solutions
of Poisson equations. We complement these results with improved optimization
guarantees for targets other than the standard Gibbs measure.

1 Introduction

Consider the unconstrained and possibly non-convex optimization problem
minimize

x2Rd
f(x).

Recent studies have shown that the Langevin algorithm – in which an appropriately scaled isotropic
Gaussian vector is added to a gradient descent update – globally optimizes f whenever the objective is
dissipative (hrf(x), xi � ↵kxk22 � � for ↵ > 0) with a Lipschitz gradient [14, 25, 29]. Remarkably,
these globally optimized objectives need not be convex and can even be multimodal. The intuition
behind the success of the Langevin algorithm is that the stochastic optimization method approximately
tracks the continuous-time Langevin diffusion which admits the Gibbs measure – a distribution defined
by p�(x) / exp(��f(x)) – as its invariant distribution. Here, � > 0 is an inverse temperature
parameter, and when � is large, the Gibbs measure concentrates around its modes. As a result, for
large values of �, a rapidly mixing Langevin algorithm will be close to a global minimum of f . In
this case, rapid mixing is ensured by the Lipschitz gradient and dissipativity. Due to its simplicity,
efficiency, and well-understood theoretical properties, the Langevin algorithm and its derivatives have
found numerous applications in machine learning [see, e.g., 28, 6].

In this paper, we prove an analogous global optimization property for the Euler discretization of
any smooth and dissipative diffusion and show that different diffusions are suitable for solving
different classes of convex and non-convex problems. Our non-asymptotic analysis, based on a
multidimensional version of Stein’s method, establishes explicit bounds on both integration and
optimization error. Our contributions can be summarized as follows:

• For any function f , we provide explicit O
�

1
✏2

�
bounds on the numerical integration error

of discretized dissipative diffusions. Our bounds depend only on simple properties of the
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diffusion’s coefficients and Stein factors, i.e., bounds on the derivatives of the associated
Poisson equation solution.

• For pseudo-Lipschitz f , we derive explicit first through fourth-order Stein factor bounds
for every fast-coupling diffusion with smooth coefficients. Since our bounds depend on
Wasserstein coupling rates, we provide user-friendly, broadly applicable tools for computing
these rates. The resulting computable integration error bounds recover the known Markov
chain Monte Carlo convergence rates of the Langevin algorithm in both convex and non-convex
settings but apply more broadly.

• We introduce new explicit bounds on the expected suboptimality of sampling from a diffusion.
Together with our integration error bounds, these yield computable and convergent bounds
on global optimization error. We demonstrate that improved optimization guarantees can be
obtained by targeting distributions other than the standard Gibbs measure.

• We show that different diffusions are appropriate for different objectives f and detail concrete
examples of global non-convex optimization enabled by our framework but not covered by the
existing Langevin theory. For example, while the Langevin diffusion is particularly appropriate
for dissipative and hence quadratic growth f [25, 29], we show alternative diffusions are
appropriate for “heavy-tailed” f with subquadratic or sublinear growth.

We emphasize that, while past work has assumed the existence of finite Stein factors [4, 29], focused
on deriving convergence rates with inexplicit constants [23, 26, 29], or concentrated singularly on
the Langevin diffusion [6, 9, 29, 25], the goals of this work are to provide the reader with tools to
(a) check the appropriateness of a given diffusion for optimizing a given objective and (b) compute
explicit optimization and integration error bounds based on easily accessed properties of the objective
and chosen diffusion. The rest of the paper is organized as follows. Section 1.1 surveys related
work. Section 2 provides an introduction to diffusions and their use in optimization and reviews our
notation. Section 3 provides explicit bounds on integration error in terms of Stein factors and on
Stein factors in terms of simple properties of f and the diffusion. In Section 4, we provide explicit
bounds on optimization error by targeting Gibbs and non-Gibbs invariant measures and discuss how
to obtain better optimization error using non-Gibbs invariant measures. We give concrete examples
of applying these tools to non-convex optimization problems in Section 5 and conclude in Section 6.

1.1 Related work

The Euler discretization of the Langevin diffusion is commonly termed the Langevin algorithm
and has been studied extensively in the context of sampling from a log concave distribution. Non-
asymptotic integration error bounds for the Langevin algorithm are studied in [8, 7, 9, 10]. A
representative bound follows from combining the ergodicity of the diffusion with a discretization
error analysis and yields ✏ error in O( 1

✏2 poly(log( 1✏ ))) steps for the strongly log concave case and
O( 1

✏4 poly(log( 1✏ ))) steps for the general log concave case [7, 9].

Our work is motivated by a line of research that uses the Langevin algorithm to globally optimize
non-convex functions. Gelfand and Mitter [14] established the global convergence of an appropriate
variant of the algorithm, and Raginsky et al. [25] subsequently used optimal transport theory to prove
optimization and integration error bounds. For example, [25] provides an integration error bound
of ✏ after O

�
1
✏4 poly(log( 1✏ ))

1
�⇤

�
steps under the quadratic-growth assumptions of dissipativity and

a Lipschitz gradient; the estimate involves the inverse spectral gap parameter ��1
⇤ , a quantity that

is often unknown and sometimes exponential in both inverse temperature and dimension. Gao et al.
[13] obtained similar guarantees for stochastic Hamiltonian Monte Carlo algorithms for empirical
and population risk minimization under a dissipativity assumption with rate estimates. In this work,
we accommodate “heavy-tailed” objectives that grow subquadratically and trade the often unknown
and hence inexplicit spectral gap parameter of [25] for the more user-friendly distant dissipativity
condition (Prop. 3.4) which provides a straightforward and explicit certification of fast coupling
and hence the fast mixing of a diffusion. For distantly dissipative diffusions, the size of our error
bounds is driven primarily by a computable distance parameter; in the Langevin setting, an analogous
quantity is studied in place of the spectral gap in the contemporaneous work of [5].

Cheng et al. [5] provide integration error bounds for sampling with the overdamped Langevin
algorithm under a distant strong convexity assumption (a special case of distant dissipativity). The
authors build on the results of [9, 11] and establish ✏ error in O( 1

✏2 log(
1
✏ )) steps. We consider general
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distantly dissipative diffusions and establish an integration error of ✏ in O( 1
✏2 ) steps under mild

assumptions on the objective function f and smoothness of the diffusion.

Vollmer et al. [26] used the solution of the Poisson equation in their analysis of stochastic Langevin
gradient descent, invoking the bounds of Pardoux and Veretennikov [24, Thms. 1 and 2] to obtain
Stein factors. However, Thms. 1 and 2 of [24] yield only inexplicit constants and require bounded
diffusion coefficients, a strong assumption violated by the examples treated in Section 5. Chen
et al. [4] considered a broader range of diffusions but assumed, without verification, that Stein
factor and Markov chain moment were universally bounded by constants independent of all problem
parameters. One of our principal contributions is a careful enumeration of the dependencies of
these Stein factors and Markov chain moments on the objective f and the candidate diffusion. Our
convergence analysis builds on the arguments of [23, 15], and our Stein factor bounds rely on distant
and uniform dissipativity conditions for L1-Wasserstein rate decay [11, 15] and the smoothing effect
of the Markov semigroup [3, 15]. Our Stein factor results significantly generalize the existing bounds
of [15] by accommodating pseudo-Lipschitz objectives f and quadratic growth in the covariance
coefficient and deriving the first four Stein factors explicitly.

2 Optimization with Discretized Diffusions: Preliminaries

Consider a target objective function f : Rd
! R. Our goal is to carry out unconstrained minimization

of f with the aid of a candidate diffusion defined by the stochastic differential equation (SDE)

dZz
t = b(Zz

t )dt+ �(Zz
t )dBt with Zz

0 = z. (2.1)

Here, (Bt)t�0 is an l-dimensional Wiener process, and b : Rd
! Rd and � : Rd

! Rd⇥l represent
the drift and the diffusion coefficients, respectively. The diffusion Zz

t starts at a point z 2 Rd and,
under the conditions of Section 3, admits a limiting invariant distribution P with (Lebesgue) density
p. To encourage sampling near the minima of f , we would like to choose p so that the maximizers of
p correspond to minimizers of f . Fortunately, under mild conditions, one can construct a diffusion
with target invariant distribution P (see, e.g., [20, 15, Thm. 2]), by selecting the drift coefficient

b(x) = 1
2p(x) hr, p(x)(a(x) + c(x))i, (2.2)

where a(x) , �(x)�(x)> is the covariance coefficient, c(x) = �c(x)> 2 Rd⇥d is the skew-
symmetric stream coefficient, and hr,m(x)i =

P
j ej

P
k

@mjk(x)
@xk

denotes the divergence operator
with {ej}j as the standard basis of Rd. As an illustration, consider the (overdamped) Langevin
diffusion for the Gibbs measure with inverse temperature � > 0 and density

p�(x) / exp(��f(x)) (2.3)

associated with our objective f . Inserting �(x) =
p

2/� I and c(x) = 0 into the formula (2.2) we
obtain

bj(x) =
1

2p�(x)
hr, p�(x)(a(x) + c(x))ij =

1
�p�(x)

P
k

@p�(x)Ijk
@xk

= 1
�p�(x)

@p�(x)
@xj

= �
@jf(x)
@xj

,

which reduces to b = �rf . We emphasize that the choice of the Gibbs measure is arbitrary, and we
will consider other measures that yield superior guarantees for certain minimization problems.

In practice, the diffusion (2.1) cannot be simulated in continuous time and is instead approximated by
a discrete-time numerical integrator. We will show that a particular discretization, the Euler method,
can be used as a global optimization algorithm for various families of convex and non-convex f .
The Euler method is the most commonly used discretization technique due to its explicit form and
simplicity; however, our analysis can be generalized to other numerical integrators as well. For
m = 0, 1, ..., the Euler discretization of the SDE (2.1) corresponds to the Markov chain updates

Xm+1 = Xm + ⌘ b(Xm) +
p
⌘ �(Xm)Wm,

where ⌘ is the step size, and Wm ⇠ Nd(0, I) is an isotropic Gaussian vector that is independent
from Xm. This update rule defines a Markov chain which typically has an invariant measure that
is different from the invariant measure of the continuous time diffusion. However, when the step
size ⌘ is sufficiently small, the difference between two invariant measures becomes small and can
be quantitatively characterized [see, e.g., 22]. Our optimization algorithm is simply to evaluate the
function f at each Markov chain iterate Xm and report the point with the smallest function value.
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Denoting by p(f) the expectation of f under the density p – i.e., p(f)=EZ⇠p[f(Z)] – we decompose
the optimization error after M steps of our Markov chain into two components,

min
m=1,..,M

E[f(Xm)]�minx f(x) 
1
M

PM
m=1 E[f(Xm)� p(f)]

| {z }
integration error

+ p(f)�minx f(x)| {z }
expected suboptimality

, (2.4)

and bound each term on the right-hand side separately. The integration error—which captures both
the short-term non-stationarity of the chain and the long-term bias due to discretization—is the subject
of Section 3; we develop explicit bounds using techniques that build upon [23, 15]. The expected
suboptimality quantifies how well exact samples from p minimize f on average. In Section 4, we
extend the Gibbs measure Langevin diffusion bound of Raginsky et al. [25] to more general invariant
measures and associated diffusions and demonstrate the benefits of targeting non-Gibbs measures.

Notation. We say a function g is pseudo-Lipschitz continuous of order n if it satisfies

|g(x)� g(y)|  µ̃1,n(g)(1 + kxkn2 + kykn2 )kx� yk2, for all x, y 2 Rd, (2.5)

where k·k2 denotes the Euclidean norm, and µ̃1,n(g) is the smallest constant satisfying (2.5). This
assumption, which relaxes the more stringent Lipschitz assumption, allows g to exhibit polynomial
growth of order n. For example, g(x) = x2 is not Lipschitz but satisfies (2.5) with µ̃1,1(g)  1. In
all of our examples of interest, n  1. For operator and Frobenius norms k·kop and k·kF, we use

�1(g) = supx,y2Rd,x 6=y
kg(x)�g(y)kF

kx�yk2
, µ0(g) = supx2Rd kg(x)kop,

and µi(g) = supx,y2Rd,x 6=y
kri�1g(x)�ri�1g(y)kop

kx�yk2

for the i-th order Lipschitz coefficients of a sufficiently differentiable function g. We denote the
degree n polynomial coefficient of the i-th derivative of g by ⇡̃i,n(g) , supx2Rd

krig(x)kop

1+kxkn
2

.

3 Explicit Bounds on Integration Error

We develop our explicit bounds on integration error in three steps. In Theorem 3.1, we bound integra-
tion error in terms of the polynomial growth and dissipativity of diffusion coefficients (Conditions 1
and 2) and Stein factors bounds on the derivatives of solutions to the diffusion’s Poisson equation
(Condition 3). Condition 3 is a common assumption in the literature but is typically not verified. To
address this shortcoming, Theorem 3.2 shows that any smooth, fast-coupling diffusion admits finite
Stein factors expressed in terms of diffusion coupling rates (Condition 4). Finally, in Section 3.1, we
provide user-friendly tools for explicitly bounding those diffusion coupling rates. We begin with our
conditions.
Condition 1 (Polynomial growth of coefficients). For some r 2 {1, 2} and 8x 2 Rd

, the drift and

the diffusion coefficients of the diffusion (2.1) satisfy the growth condition

kb(x)k2 
�b
4 (1 + kxk2), k�(x)kF 

��
4 (1 + kxk2), and k��>(x)kop 

�a
4 (1 + kxkr2).

The existence and uniqueness of the solution to the diffusion SDE (2.1) is guaranteed under Con-
dition 1 [19, Thm 3.5]. The cases r = 1 and r = 2 correspond to linear and quadratic growth of
k��>(x)kop, and we will explore examples of both r settings in Section 5. As we will see in each
result to follow, the quadratic growth case is far more delicate.
Condition 2 (Dissipativity). For ↵,� > 0, the diffusion (2.1) satisfies the dissipativity condition

Akxk22  �↵kxk22 + � for Ag(x) , hb(x),rg(x)i+ 1
2 h�(x)�(x)

>,r2g(x)i. (3.1)

A is the generator of the diffusion with coefficients b and �, and Akxk22 = 2hb(x), xi+ k�(x)k2F.

Dissipativity is a standard assumption that ensures that the diffusion does not diverge but rather travels
inward when far from the origin [22]. Notably, a linear growth bound on k�(x)kF and a quadratic
growth bound on k��>(x)kop follow directly from the linear growth of kb(x)k and Condition 2.
However, in many examples, tighter growth constants can be obtained by inspection.

Our final condition concerns the solution of the Poisson equation (also known as the Stein equation
in the Stein’s method literature) associated with our candidate diffusion.
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Condition 3 (Finite Stein factors). The function uf solves the Poisson equation with generator (3.1)
f � p(f) = Auf , (3.2)

is pseudo-Lipschitz of order n with constant ⇣1, and has i-th order derivative with degree-n polynomial

growth for i = 2, 3, 4, i.e.,

kr
iuf (x)kop  ⇣i(1 + kxkn2 ) for i 2 {2, 3, 4} and all x 2 Rd.

In other words, µ̃1,n(uf ) = ⇣1, and ⇡̃i,n(uf ) = ⇣i for i = 2, 3, 4 with maxi ⇣i < 1.

The coefficients ⇣i govern the regularity of the Poisson equation solution uf and are termed Stein
factors in the Stein’s method literature. Although variants of Condition 3 have been assumed in
previous work [4, 26], we emphasize that this assumption is not easily verified, and frequently only
empirical evidence is provided as justification for the assumption [4]. We will ultimately derive
explicit expressions for the Stein factors ⇣i for a wide variety of diffusions and functions f , but first
we will use the Stein factors to bound the integration error of our discretized diffusion.
Theorem 3.1 (Integration error of discretized diffusions). Let Conditions 1 to 3 hold for some r 2

{1, 2}. For any even integer
1 ne � n+4 and a step size satisfying ⌘ < 1^ ↵

2(ne�1)!!(1+�b/2+��/2)ne ,

����
1
M

MP
m=1

E[f(Xm)]� p(f)

���� 
⇣
c1

1
⌘M + c2⌘ + c3⌘1+|1^n/2|

⌘�
r(ne) + E[kX0k

ne
2 ]

�
,

where

c1 = 6⇣1, c2 = 1
16

h
2⇣2�2b + ⇣3�b�2� + ⇣4(1 + 3n�1)�4�

i
,

c3 = 1
48

h
⇣3�3b + ⇣4�4b(1 + 3n�1) + 4⇣4

1.5n

n4 (�4b + n2
e�

4
�)(�

n
b + n!!�n�)

i
,

r(n) = 2 + 2�
↵ + n�a

4↵ + ↵̃r
↵

⇣
n�a+6r�

2r↵̃r

⌘n
, with ↵̃1 = ↵, ↵̃2 = [↵� ne�a/4]+.

This integration error bound, proved in Appendix A, is O
�

1
⌘M + ⌘

�
since the higher order term

c3⌘1+|1^n/2| can be combined with the dominant term c2⌘ yielding (c2 + c3)⌘ as ⌘ < 1. We observe
that one needs O

�
✏�2

�
steps to reach a tolerance of ✏. Theorem 3.1 seemingly makes no assumptions

on the objective function f , but in fact the dependence on f is present in the growth parameters, the
Stein factors, and the polynomial degree of the Poisson equation solution. For example, we will show
in Theorem 3.2 that the polynomial degree is upper bounded by that of the objective function f . To
characterize the function classes covered by Theorem 3.1, we next turn to dissecting the Stein factors.

While verifying Conditions 1 and 2 for a given diffusion is often straightforward, it is not immediately
clear how one might verify Condition 3. As our second principal contribution, we derive explicit
values for the Stein factors ⇣i for any smooth and dissipative diffusion exhibiting fast L1-Wasserstein
decay:
Condition 4 (Wasserstein rate). The diffusion Zx

t has Lp-Wasserstein rate %p : R�0 ! R if

infcouplings (Zx
t ,Z

y
t )

E[kZx
t � Zy

t k
p
2]

1/p
 %p(t)kx� yk2 for all x, y 2 Rd

and t � 0,

where infimum is taken over all couplings between Zx
t and Zy

t . We further define the relative rates

%̃1(t) = log(%2(t)/%1(t)) and %̃2(t) = log(%1(t)/[%1(0)%2(t)])/ log(%1(t)/%1(0)).

Theorem 3.2 (Finite Stein factors from Wasserstein decay). Assume that Conditions 1, 2 and 4

hold and that f is pseudo-Lipschitz continuous of order n with, for i = 2, 3, 4, at most degree-n
polynomial growth of its i-th order derivatives. Then, Condition 3 is satisfied with Stein factors

⇣i = ⌧i + ⇠i
R1
0 %1(t)!r(t+ i� 2)dt for i = 1, 2, 3, 4, where

!r(t) = 1 + 4%1(t)1�1/r%1(0)1/2
�
1 + 2

↵̃n
r
{[1 _ %̃r(t)]2�an+ 3r�}n

�
,

with ↵̃1 = ↵, ↵̃2 = inft�0[↵� n�a(1 _ %̃2(t))]+, and

⌧1 = 0 & ⌧i = µ̃1,n(f)⇡̃2:i,n(f)⌫̃1:i(b)⌫̃1:i(�)r(6n) for i = 2, 3, 4,

⇠1= µ̃1,n(f) & ⇠i = µ̃1,n(f)⌫̃1:i(b)⌫̃1:i(�)⌫̃0:i�2(��1)%1(0)!r(1)r(6n)i�1
for i = 2, 3, 4,

where r(n) is as in Theorem 3.1, ⇡̃a:b,n(f) = maxi=a,..,b ⇡̃i,n(f), and ⌫̃a:b(g) is a constant, given

explicitly in the proof, depending only on the order a through b derivatives of g.

1In a typical example where f is bounded by a quadratic polynomial, we have n = 1 and ne = 6. We also
remind the reader that the double factorial (ne � 1)!! = 1 · 3 · 5 · · · (ne�1) is of order

p
ne!.
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The proof of Theorem 3.2 is given in Section B and relies on the explicit transition semigroup
derivative bounds of [12]. We emphasize that, to provide finite Stein factors, Theorem 3.2 only
requires L1-Wasserstein decay and allows the L2-Wasserstein rate to grow. An integrable Wasserstein
rate is an indication that a diffusion mixes quickly to its stationary distribution. Hence, Theorem 3.2
suggests that, for a given f , one should select a diffusion that mixes quickly to a stationary measure
that, like the Gibbs measure (2.3), has modes at the minimizers of f . We explore user-friendly
conditions implying fast Wasserstein decay in Section 3.1 and detailed examples deploying these
tools in Section 5. Crucially for the “heavy-tailed” examples given in Section 5, Theorem 3.2 allows
for an unbounded diffusion coefficient �, unlike the classic results of [24].

3.1 Sufficient conditions for Wasserstein decay

A simple condition that leads to exponential L1 and L2-Wasserstein decay is uniform dissipativity

(3.3). The next result from [27] (see also [2, Sec. 1], [15, Thm. 10]) makes the relationship precise.
Proposition 3.3 (Wasserstein decay from uniform dissipativity [27, Thm. 2.5]). A diffusion with

drift and diffusion coefficients b and � has Wasserstein rate %p(t) = e�kt/2
if, for all x, y 2 Rd

,

2hb(x)� b(y), x� yi+ k�(x)� �(y)k2F + (p� 2)k�(x)� �(y)k2op  �kkx� yk22. (3.3)

In the Gibbs measure Langevin case, where b = �rf and � ⌘
p

2/�I , uniform dissipativity is
equivalent to the strong convexity of f . As we will see in Section 5, the extra degree of freedom in
the diffusion coefficient � will allow us to treat non-convex and non-strongly convex functions f .

A more general condition leading to exponential L1-Wasserstein decay is the distant dissipativity

condition (3.4). The following result of [15] builds upon the pioneering analyses of Eberle [11, Cor.
2] and Wang [27, Thm. 2.6] to provide explicit Wasserstein decay.
Proposition 3.4 (Wasserstein decay from distant dissipativity [15, Cor. 4.2]). A diffusion with drift

and diffusion coefficients b and � satisfying �̃(x) , (�(x)�(x)> � s2I)1/2 and

hb(x)�b(y),x�yi
s2kx�yk2

2/2
+ k�̃(x)��̃(y)k2

F

s2kx�yk2
2

�
k(�̃(x)��̃(y))>(x�y)k2

2

s2kx�yk4
2



⇢
�K if kx� yk2 > R
L if kx� yk2  R

(3.4)

for R,L � 0, K > 0, and s 2 (0, 1/µ0(��1)) has Wasserstein rate %1(t) = 2eLR2/8e�kt/2
for

s2k�1


(
e�1
2 R2 + e

p
8K�1 R + 4K�1

if LR2
 8

8
p
2⇡R�1L�1/2(L�1 +K�1) exp(LR2

8 ) + 32R�2K�2
if LR2 > 8.

Conveniently, both uniform and distant dissipativity imply our dissipativity condition, Condition 2.
The Prop. 3.4 rates feature the distance-dependent parameter eLR2/8. In the pre-conditioned Langevin
Gibbs setting (b = �

1
2arf and � constant) when f is the negative log likelihood of a multimodal

Gaussian mixture, R in (3.4) represents the maximum distance between modes [15]. When R is
relatively small, the convergence of the diffusion towards its stationary distribution is rapid, and the
non-uniformity parameter is small; when R is relatively large, the parameter grows exponentially in
R2, as would be expected due to infrequent diffusion transitions between modes.

Our next result, proved in Appendix D, provides a user-friendly set of sufficient conditions for
verifying distant dissipativity and hence exponential Wasserstein decay in practice.
Proposition 3.5 (User-friendly Wasserstein decay). Fix any diffusion and skew-symmetric stream

coefficients � and c satisfying L⇤ , F1(�̃)2 + supx �max(rhr,m(x)i) < 1 for m(x) ,
�(x)�(x)> + c(x), �̃(x) , (�(x)�(x)> � s20I)

1/2
, and s0 2 (0, 1/µ0(��1)). If

�hm(x)rf(x)�m(y)rf(y), x� yi

kx� yk22


⇢
�Km if kx� yk2 > Rm

Lm if kx� yk2  Rm,
(3.5)

holds for Rm, Lm � 0, Km > 0, then, for any inverse temperature � > L⇤/Km, the diffusion with

drift and diffusion coefficients b� = �
1
2mrf + 1

2� hr,mi and �� = 1p
�� has stationary density

p�(x) / e��f(x)
and satisfies (3.4) with s = s0p

� , K = �Km�L⇤

s20
, L = �Lm+L⇤

s20
, and R = Rm.
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4 Explicit Bounds on Optimization Error

To convert our integration error bounds into bounds on optimization error, we now turn our attention
to bounding the expected suboptimality term of (2.4). To characterize the expected suboptimality
of sampling from a measure with modes matching the minima of f , we generalize a result due
to Raginsky et al. [25]. The original result [25, Prop. 3.4] was designed to analyze the Gibbs
measure (2.3) and demanded that log p� be smooth, in the sense that µ2(log p�) < 1. Our next
proposition, proved in Appendix C, is designed for more general measures p and importantly relaxes
the smoothness requirements on log p.
Proposition 4.1 (Expected suboptimality: Sampling yields near-optima). Suppose p is the stationary

density of an (↵,�)-dissipative diffusion (Condition 2) with global maximizer x⇤
. If p takes the

generalized Gibbs form p�,✓(x) / exp(��(f(x)� f(x⇤))✓) for � > 0 and rf(x⇤) = 0, we have

p�,✓(f)� f(x⇤) 
✓

q
d
2� (

1
✓ log(

2�
d ) + log( e�µ2(f)

2↵ )). (4.1)

More generally, if log p(x⇤) � log p(x)  Ckx � x⇤
k
2✓
2 for some C > 0 and ✓ 2 (0, 1] and all x,

then

�p(log p) + log p(x⇤) 
d
2✓ log(

2C
d ) + d

2 log(
e�
↵ ). (4.2)

When ✓ = 1, p�,✓ is the Gibbs measure, and the bound (4.1) exactly recovers [25, Prop. 3.4]. The
generalized Gibbs measures with ✓ < 1 allow for improved dependence on the inverse temperature
when � � d/(2✓). Note however that, for ✓ < 1, the distributions p�,✓ also require knowledge of the
optimal value f(x⇤). In certain practical settings, such as neural network optimization, it is common
to have f(x⇤) = 0. When f(x⇤) is unknown, a similar analysis can be carried out by replacing f(x⇤)
with an estimate, and the bound (4.1) still holds up to a controllable error factor.

By combining Prop. 4.1 with Theorem 3.1, we obtain a complete bound controlling the global
optimization error of the best Markov chain iterate.
Corollary 4.2 (Optimization error of discretized diffusions). Instantiate the assumptions and notation

of Theorem 3.1 and Prop. 4.1. If the diffusion has the generalized Gibbs stationary density p�,✓(x) /
exp(��(f(x)� f(x⇤))✓), then

min
m=1,..,M

E[f(Xm)]� f(x⇤) 
⇣
c1

1
⌘M + (c2+c3)⌘

⌘�
r(ne) + E[kX0k

ne
2 ]

�
(4.3)

+ ✓

q
d
2� (

1
✓ log(

2�
d ) + log( e�µ2(f)

2↵ )).

Finally, we demonstrate that, for quadratic functions, the generalized Gibbs expected suboptimality
bound (4.1) can be further refined to remove the log(�/d)1/✓ dependence.
Proposition 4.3 (Expected suboptimality: Quadratic f ). Let f(x) = hx� b, A(x� b)i for a positive

semidefinite A 2 Rd⇥d
and b 2 Rd

. Then for p�,✓(x) / exp(��(f(x)� f(x⇤))✓) with ✓ > 0, and

for each positive integer k, we have

p�,1/k(f)� f(x⇤) 
�k(1+ d

2 )�1
�

�k
. (4.4)

The bound (4.4) applies to any f with level set (i.e., {x : f(x) = ⇢}) volume proportional to ⇢d�1.

5 Applications to Non-convex Optimization

We next provide detailed examples of verifying that a given diffusion is appropriate for optimizing a
given objective, using either uniform dissipativity (Prop. 3.3) or our user-friendly distant dissipativity
conditions (Prop. 3.5). When the Gibbs measure Langevin diffusion is used, our results yield global
optimization when f is strongly convex (condition (3.3) with b = �rf and � ⌘

p
2/�I) or has

strongly convex tails (condition (3.5) with m ⌘ I). To highlight the value of non-constant diffusion
coefficients, we will focus on “heavy-tailed” examples that are not covered by the Langevin theory.
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Figure 1: The left plot shows the landscape of the non-convex, sublinear growth function f(x) =
c log(1 + 1

2kxk
2
2). The middle and right plots compare the optimization error of gradient descent, the

Langevin algorithm, and the discretized diffusion designed in Section 5.1.

5.1 A simple example with sublinear growth

We begin with a pedagogical example of selecting an appropriate diffusion and verifying our global
optimization conditions. Fix c > d+3

2 and consider f(x) = c log(1 + 1
2kxk

2
2), a simple non-convex

objective which exhibits sublinear growth in kxk2 and hence does not satisfy dissipativity (Con-
dition 2) when paired with the Gibbs measure Langevin diffusion (b = �rf,� =

p
2/�I). To

target the Gibbs measure (2.3) with inverse temperature � � 1, we choose the diffusion with coef-
ficients b�(x) = �

1
2a(x)rf(x) + 1

2� hr, a(x)i and ��(x) = 1p
��(x) for �(x) ,

q
1 + 1

2kxk
2
2I

and a(x) = �(x)�(x)>. This choice satisfies Condition 1 with �b = O(1), �� = O
�
��1/2

�
, and

�a = O
�
��1

�
with respect to � and Condition 2 with ↵ = c � d+3

2� and � = d/�. In fact, this
diffusion satisfies uniform dissipativity,

2hb�(x)� b�(y), x� yi+ k��(x)� ��(y)k2F,

= �(c� 1
� )kx� yk22 +

d
�

⇣q
1 + 1

2kxk
2
2 �

q
1 + 1

2kyk
2
2

⌘2

 �↵kx� yk22,

yielding L1 and L2-Wasserstein rates %1(t) = %2(t) = e�t↵/2 by Prop. 3.3 and the relative rate
%̃2(t) = 0. Hence, the i-th Stein factor in Theorem 3.2 satisfies ⇣i = O

�
�(i�1)/2

�
. This implies that

the coefficients ci in Corollary 4.2 scale with O

⇣
1

M⌘ + ⌃3
i=1⌘

i�i/2 + 1
�

⌘
and the final optimization

error bound (4.3) can be made of order ✏ by choosing the inverse temperature � = O
�
✏�1

�
, the step

size ⌘ = O
�
✏1.5

�
, and the number of iterations M = O

�
✏�2.5

�
.

Figure 1 illustrates the value of this designed diffusion over gradient descent and the standard
Langevin algorithm. Here, d = 2, c = 10, the inverse temperature � = 1, the step size ⌘ = 0.1,
and each algorithm is run from the initial point (90, 110). We observe that the Langevin algorithm
diverges, and gradient descent requires thousands of iterations to converge while the designed
diffusion converges to the region of interest after 15 iterations.

5.2 Non-convex learning with linear growth

Next consider the canonical learning problem of regularized loss minimization with

f(x) = L(x) +R(x)

for L(x) , 1
L

PL
l=1  l(hx, vli),  l a datapoint-specific loss function, vl 2 Rd the l-th data-

point covariate vector, and R(x) = ⇢( 12kxk
2
2) a regularizer with concave ⇢ satisfying �3⇢0(z) �

p
max(0,�⇢0(0)z⇢000(z)) and 4g0

1(z)
2

�2


g1(z)
z  �1 for gs(z) , ⇢0(0)

⇢0( 1
2 z)

� s, some �1, �2, �3 > 0,
and all z, s 2 R. Our aim is to select diffusion and stream coefficients that satisfy the Wasserstein
decay preconditions of Prop. 3.5. To achieve this, we set c ⌘ 0 and choose � with µ0(��1) < 1 so
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that the regularization component of the drift is one-sided Lipschitz, i.e.,

�ha(x)rR(x)� a(y)rR(y), x� yi  �Kakx� yk22 for some Ka > 0. (5.1)

We then show that L⇤ from Prop. 3.5 is bounded and that, for suitable loss choices, a(x)rL(x) is
bounded and Lipschitz so that (3.5) holds with Km = Ka

2 and Lm, Rm sufficiently large.

Fix any x, let r = kxk2, and define �̃(s)(x) =
p
1� s(I �

xx>

r2 ) + xx>

r2

p
gs(r2) for all s 2 [0, 1].

We choose � = �̃(0) so that a(x)rR(x) = ⇢0(0)x and (5.1) holds with Ka = ⇢0(0). Our constraints
on ⇢ ensure that a(x) = I + xx>

r2 g1(r2) is positive definite, that µ0(��1)  1, and that � and a have
at most linear and quadratic growth respectively, in satisfaction of Condition 1. Moreover,

rhr, a(x)i = I( (d�1)g1(r
2)

r2 + 2g01(r
2)) + 2xx>

r2 ((d� 1)(g01(r
2)� g1(r

2)
r2 ) + 2r2g001 (r

2)), and

�max(rhr, a(x)i) = max( (d�1)g1(r
2)

r2 + 2g01(r
2),� (d�1)g1(r

2)
r2 + 2dg01(r

2) + 4r2g001 (r
2)),

so that �max(rhr, a(x)i)  max((d� 1)�1+
p
�1�2, d

p
�1�2+2�3). For any s0 2 (0, 1), we have

r�̃(s0)(x)[v] = (I hx,vi
r + xv>

r � 2xx>

r3 hx, vi)
p

gs0 (r
2)�

p
1�s0

r + 2xx>

r3 hx, vi
rg0

s0
(r2)

p
gs0 (r

2)

for each v 2 Rd, so, as |
p
gs0(r

2)�
p
1� s0| 

p
g1(r2), �1(�̃)  d

p
�1 +

p
�2 for �̃ = �̃(s0).

Finally, to satisfy (3.5), it suffices to verify that a(x)rL(x) is bounded and Lipschitz. For example,
in the case of a ridge regularizer, R(x) = �

2 kxk
2
2 for � > 0, the coefficient a(x) = I , and it suffices

to check that L is Lipschitz with Lipschitz gradient. This strongly convex regularizer satisfies our
assumptions, but strong convexity is by no means necessary. Consider instead the pseudo-Huber
function, R(x) = �(

q
1 + 1

2kxk
2
2 � 1), popularized in computer vision [17]. This convex but non-

strongly convex regularizer satisfies all of our criteria and yields a diffusion with a(x) = I+ xx>

r2
R(x)
� .

Moreover, since rL(x) = 1
L

P
l vl 

0
l(hx, vli) and r

2
L(x) = 1

L

P
l vlv

>
l  

00
l (hx, vli), a(x)rL(x)

is bounded and Lipschitz whenever | 0
l(r)| 

�4
1+r and | 00

l (r)| 
�5
1+r for some �4, �5 > 0. Hence,

Prop. 3.5 guarantees exponential Wasserstein decay for a variety of non-convex L based on datapoint
outcomes yl, including the sigmoid ( (r) = tanh((r � yl)2) for yl 2 R or  (r) = 1� tanh(ylr)
for yl 2 {±1}) [1], the Student’s t negative log likelihood ( l(r) = log(1 + (r � yl)2)), and
the Blake-Zisserman ( (r) = � log(e�(r�yl)

2

+ ✏), ✏ > 0) [17]. The reader can verify that all
of these examples also satisfy the remaining global optimization pre-conditions of Corollary 4.2
and Theorem 3.2. In contrast, these linear-growth examples do not satisfy dissipativity (Condition 2)
when paired with the Gibbs measure Langevin diffusion.

6 Conclusion

In this paper, we showed that the Euler discretization of any smooth and dissipative diffusion can
be used for global non-convex optimization. We established non-asymptotic bounds on global
optimization error and integration error with convergence governed by Stein factors obtained from the
solution of the Poisson equation. We further provided explicit bounds on Stein factors for large classes
of convex and non-convex objective functions, based on computable properties of the objective and the
diffusion. Using this flexibility, we designed suitable diffusions for optimizing non-convex functions
not covered by the existing Langevin theory. We also demonstrated that targeting distributions other
than the Gibbs measure can give rise to improved optimization guarantees.
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