
Supplementary Material

A Barycenter of Dirac Deltas

Wasserstein barycenter problems can be divided into two main classes: problems in which the support
is free (and must be computed, generating a nonconvex problem [8]) and problems where the support
is fixed. In some cases, the latter is the only valid choice: for instance, when the geometric domain is
a space of symbols and the cost matrix M contains the symbol-to-symbol dissimilarities, no extra
information of the symbol space is available and the support of the barycenter will have to lie on a
pre-determined set in order to be meaningful. A concrete example is the following: when dealing
with histograms on words, the barycenter will optimize how to spread the mass among a set of
known words that are used to build the matrix M , through a word2vec operation. In the following we
carry out the computation of the barycenter of two Dirac deltas with regularized Sinkhorn and sharp
Sinkhorn approximations, in order to prove what stated in example 1.

Barycenter with S̃λ: Let µ = δz be the Dirac delta centered at z ∈ Rd and ν = δy the Dirac delta
centered at y ∈ Rd. We fix the set of admissible support of the barycenter X = {x1, . . . , xn}, where
xi ∈ Rd for any i. For the sake of simplicity let us assume that X contains the point (y + z)/2. The
cost matrices with mutual distances between z and X and y and X will be

Mz = {d(z, xi)}ni=1 ∈ Rn, My = {d(y, xi)}ni=1.

Since the support is fixed, only the masses a = (a1, . . . , an) of the barycenter µ̃λ =
∑n
i=1 aiδxi are

to be computed. Vector a is the minimizer of the following functional

∆n 3 a −→ BS̃λ
(a) =

1

2
S̃λ(a, δz) +

1

2
S̃λ(a, δy).

Note that since Dirac delta has mass 1 concentrated at a point, the transport polytope corresponding
to a and a Dirac delta is Π(a, 1). The elements in Π(a, 1) are those matrices T ∈ Rn×1 such that
T11 = a and T>1n = 1. Thus,




T1

T2

...
Tn


 (1) =




a1

a2

...
an


 (19)

which implies T1 = a1, . . . , Tn = an. In this case, Π(a, 1) contains only one matrix, which
coincides with a>. The distance S̃λ(a, δz) is given by 〈a>,Mz〉− 1

λh(a) and, similarly, S̃λ(a, δy) =

〈a>,My〉 − 1
λh(a). Then, the goal is to minimize

a −→ 1

2
〈a,Mz〉+

1

2
〈a,My〉+

1

λ

n∑

i=1

ai(log ai − 1)

with the constraint that a ∈ ∆n. The partial derivative with respect to ai is given by

∂BS̃λ

∂ai
=

1

2
(Mz

i +My
i ) +

1

λ
log ai

Setting it equal to zero, it yields ai = e−λ(Mz
i +My

i )/2. The constraint a ∈ ∆n leads to

ai =
e−λ(Mz

i +My
i )/2

∑n
j=1 e−λ(Mz

j +My
j )/2

.

Then the barycenter µ̃∗λ has masses (a1, . . . , an) where each ai is strictly positive, with maximum
at the entry corresponding to the point xi which realizes the minimum distance from z and y, i.e.
(z + y)/2. The sparsity of the initial deltas is lost.
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Barycenter with Sλ: On the other hand, let us compute the barycenter between µ and ν with
respect to the Sinkhorn approximation recalled in (7). The very same considerations on Π(a, 1) still
hold, so Π(a, 1) contains T = a> only. Hence, in this case the Sinkhorn barycenter functional BSλ
coincides with the Wasserstein barycenter functional BW, since Sλ(a, δj) = 〈a>,M j〉 = W(a, δj),
for j = z, y. This trivially implies that µ∗λ = µ∗W.

B Proof of Proposition 1 in section 3

Proposition 1. Let λ > 0. For any pair of discrete measures µ, ν ∈ P(X) with respective weights
a ∈ ∆n and b ∈ ∆m, we have

∣∣ Sλ(µ, ν)−W(µ, ν)
∣∣ ≤ c1 e−λ

∣∣ S̃λ(µ, ν)−W(µ, ν)
∣∣ ≤ c2λ−1, (8)

where c1, c2 are constants independent of λ, depending on the support of µ and ν.

Proof. As shown in [13](Prop.5.1), the sequence Tλ converges to an optimal plan of W as λ goes to
infinity. More precisely,

Tλ → T ∗ = argmaxT∈Π(a,b){h(T ); 〈T,M〉 = W(µ, ν)}

exponentially fast, that is ‖Tλ − T ∗‖Rnm ≤ c e−λ. Thus,

|Sλ(µ, ν)−W(µ, ν)| = |〈Tλ,M〉 − 〈T ∗,M〉| ≤ ‖Tλ − T ∗‖‖M‖ ≤ c e−λ‖M‖ =: c1e−λ.

As for the second part, let T ∗ be the argmaxT∈Π(a,b){h(T ); 〈T,M〉 = W(µ, ν)}. By optimality of
Tλ and T ∗ for their optimization problems, it holds

0 ≤ 〈Tλ,M〉 − 〈T ∗,M〉 ≤ λ−1(h(Tλ)− h(T ∗));

Indeed, since Tλ is the optimum, it attains the minimum and hence

〈Tλ,M〉 − λ−1h(Tλ) ≤ 〈T,M〉 − λ−1h(T )

for any other T , including T ∗. By definition of S̃λ and W, the inequalities above can be rewritten as

0 ≤ S̃λ(µ, ν)−W(µ, ν) ≤ λ−1h(T ∗) =: c2λ
−1

which goes to 0 with speed λ−1 as λ goes to infinity.

C Proofs on differential properties and formula of the gradient

In this section we go over all the details of the proofs sketched in section 4.

Theorem 2. For any λ > 0, the Sinkhorn approximations S̃λ and Sλ : ∆n ×∆n → R are C∞ in
the interior of their domain.

Proof. Let us show the proof for Sλ first. We organize it in three steps:
Step 1. Sλ is smooth when Tλ is: when considering histograms, Sλ depends on its argument a and b
through the optimal coupling Tλ(a, b), being the cost matrix M fixed. Thus, since Sλ is a smooth
function of Tλ (being the Frobenius product of Tλ with a constant matrix), showing that Sλ is smooth
in a, b amounts to showing that Tλ is smooth.

Step 2. Tλ is smooth when (α∗, β∗) is: By Sinkhorn’s scaling theorem [18], the optimal plan Tλ is
characterized as follows

Tλ = diag(eλα∗)e−λMdiag(eλβ∗ .) (20)
Being the exponential a smooth function, Tλ(a, b) is smooth in a and b if the dual optima α∗(a, b)
and β∗(a, b) are. Our goal is then showing smoothness with respect to a and b of the dual optima.

Step 3. (α∗, β∗) is smooth in a, b: this is the most technical part of the proof. First of all, let us
stress that one among the n+m rows/columns constraints of Π(a, b) is redundant: the standard dual
problem recalled in Eq. (11) has an extra dual variable, and this degree of freedom is clear noticing

14



that if (α, β) is feasible, than the pair (α+ t1n, β − t1m) is also feasible. In the following, we get
rid of the redundancy removing one of the dual variables. Hence, let us set

L(a, b;α, β) = −α> a− β> b̄+

n,m−1∑

i,j=1

e−λ(Mij−αi−βj)

λ
,

where b̄ corresponds to b with the last element removed.
To avoid cumbersome notation, from now on we denote x = (a, b) and γ = (α, β). The function
L is smooth and strictly convex in γ: hence, for every fixed x in the interior of ∆n × ∆n there
exist γ∗(x) such that L(x; γ∗(x)) = minγ L(x; γ). We now fix x0 and show that x 7→ γ∗(x)

is Ck on a neighbourhood of x0. Set Ψ(x; γ) := ∇γL(x; γ); the smoothness of L ensures that
Ψ ∈ Ck. Fix (x0; γ0) such that Ψ(x0; γ0) = 0. Since ∇γΨ(x; γ) = ∇2

γL(x; γ) and L is strictly
convex, ∇γΨ(x0; γ0) is invertible. Then, by the implicit function theorem, there exist a subset
Ux0
⊂ ∆n ×∆n and a function φ : Ux0

→ ∆n ×∆n such that

i) φ(x0) = γ0

ii) Ψ(x, φ(x)) = 0, ∀x ∈ Ux0

iii) φ ∈ Ck(Ux0
).

For each x in Ux0
, since φ(x) is a stationary point for L and L is strictly convex, then φ(x) = γ∗(x),

which is- recalling the notation set before- (α∗, β∗). By a standard covering argument, (α∗, β∗) is Ck

on the interior of ∆n ×∆n. As this holds true for any k, the optima (α∗, β∗), and hence Sλ, are C∞

on the interior of ∆n ×∆n.

Let us now focus on the smoothness of S̃λ. Note that when a, b belong to the interior of the simplex,
all components are strictly positive. From the characterization of Tλ recalled in Eq. (20), we know
Tλij > 0 for any i, j = 1 . . . n,m. Then, since the logarithm is a smooth function of Tλ, the
term λ−1h(Tλ) is smooth in a and b. This fact combined with the first part of the proof shows the
smoothness of S̃λ(a, b) = 〈Tλ,M〉 − λ−1h(Tλ).

With a similar procedure, the implicit function theorem provides a formula for the gradient of sharp
Sinkhorn.
Theorem 3. Let M ∈ Rn×m be a cost matrix, a ∈ ∆n, b ∈ ∆m and λ > 0. Let La,b(α, β) be
defined as in (11), with argmax in (α∗, β∗). Let Tλ be defined as in Eq. (12). Then,

∇aSλ(a, b) = PT∆n

(
A L1m +B L̄>1n

)
(13)

where L = Tλ �M ∈ Rn×m is the entry-wise multiplication between Tλ and M and L̄ ∈ Rn×m−1

corresponds to L with the last column removed. The terms A ∈ Rn×n and B ∈ Rn×m−1 are

[A B] = −λ D
[
∇2

(α,β)La,b(α∗, β∗)
]−1

, (14)

with D = [I 0] the matrix concatenating the n × n identity matrix I and the matrix 0 ∈ Rn×m−1

with all entries equal to zero. The operator PT∆n
denotes the projection onto the tangent plane

T∆n = {x ∈ Rn :
∑n
i=1 xi = 0} to the simplex ∆n.

Proof. Let us adopt the same notation as in the previous proof. Since Ψ = ∇(α,β)L, by a direct
computation, Ψ can be written as

Ψ(a, b;α, β) =

(
a− C1
b− C>1

)
,

where C is the n×m− 1 matrix given by diag(eλα∗)eλM̄diag(eλβ∗) and M̄ is the matrix M with
mth column removed. In the following, we keep track of the dependence on a only. Being Ψ the
gradient of L, and γ∗(a) = (α∗(a), β∗(a)) a stationary point, we have

Ψ(a; γ∗(a)) = 0. (21)

For the sake of clarity, notice that:
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i) a ∈ Rn;

ii) L : Rn × Rn × Rm−1 −→ R, as we are considering it is a function of a, α , β;

iii) Ψ(a, γ(a)) = ∇α,βL(a, γ(a)) ∈ Rn+m−1×1;

iv) α∗ : Rn → Rn, β∗ : Rn → Rm−1, thus γ∗ : Rn → Rn × Rm−1.

Our goal is to derive∇aγ∗(a): by matrix differentiation rules [39] and Eq. (21),

∇aΨ(a, γ∗(a)) = ∇1Ψ(a, γ∗(a)) +∇aγ∗(a)∇2Ψ(a, γ∗(a)) = 0. (22)

Let us analyse each term: ∇1Ψ(a, γ∗(a)) = [In,0n,m−1] is n × n+m−1 matrix with identity
and zeros block, and ∇2Ψ(a, γ∗(a)) = ∇2

α,βL(a, γ∗(a)) =: H is the Hessian of L evaluated at
(a, γ∗(a)), which is a n+m−1× n+m−1 matrix. Together with Eq. (22), this yields

∇aγ∗(a) = [∇aα∗(a),∇aβ∗(a)] = −DH−1.

For the sake of clarity, note that ∇aα∗(a) and ∇aβ∗(a) contains the gradients of the components as
columns, i.e.

∇aα∗ = (∇aα∗1, ∇aα∗2, . . . , ∇aα∗n)

∇aβ∗ = (∇aβ∗1, ∇aβ∗2, . . . , ∇aβ∗m−1) .

Now, since Sλ(a, b) = 〈Tλ,M〉 and Tλ corresponds to Eq. (20) a straightforward computation shows
that

∇aSλ(a, b) =

n,m∑

i,j=1

∇aTλijMij = λ

n,m∑

i,j=1

TλijMij∇aα∗i + λ

n,m−1∑

i,j=1

TλijMij∇aβ∗j .

Setting L := Tλ �M , then the formula above can be rewritten as

∇aSλ(a, b) = λ
n∑

i

∇aα∗i
m∑

j=1

Lij + λ
m−1∑

j=1

∇aβ∗j
n∑

i=1

Lij ,

which is exactly
∇aSλ(a, b) = λ(∇aα∗L1m +∇aβ∗L̄>1n).

Since by definition, the gradient belongs to the tangent space of the domain, and a ∈ ∆n, we project
on the tangent space of the simplex, recovering PT∆nλ(∇aα∗L1m +∇aβ∗L̄>1n).

C.1 Massaging the gradient to get an algorithmic-friendly form

In the proof of theorem 3 we have derived a formula for the gradient of sharp Sinkhorn approximation.
In this section we further manipulate it in order to obtain an algorithmic friendly expression that also
points out some interesting bits that were hidden in the formula above. All the notation has already
been introduced: from now on, we will drop the λ and denote the optimal plan by T to make the
notation neater.

An explicit computation of the second derivatives of L with respect to αi and βj for i = 1, . . . , n and
j = 1, . . . ,m− 1 leads to the following identity

H =

(
diag(T1) T̄
T̄> diag(T̄>1)

)
=

(
diag(a) T̄
T̄> diag(b̄)

)
.

That is, H is a block matrix and each block can be expressed in terms of the plan T . The block
structure can be exploited when it comes to compute the inverse: we have shown that the gradient of
the dual potentials is given by

[∇aα∗,∇aβ∗] = −DH−1, D = [In,0n,m−1].

Now, the inverse of a block matrix is again a block matrix, say

H−1 =

(
K1 K2

K3 K4

)
.
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Figure 5: Barycenter for 10, 30 and 100 iterations

Then, [∇aα∗,∇aβ∗] = −[K1,K2]. By the formula of the block inverse, setting

K = diag(T1)− T̄diag(T̄>1)−1T̄>,

the blocks K1 and K2 are given by

K1 = K−1, K2 = −K−1T̄diag(T̄>1)−1.

Note that K is symmetric and so its inverse. Now, we can rewrite λ(∇aα∗L1m +∇aβ∗L̄>1n), with
L = T �M , as

λ
(
−K−1S1m +K−1T̄diag(T̄>1)−1L̄>1n

)

and we conclude that

∇aSλ(a, b) = λ · solve(K,−L1m + T̄diag(T̄>1)−1L̄>1n).

Approximation errors In the recent work [19], it has been shown that Sinkhorn-Knopp algorithm
outputs a matrix Tλ whose distance ‖Tλ1− a‖1 + ‖T>λ 1− b‖1 from the transport polytope Π(a, b)
is smaller than ε in O(ε−2 log(s/N)) iterations, where s =

∑
ij e−λMij and N = minij e−λMij .

Let us denote by Mmax and Mmin the maximum and minimum elements of M respectively. Then,
s

N
=
∑

ij

e−λ(Mij−Mmax) ≥ e−λ(Mmin−Mmax) ≥ 1.

This yields the lower bound
log
( s
N

)
≥ cλ

where c is a constant independent of λ. We can then conclude that Sinkhorn-Knopp algorithm returns
a matrix Tλ such that

〈Tλ,M〉 ≤W(a, b) + ε

in O(n2ε−2M2
maxλ). Analysing how the estimation error propagates when estimating the gradient

is a relevant question which deserves its own investigation. Fig. 4 empirically shows how the
approximation error with respect to the correct gradient (obtained via reaching high accuracy in
Sinkhorn algorithms) decreases with the number of iterations. We report in Fig. 6 three more
examples, where n is significantly larger than m.

One may wonder whether the error with respect to the true gradient, which is considerable when
the number of iterations is too small, has an actual impact in practise; to this end, we computed
the barycenter of the ellipses as in Fig. 2 of the main text but with L = 10 and L = 30 iterations.
The result reported in Fig. 5 shows that L = 10 and L = 30 are not enough to recover the correct
barycenter.

C.2 Discussion about differentiability of Sinkhorn approximation on the boundary

We conclude this section with a few comments on the differentiability on the boundary. As in the
previous paragraph, we drop λ in the notation Tλ.

Claim: Sinkhorn approximation a 7→ Sλ(a, b) is differentiable on the boundary with the exception
of the case a = b = δx, that is when a equals b and only one component is nonzero.

Proof. The proof of this statement follows from the following considerations:
1) when an histogram a approaches the boundary on the simplex, at least one entry, say the ith entry,
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Figure 6: Accuracy of the Gradient obtained with Alg. 1 or AD with respect to the number of iterations

goes to zero. The corresponding dual variable α∗i goes to minus infinity: indeed, if ai = 0 the
function L depends on αi only through eλαi .

2) When αi goes to −∞, the ith row of the matrix T , which is Tij = e−λ(Mij−α∗i−β∗j) =

eλα∗ie−λ(Mij−β∗j) has a zero row as limit. This is a necessary condition for T to be in the
transportation polytope, since T1 = a is required.

3) Set D1 = diag(T1), D2 = diag(T̄>1) and L = T �M . From the previous paragraph, we know

1

λ
∇aSλ(a, b) = −K−1L1m +K−1T̄D−1

2 L̄>1n, with K = (D1 − T̄D−1
2 T̄>)

This is equivalent to

1

λ
∇aSλ(a, b) = (I −A)−1D−1

1 (−L1m + T̄D−1
2 T̄>1n), where A = D−1

1 T̄D−1
2 T̄>. (23)

4) By T1 = a we know that D−1
1 coincides with diag(1/a) and its ith component would not be

defined when ai = 0. However, since in Eq. (23) D−1
1 pre-multiplies the matrices T �M and T , the

issue does not arise. Indeed, in D−1
1 T �M (and similarly in D−1

1 T ), the ith element of the diagonal
of D−1

1 multiplies the ith row of T �M and hence it is involved in the products

1

eλα∗i
∑
j e−λ(Mij−β∗j)

eλα∗ie−λ(Mij−β∗j)Mij , j = 1 . . .m.

But it is clear from the expression above that the term eλα∗i , which would be zero for ai = 0, cancels
out.
5) To show that Eq. (23) is well defined we are left to prove that (I −A) is invertible. This is true if 1
is not an eigenvalue of A. Since T is doubly stochastic, its eigenvalues are smaller or equal than 1
[40]. Then, singular values of T̄ are ≤ 1. Being D1 and D2 diagonal matrices with entries of a and b̄
on the diagonal, unless a = b = δx the product of eigenvalues is strictly less that 1 and this concludes
the proof.

D Background and proofs for section 5

We recall the main definition and tools from [15] needed to fully understand what discussed in section
5. The structured prediction estimator recalled in Eq. (17) is derived in [15] for a large class of loss
functions S : Y × Y → R that are referred to as Structure Encoding Loss Functions (SELF) and
satisfy the following assumption:
Definition 1 (SELF). Let Y be a set. A function S : Y × Y → R is a Structure Encoding Loss
Function (SELF) if there exists a separable Hilbert spaceHY with inner product 〈·, ·〉HY , a continuous
map ψ : Y → HY and a bounded linear operator V : HY → HY such that

S(y, y′) = 〈ψ(y), V ψ(y′)〉HY y, y′ ∈ HY . (24)

While in [15] it has been observed that a wide range of commonly used loss functions are SELF, no
such result was known for Sinkhorn loss. This work also provides an answer to this question. Let us
prove the following result first:
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Theorem 6. (Smooth functions are SELF) Let Y be a compact subset of Rn. Any function S :
Y × Y → R such that S ∈ C∞(Y × Y) is SELF.

Proof. By assumption S ∈ C∞(Y × Y). Since Y is compact,

C∞(Y × Y) = C∞(Y)⊗ C∞(Y) ⊂ Hr(Y)⊗Hr(Y), (25)

for r > n/2, where Hr(Y) is the Sobolev space made of L2 functions weakly differentiable r times
[41], and ⊗ denotes the topological tensor product. The Sobolev space = Hr(Y) is a Reproducing
Kernel Hilbert Space (RKHS) [42] and we denote by ky = k(y, ·) ∈ Hr(Y) the reproducing kernel.
The product space Hr ⊗ Hr is also an RKHS with reproducing kernel K((y1, y2), (y′1, y

′
2)) =

k(y1, y
′
1)k(y2, y

′
2), i.e. in general Ky,y′ = ky ⊗ ky′ . Since S ∈ Hr ⊗Hr, by reproducing property

there exists a function V ∈ Hr ⊗Hr such that

S(y, y′) = 〈V, ky ⊗ ky′〉Hr⊗Hr .
By the isometric isomorphism Hr ⊗ Hr ∼= HS(Hr, Hr) [43], with HS(Hr, Hr) the space of
Hilbert-Schmidt operators from Hr to itself, it holds

S(y, y′) = 〈V, ky ⊗ ky′〉Hr⊗Hr = 〈V, ky ⊗ ky′〉HS = Tr(V ∗ky ⊗ ky′) = 〈ky′ , V ∗ky〉Hr , (26)

where V ∗ is the adjoint operator of V . To meet the conditions of definition 1 it remains to show that
V ∗ and ky are bounded. But ky is bounded in Hr for any y ∈ Y by definition of reproducing kernel
and the operator norm ‖V ∗‖ is bounded from above by the Hilbert-Schmidt norm ‖V ‖HS which is
trivially bounded since V ∈ HS(Hr, Hr).

Corollary 7. The regularized and sharp Sinkhorn losses S̃λ and Sλ : ∆ε
n ×∆ε

n → R are SELF.

Proof. Since ∆ε
n ⊂ ∆n is compact and S̃λ, Sλ are C∞ in the interior on ∆n ×∆n by Thm. 2, a

direct application of the result above shows that S̃λ and Sλ are SELF.

Summing up these elements, the proof of Thm. 4 easily follows:

Theorem 4 (Universal Consistency). Let Y = ∆ε
n, λ > 0 and S be either S̃λ or Sλ. Let k be a

bounded continuous universal3 kernel on X . For any N ∈ N and any distribution ρ on X × Y let
f̂N : X → Y be the estimator in Eq. (17) trained with (xi, yi)

N
i=1 points independently sampled from

ρ and γN = N−1/4. Then

lim
N→∞

E(f̂N ) = min
f :X→Y

E(f) with probability 1.

Proof. Since S̃λ, Sλ are SELF function and ∆ε
n is compact, the result follows from Thm. 4 in

[15].

We conclude the section with some comments on Thm. 5 and its proof. We have shown that S̃λ and
Sλ are SELF and can be written as

Sλ(y, y′) = 〈ky, V ky′〉Hr(∆ε
n) (27)

with k the reproducing kernel of the Sobolev space Hr(∆ε
n). With the same notation as in [15], let

us set

g∗(x) =

∫

∆ε
n

ky dρ(y |x),

which corresponds to a kernel embedding. Recall that k : X ×X → R is a positive definite kernel on
X . Let us denote byHX the RKHS on X associated with the kernel k. Then, the “standard regularity”
conditions mentioned in the statement of Thm. 5 amount to asking that g∗ belongs to theHX ⊗HY .
This paraphrases a regularity condition on the distribution ρ itself and is a standard assumption in
statistical learning theory [44, 45]. The formal statement reads as follows:

3This is a standard assumptions for universal consistency (see [35]). Example: k(x, x′) = e−‖x−x
′‖2/σ .
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#err S̃λ Sλ

S̃λ 16 11
Sλ 1 6

Figure 7: (Right) Relative error (see text) for the Sinkhorn estimators on the digit reconstruction problem. (Left)
Sample predictions for regularized (First image) and sharp Sinkhorn estimators.

Theorem 8. Let Y = ∆ε
n, λ > 0 and S be either S̃λ or Sλ. Let k : X × X → R be a bounded

continuous reproducing kernel on X and f̂N : X → Y the estimator in Eq. (17) with N training
points and γ = N−1/2. If g∗ ∈ HX ⊗HY , then

E(f)− min
f :X→Y

E(f) ≤ c τ2N−1/4

holds with probability 1− 8e−τ for any τ > 0, with c a constant independent of N and τ .

Proof. The proof substantially takes advantage of the fact that S̃λ and Sλ are SELF and inherits the
generalization bounds proved in Thm. 5 in [15].

Remark 3. A relevant question is whether the Wasserstein distance could be similarly framed in the
setting of structured prediction. However, the argument used to address Sinkhorn approximations
relies on their smoothness properties and cannot be extended to the Wasserstein distance, which is
not differentiable. A completely different approach may still be successful and we will investigate this
question in future work.

E Experiment on MNIST

This last section is a short supplement to section 6. We present a small experiment on the MNIST
dataset that has the same flavour as the experiment on GoogleQuickDraw dataset but addresses a
more specific target: to evaluate better the quality of the prediction rather than the overall quality
of the reconstructed image, we train the SVM classifier trained on a separate dataset made of 2000
examples of lower halves of digits 1, 2, 5, 8, 9. Since the classifier is trained on lower halves only, we
have selected a subset of digits with clearly diverse shapes, to disregard any legitimate vagueness.
This means that any classification errors will be due to a poor prediction of the lower half.

We performed the reconstruction with both S̃λ and Sλ loss. We tested the performance of the two
estimators on 100 examples. Fig. 7 reports the performance of the two estimators, as follows:

i) the terms on the diagonal presents the number of misclassification of the lower half predicted
with S̃λ and Sλ losses;

ii) the number on the upper diagonal represents the number of errors occurred in the classi-
fication of the prediction with S̃λ on those examples that were correctly classified when
reconstructed with Sλ;

iii) conversely, the number on the lower diagonal represents the number of errors occurred in
the prediction with Sλ on those examples that were correctly classified when reconstructed
with S̃λ.

To be more precise, denote by L(S̃λ) the vector with labels predicted by the classifier when tested on
the halves of digits predicted with S̃λ loss and analogously L(Sλ) the vector with labels given by the
classifier tested on the halves of images predicted with Sλ loss. Vector L is the vector with the true
labels of the test set. Consider two vectors ẽλ ∈ {0, 1}100 and eλ ∈ {0, 1}100 defined as follows:

ẽλi =

{
0 if Li = L(S̃λ)i
1 otherwise

eλi =

{
0 if Li = L(Sλ)i
1 otherwise.
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Table in Fig. 7 corresponds to
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 .

What we observed is the following: since the classifier was trained and tested on the lower halves only,
the blurriness in the reconstruction performed with S̃λ played a substantial role in the misclassification
on digit 5 in favour of digit 8. On the other hand, the sharpness of the reconstruction with Sλ is a
major advantage for the correct classification.
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