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Abstract

This supplementary file presents the overview of the manifolds of interest, the
proof of the convergence analysis, and additional numerical experiments.

A Manifolds and problems of interest

A.1 Manifolds

Stiefel manifold St(r, d): The Stiefel manifold is the set of orthogonal r-frames in Rd for some
r ≤ d, and it is an embedded submanifold of Rd×r. The orthogonal group O(d) is a special case of
the Stiefel manifold, i.e., O(d) = St(d, d). Because St(r, d) is a submanifold embedded in Rd×r,
we can endow the canonical inner product in Rd×r as a Riemannian metric ⟨ξ, η⟩U = tr(ξ⊤η) for
ξ, η ∈ TUSt(r, d). With this Riemannian metric, the projection onto the tangent space TUSt(r, d) is
defined as an orthogonal projection PU(W) = W−Usym(U⊤W) for U ∈ St(r, d) and W ∈ Rd×r.
A popular retraction is RU(ξ) = qf(U+ξ) for U ∈ St(r, d) and ξ ∈ TUSt(r, d), where qf(·) extracts
the orthonormal factor based on QR decomposition. Other details about optimization-related notions
on the Stiefel manifold are in [1].

Grassmann manifold Gr(r, d): A point on the Grassmann manifold is an equivalence class repre-
sented by a d × r orthogonal matrix U with orthonormal columns, i.e., U⊤U = I. Two orthogonal
matrices express the same element on the Grassmann manifold if they are related by right multiplica-
tion of an r× r orthogonal matrix O ∈ O(r). Equivalently, an element of Gr(r, d) is identified with
a set of d × r orthogonal matrices [U] := {UO : O ∈ O(r)}. That is, Gr(r, d) := St(r, d)/O(r),
where St(r, d) is the Stiefel manifold that is the set of matrices of size d × r with orthonormal
columns. The Grassmann manifold has the structure of a Riemannian quotient manifold [1]. A pop-
ular retraction on the Grassmann manifold is RU(ξ) = qf(U+ ξ). Other details about optimization-
related notions on the Grassmann manifold are in [1].

A.2 Problems and derivations of Riemannian gradient and Hessian

ICA problem [12, 13]: A particular variant to solve the independent components analysis (ICA)
problem is through joint diagonalization on the Stiefel manifold, i.e.,

min
U∈Rd×r

fica(U) := − 1

n

n∑

i=1

∥diag(U⊤CiU)∥2F ,

where ∥diag(A)∥2F defines the sum of the squared diagonal elements of A. Ci can, for example,
be cumulant matrices or time-lagged covariance matrices of size d × d. The Riemannian gradient
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gradfica(U) of the cost function fica(U) is

gradfica(U) = PU egradfica(U) = PU

(
− 1

n

n∑

i=1

4CiU ddiag(U⊤CiU)

)
,

where egradfica(U) is the Euclidean gradient of fica(U), ddiag is the diagonal matrix, and PU
denotes the orthogonal projection onto the tangent space of U, i.e., TUSt(r, d), which is defined
as PU(W) = W − Usym(U⊤W), where sym(A) represents the symmetric matrix (A + A⊤)/2.
The Riemannian Hessian of fica(U) along a search direction ξ ∈ TUSt(r, d) is Hessfica(U)[ξ] =
∇ξgradfica(U), where ∇ξ represents the Riemannian connection on M. For the case of interest,
∇ηξ = PU(Dξ(Y)[η]), where Y represents the roof of η ∈ TYM. Consequently, the Riemannian
Hessian is defined by

Hessfica(U)[ξ] = PU

(
Degradfica(U)[ξ]− ξsym(U⊤egradfica(U))

− Usym(ξ⊤egradfica(U))− Usym(U⊤Degradfica(U)[ξ])
)
.

Here, Degradfica(U)[ξ] is given by

Degradfica(U)[ξ] = − 1

n

n∑

i=1

4Ci(ξddiag(U⊤CiU) + Uddiag(ξ⊤CiU) + Uddiag(U⊤Ciξ)).

PCA problem: Given an orthonormal matrix projector U ∈ St(r, d), which is the Stiefel manifold
that is the set of matrices of size d× r with orthonormal columns, the principal components analysis
(PCA) problem is to minimize the sum of squared residual errors between projected data points and
the original data as

min
U∈St(r,d)

1

n

n∑

i=1

∥zi − UU⊤zi∥22,

where zi is a data vector of size d× 1. This problem is equivalent to

min
U∈St(r,d)

fpca(U) := − 1

n

n∑

i=1

z⊤
i UU⊤zi.

Here, the critical points in the space St(r, d) are not isolated because the cost function remains un-
changed under the group action U )→ UO for all orthogonal matrices O of size r× r. Subsequently,
the PCA problem is an optimization problem on the Grassmann manifold Gr(r, d).

Similar to the arguments in the ICA problem above, the expressions of the Riemannian gradient and
Hessian for the PCA problem on the Grassmann manifold are as follows:

gradfpca(U) = PU egradfpca(U) = PU

(
− 1

n

n∑

i=1

2ziz
⊤
i U

)

Hessfpca(U)[ξ] = PU

(
− 2

n

n∑

i=1

ziz
⊤
i ξ − (ξU⊤ + Uξ⊤)ziz

⊤
i U − UUTziz

⊤
i ξ

)
,

where the orthogonal projector PU(W) = W − UU⊤W.

MC problem: The matrix completion (MC) problem amounts to completing an incomplete matrix
Z, say of size d × n, from a small number of entries by assuming a low-rank model for the matrix.
If Ω is the set of the indices for which we know the entries in Z, the rank-r MC problem amounts to
solving the problem

minU∈Rd×r,A∈Rr×n ∥PΩ(UA)− PΩ(Z)∥2F ,
where the operator PΩ(Zpq) = Zpq if (p, q) ∈ Ω and PΩ(Zpq) = 0 otherwise is called the orthog-
onal sampling operator and is a mathematically convenient way to represent the subset of known
entries. Partitioning Z = [z1, z2, . . . , zi], the problem is equivalent to the problem

min
U∈Rd×r,ai∈Rr

1

n

n∑

i=1

∥PΩi(Uai)− PΩi(zi)∥22,
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where zi ∈ Rd and the operator PΩi is the sampling operator for the i-th column. Given U, ai

admits the closed-form solution ai = U†
Ω1

ziΩi
, where † is the pseudo inverse and UΩi and ziΩi

are respectively the rows of U and zi corresponding to the row indices in Ωi. Consequently, the
problem only depends on the column space of U and is on the Grassmann manifold [9], i.e.,

min
U∈St(r,d)

fmc(U) := min
ai∈Rr

1

n

n∑

i=1

∥PΩi(Uai)− PΩi(zi)∥22.

The expressions of the Riemannian gradient and Hessian for the MC problem on the Grassmann
manifold are as follows:

gradfmc(U) = PU egradfmc(U) = PU

(
1

n

n∑

i=1

2(PΩi(Uai)− PΩi(zi))a
⊤
i

)

Hessfmc(U)[ξ] = PU

(
2

n

n∑

i=1

(PΩi(Uai)− PΩi(zi))b
⊤
i + (PΩi(ξai + Ubi))a

⊤
i

)
,

where the orthogonal projector PU(W) = W−UU⊤W. Here ai = U†
Ω1

ziΩi
and bi is the directional

derivative of ai along ξ and is the solution to the linear equation

U⊤
Ωi

UΩibi = ξΩi

⊤ziΩi
− (ξΩi

⊤U + U⊤ξΩi)ai.

B Proofs of Theorems

B.1 Proof of Theorem 3.1

Lemma B.1. Under Assumptions 1, 2, and 3, we have

|m̂k(ηk)− f̂k(ηk)| ≤
1

2
LH∆3

t + δg∆t +
1

2
δH∆2

t .

Proof. The absolute difference between m̂k(ηk) and f̂k(ηk) is bounded as below;

|m̂k(ηk)− f̂k(ηk)|

=

∣∣∣∣f(xk) + ⟨Gk, ηk⟩xk +
1

2
⟨ηk, Hk[ηk]⟩xk − f̂k(ηk)

∣∣∣∣

=

∣∣∣∣f̂k(ηk)− f(xk)− ⟨Gk, ηk⟩xk − 1

2
⟨ηk, Hk[ηk]⟩xk

∣∣∣∣

=

∣∣∣∣f̂k(ηk)− f(xk)− ⟨gradf(xk), ηk⟩xk − 1

2
⟨ηk,∇2f̂k(0xk)[ηk]⟩xk

+ ⟨gradf(xk), ηk⟩xk − ⟨Gk, ηk⟩xk +
1

2
⟨ηk,∇2f̂k(0xk)[ηk]⟩xk − 1

2
⟨ηk, Hk[ηk]⟩xk

∣∣∣∣

≤
∣∣∣∣f̂k(ηk)− f(xk)− ⟨gradf(xk), ηk⟩xk − 1

2
⟨ηk,∇2f̂k(0xk)[ηk]⟩xk

∣∣∣∣

+|⟨gradf(xk)−Gk, ηk⟩xk |+
∣∣∣∣
1

2
⟨ηk,∇2f̂k(0xk)[ηk]⟩xk − 1

2
⟨ηk, Hk[ηk]⟩xk

∣∣∣∣

≤ 1

2
LH∥ηk∥3xk

+ δg∥ηk∥xk +
1

2
δH∥ηk∥2xk

≤ 1

2
LH∆3

t + δg∆t +
1

2
δH∆2

t ,

where the first inequality uses the Cauchy-Schwarz inequality and the second one uses Assumptions
2 and 4. This completes the proof.

The proof of Theorem 3.1 follows that of [36, 37]. Therefore, this section gives its sketch.
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Proof. Given Assumptions 1, 2, 3, 4, 5, and 6, and suppose ∥Gk∥xk ≥ ϵg and the bounds of

∆k ≤ min

⎧
⎨

⎩
ϵg

1 +KH
,

√
(1− ρTH)ϵg

12LH
,
(1− ρTH)ϵg

3

⎫
⎬

⎭ ,

then we first show that the iteration k is successful, i.e., ∆k+1 = γ∆k. For this proof, the bound of
|m̂k(ηk)− f̂k(ηk)| in Lemma B.1 is used.

On the other hand, for the case ∥Gk∥xk < ϵg and λmin(Hk) < −ϵH , we have m̂k(η) = f(xk) +
1
2 ⟨ηk, Hk[ηk]⟩xk from (2), and m̂k(0xk) − m̂k(ηk) ≥ m̂k(0xk) − m̂k(ηEk ) ≥ 1

2ν|λmin(Hk)|∆2
k

from Assumption 5. Then, if we have

δH <
1− ρTH

2
νϵH and ∆k ≤ (1− ρTH)

νϵH
LH

,

the iteration k is successful, i.e., ∆k+1 = γ∆k.

Combining the two above, we have for all k

∆k ≥ 1

γ
min

⎧
⎨

⎩
ϵg

1 +KH
,

√
(1− ρTH)ϵg

12LH
,
(1− ρTH)ϵg

3
,
νϵH
LH

⎫
⎬

⎭

under Assumption 6. Consequently, we obtain the upper bound of successful iterations |Nsucc| is
as |Nsucc| ≤ f(x0)−f(x∗)

CϵH min{ϵ2g,ϵ2H} , where C is a constant depending on LH ,KH , δg, δH , ρTH , and ν.
Subsequently, we obtain the claim.

B.2 Proof of Theorem 4.1

This section gives the proof of Theorem 4.1. For this purpose, we introduce the vector Bernstein
inequality for completeness before the actual proof. It should be noted that, since the retraction is a
second-order retraction, we have the Hessian agreement, i.e., Hessf(x) = ∇2f̂k(0xk). In addition,
it should be also noted that we assume for simplicity (and without loss of any generality) that all
representations of points on the manifold, e.g., the Riemannian gradient, are vectors throughout the
analysis.
Lemma B.2 (Vector Bernstein inequality [54, 55, 38]). Let A1, . . . , An be independent random
vector-valued variables with common dimension d and assume that each one is centered, uniformly
bounded and also that the variance is bounded above as E[Ai] = 0, ∥Ai∥2 ≤ µ and ∥E[A2

i ]∥2 ≤ σ2

for positive constants µ and σ. In addition, let Z be the sum of Ai as Z = 1
n

∑n
i=1 Ai. Then, we

have for 0 < ϵ < σ2/µ

Pr(∥Z∥2 ≥ ϵ) ≤ exp

(
−n · ϵ2

8σ2
+

1

4

)
.

Now, we give the proof of Theorem 4.1.

Proof. The first part is for the bound of |Sg|. We consider |Sg| random matrices Gj(x) for j =
1, 2, . . . , |Sg|, where we have

Pr(Gj(x) = gradfj(x)) =
1

n
.

We define Xj as

Xj ! Gj(x)− gradf(x), j = 1, 2, . . . , |Sg|.

It should be noted that, since Gj(x) is a randomly selected matrix, the expectation of the matrix Xj

should be zero, i.e., E[Xj ] = 0. Then, we define X as

X ! 1

|Sg|

|Sg|∑

j=1

Xj =
1

|Sg|

|Sg|∑

j=1

(Gj(x)− gradf(x))
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Selecting as Gj(x) = gradf1(x) and addressing E[Xj ] = 0, we have

∥X2
j ∥2 ≤ ∥Xj∥22 = ∥gradf1(x)− gradf(x)∥22

= ∥gradf1(x)−
1

n

n∑

i=1

gradfi(x)∥22

=

∣∣∣∣∣

∣∣∣∣∣
n− 1

n
gradf1(x)−

1

n

n∑

i=2

gradi(x)

∣∣∣∣∣

∣∣∣∣∣

2

2

≤ 2

(
n− 1

n

)2

∥gradf1(x)∥22 + 2

(
1

n

)2
∣∣∣∣∣

∣∣∣∣∣

n∑

i=2

gradi(x)

∣∣∣∣∣

∣∣∣∣∣

2

2

≤ 2

(
n− 1

n

)2

(Kmax
g )2 + 2

(
1

n

)2

∥(n− 1)Kmax
g ∥22

= 4

(
n− 1

n

)2

(Kmax
g )2 ≤ 4(Kmax

g )2,

where the first inequality uses (a+ b)2 ≤ 2a2 + 2b2.

Now, we apply the vector Bernstein inequality in Lemma B.2 replacing Z with X , we obtain

Pr

⎛

⎝

∣∣∣∣∣∣

∣∣∣∣∣∣
1

|Sg|

|Sg|∑

j=1

Gj(x)− gradf(x)

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≥ ϵ

⎞

⎠ = Pr (∥X∥2 ≥ ϵ)

≤ exp

(
−ϵ2|Sg|

32(Kmax
g )2

+
1

4

)
.

Here, we require the probability that the approximate deviation of the sub-sampled gradient from
the exact gradf(x) is higher than ϵ to be lower than some δ ∈ (0, 1], we have

exp

(
−ϵ2|Sg|

32(Kmax
g )2

+
1

4

)
= δ =⇒ ϵ = 4

√
2Kmax

g

√
log(1/δ) + 1/4

|Sg|
.

From Assumption 4, we finally obtain

∥Gk − gradf(xk)∥2 ≤ δg

=⇒ 4
√
2Kmax

g

√
log(1/δ) + 1/4

|Sg|
≤ δg

=⇒ |Sg| ≥
32(Kmax

g )2(log(1/δ) + 1/4)

δ2g
.

Next, we consider |SH | random matrices Hj(x) for j = 1, 2, . . . , |SH |. For this purpose, we denote
the j-th element of ∇2f̂(0x) for the j-th sample as ∇2f̂j(0x). Similarly to the case above, we
assume the uniform sampling strategy as Pr(Hj(x) = ∇2f̂j(0x)) = 1

n . Now, for η ∈ TxM, we
define Yj as

Yj ! Hj(x)[η]−∇2f̂(0x)[η], j = 1, 2, . . . , |SH |.

It should be noted that, since Hj(x) is randomly selected and η is independent of Hj(x), the expec-
tation of the matrix Yj should be zero, i.e., E[Yj ] = 0. Then, we define Y as

Y ! 1

|SH |

|SH |∑

j=1

Yj =
1

|SH |

|SH |∑

j=1

(
Hj(x)[η]−∇2f̂(0x)[η]

)
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Then, for ∇2f̂1(0x), we have

∥Y 2
j ∥2 ≤ ∥Yj∥22 =

∣∣∣∣∣

∣∣∣∣∣
n− 1

n
∇2f̂1(0x)[η]−

1

n

n∑

i=2

∇2f̂i(0x)[η]

∣∣∣∣∣

∣∣∣∣∣

2

2

≤ 4

(
n− 1

n

)2

(Kmax
H )2∥η∥22 ≤ 4(Kmax

H )2∥η∥22.

Now, we apply the vector Bernstein inequality in Lemma B.2. Similarly to the sub-sampled gradient,
we obtain

Pr

⎛

⎝

∣∣∣∣∣∣

∣∣∣∣∣∣
1

|SH |

|SH |∑

j=1

Hj(x)[η]−∇2f̂(0x)[η]

∣∣∣∣∣∣

∣∣∣∣∣∣
2

≥ ϵ

⎞

⎠ ≤ exp

(
−ϵ2|SH |

32(Kmax
H )2∥η∥22

+
1

4

)
.

Then, we obtain ϵ = 4
√
2Kmax

H ∥η∥2
√

log(1/δ)+1/4
|SH | . From Assumption 4, we finally obtain

∥(Hk −∇2f̂(0x))[η]∥2 ≤ δH∥η∥2

=⇒ 4
√
2Kmax

H ∥η∥2

√
log(1/δ) + 1/4

|SH | ≤ δH∥η∥2

=⇒ |SH | ≥ 32(Kmax
H )2 log(1/δ) + 1/4

δ2H
.

This completes the proof.
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C Additional numerical comparisons

In this section, we show additional numerical comparisons which do not appear in the main paper.

C.1 PCA problem

Additional results of different runs for Cases P1, P2, P3, and P4 are shown in Figure A.1.
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(d) Case P4

Figure A.1: Performance evaluations on PCA problem (Case P1, P2, P3, P4 ).
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Additional results of different runs for Case P6 are shown in Figure A.2.
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Figure A.2: Performance evaluations on the PCA problem (Case P6).

C.2 MC problem

Additional results of different runs for Cases M1, M2, M3, M4, and M5 are shown in Figures A.3,
A.4, A.5, A.6, and A.7, respectively.
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Figure A.3: Performance evaluations on the MC problem (Case M1).
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Figure A.4: Performance evaluations on the MC problem (Case M2).
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Figure A.5: Performance evaluations on the MC problem (Case M3).
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Figure A.6: Performance evaluations on the MC problem (Case M4).
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Figure A.7: Performance evaluations on the MC problem (Case M5).
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