
Inexact trust-region algorithms on
Riemannian manifolds

Hiroyuki Kasai
The University of Electro-Communications

Japan
kasai@is.uec.ac.jp

Bamdev Mishra
Microsoft

India
bamdevm@microsoft.com

Abstract

We consider an inexact variant of the popular Riemannian trust-region algorithm
for structured big-data minimization problems. The proposed algorithm approx-
imates the gradient and the Hessian in addition to the solution of a trust-region
sub-problem. Addressing large-scale finite-sum problems, we specifically propose
sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient
sizes, where the gradient and Hessian are computed by a random sampling tech-
nique. Numerical evaluations demonstrate that the proposed algorithms outper-
form state-of-the-art Riemannian deterministic and stochastic gradient algorithms
across different applications.

1 Introduction

We consider the optimization problem

min
x∈M

f(x), (1)

where f : M → R is a smooth real-valued function on a Riemannian manifold M [1]. The focus
on the paper is when f has a finite-sum structure, which frequently arises as big-data problems in
machine learning applications. Specifically, we consider the form f(x) ! 1

n

∑n
i=1 fi(x), where n

is the total number of samples and fi(x) is the cost function for the i-th (i ∈ [n]) sample.

Riemannian optimization translates the constrained optimization problem (1) into an unconstrained
optimization problem over the manifold M. This viewpoint has shown benefits in many applica-
tions. The principal component analysis (PCA) and subspace tracking problems are defined on the
Grassmann manifold [2, 3]. The low-rank matrix completion (MC) and tensor completion problems
are examples on the manifold of fixed-rank matrices and tensors [4, 5, 6, 7, 8, 9, 10]. The linear
regression problem is defined on the manifold of the fixed-rank matrices [11, 12]. The independent
component analysis (ICA) problem requires a whitening step that is posed as a joint diagonalization
problem on the Stiefel manifold [13, 14].

A popular choice for solving (1) is the Riemannian steepest descent (RSD) algorithm [1, Sec. 4],
which is traced back to [15]. RSD calculates the Riemannian full gradient gradf(x) every iteration,
which can be computationally heavy when the data size n is extremely large. As an alternative,
the Riemannian stochastic gradient descent (RSGD) algorithm becomes a computationally efficient
approach [16], which extends the stochastic gradient descent (SGD) in the Euclidean space to the
general Riemannian manifolds [17, 18, 19]. The benefit of RSGD is that it calculates only Rie-
mannian stochastic gradient gradfi(x) corresponding to a particular i-th sample every iteration.
Consequently, the complexity per iteration of RSGD is independent of the sample size n, which
leads to higher scalability for large-scale data. Although the iterates generated by RSGD do not
guarantee to decrease the objective value, −gradfi(x) is a decent direction in expectation. How-
ever, similar to SGD, RSGD suffers from slow convergence due to a decaying stepsize sequence. For

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

this issue, variance reduction (VR) methods on Riemannian manifolds, including RSVRG [20, 21]
and RSRG [22], have recently been proposed to accelerate the convergence of RSGD, which are
generalization of the algorithms in the Euclidean space [23, 24, 25, 26, 27, 28]. The core idea is
to reduce the variance of noisy stochastic gradients by periodical full gradient estimations, resulting
in a linear convergent rate. It should, however, be pointed out that such Riemannian VR methods
require retraction and vector transport operations at every iteration. As the computational cost of a
retraction and vector transport operation is similar to that of a Riemannian stochastic gradient com-
putation, Riemannian VR methods may have slower wall-clock time performance per iteration than
RSGD.

All the above algorithms are first-order algorithms, which guarantee convergence to the first-order
optimality condition, i.e., ∥gradf(x)∥x = 0, using only the gradient information. As a result, their
performance in ill-conditioned problems suffers due to poor curvature approximation. Second-order
algorithms, on the other hand, alleviate the effect of ill-conditioned problems by exploiting curva-
ture information effectively. Therefore, they are expected to converge to a solution that satisfies the
second-order optimality conditions, i.e., ∥gradf(x)∥x = 0 and Hessf(x) ≽ 0, where Hessf(x) is
the Riemannian Hessian of f at x [29]. The Riemannian Newton method is a second-order algorithm,
which has a superlinear local convergence rate [1, Thm. 6.3.2]. The Riemannian Newton method,
however, lacks global convergence and a practical variant of the Riemannian Newton method is com-
putationally expensive to implement. A popular alternative to the Riemannian Newton method is the
Riemannian limited memory BFGS algorithm (RLBFGS) that requires lower memory. It, however,
exhibits only a linear convergence rate and requires many vector transports of curvature informa-
tion pairs [30, 31, 32]. Finally, the Riemannian trust-region algorithm (RTR) comes with a global
convergence property [1, Thm 7.4.4] and a superlinear local convergence rate [1, Thm. 7.4.11]. It
can alleviate a poor approximation of the local quadratic model (e.g., that the Newton method uses)
by adjusting a trustable radius every iteration. Considering an ϵ-approximate second-order optimal-
ity condition (Def. 2.1), RTR can return an (ϵg, ϵH)-optimality point in O(max{1/ϵ3H , 1/(ϵ2gϵH)})
iterations when the true Hessian is used in the model and a second-order retraction is used [33].
On the stochastic front, the VR methods have been recently extended to take curvature information
into account [34]. Although they achieve practical improvements for ill-conditioned problems, their
convergence rates are worse than that of RSVRG and RSRG.

A common issue among second-order algorithms is higher computational costs for dealing with ex-
act or approximate Hessian matrices, which is computationally prohibitive in a large-scale setting.
To address this issue, inexact techniques, including sub-sampling techniques, have recently been
proposed in the Euclidean space [35, 36, 37, 38, 39]. However, no work has been reported in the
Riemannian setting. To this end, we propose an inexact Riemannian trust-region algorithm, inex-
act RTR, for (1). Additionally, we propose a sub-sampled trust-region algorithm, Sub-RTR, as a
practical but efficient variant of inexact RTR for finite-sum problems. The theoretical convergence
proof heavily relies on that of the original works in the Euclidean space [37, 38, 39] and the RTR
algorithm [33]. We particularly derive the bounds of the sample size of the sub-sampled Riemannian
Hessian and gradient, and show practical performance improvements of our algorithms over other
Riemannian algorithms. We specifically address the case of compact submanifolds of Rn by follow-
ing [33]. Additionally, the numerical experiments include problems on the Grassmann manifold to
show effectiveness of our algorithms on more general quotient manifolds.

The paper is organized as follows. Section 2 describes the preliminaries and assumptions. We
propose a novel inexact trust-region algorithm in the Riemannian setting in Section 3. In particular,
in Section 4, we propose sub-sampled trust-region algorithms as its practical variants. Building
upon the results in the Euclidean space [37, 38, 39] and that of the RTR algorithm [33], we derive
the bounds of the sample size of sub-sampled gradients and Hessians in Theorem 4.1, which only
requires a fixed sample size [37]. This has not been addressed in [37, 38, 39, 33]. In Section
5, numerical experiments on three different problems demonstrate significant speed-ups compared
with state-of-the-art Riemannian deterministic and stochastic algorithms when the sample size n is
large.

The implementation of the proposed algorithms uses the MATLAB toolbox Manopt [40] and is
available at https://github.com/hiroyuki-kasai/Subsampled-RTR. The proofs of theorems
and additional experiments are provided as supplementary material.

2

2 Preliminaries and assumptions

We assume that M is endowed with a Riemannian metric structure, i.e., a smooth inner product
⟨·, ·⟩x of tangent vectors is associated with the tangent space TxM for all x ∈ M. The norm ∥ · ∥x
of a tangent vector in TxM is the norm associated with the Riemannian metric. We also assume that
f is twice continuously differentiable throughout this paper.

2.1 Riemannian trust-region algorithm (RTR)

RTR is the generalization of the classical trust-region algorithm in the Euclidean space [41] to Rie-
mannian manifolds [1, Chap. 7]. In comparison with the Euclidean case, in RTR, the approximation
model mx of fx around x is obtained from the Taylor expansion of the pullback of the function
f̂x ! fx ◦Rx defined on the tangent space, where Rx is the retraction operator that maps a tangent
vector onto the manifold with a local rigidity condition that preserves the gradients at x [1, Chap. 4].
Exponential mapping is an instance of the retraction. f̂x is a real-valued function on the vector space
of TxM, and the pullback of fx at x to TxM through Rx, around the origin 0x of TxM. This model
of mx is denoted as m̂x, where mx = m̂x ◦R−1, and is chosen for ξ ∈ TxM as

m̂x(ξ) = f(x) + ⟨gradf(x), ξ⟩x +
1

2
⟨H(x)[ξ], ξ⟩x, (2)

where H(x) : TxM → TxM is some symmetric operator on TxM. The algorithm of RTR starts
with an initial point x0 ∈ M, an initial radius ∆0, and a maximum radius ∆max. At iteration k,
RTR defines a trust region ∆k around the current point xk ∈ M, which can be trusted such that it
constructs a local model m̂xk that is a reasonable approximation of the the real objective function
f̂xk . It then finds the direction and the length of the step, denoted as ηk, simultaneously by solving a
sub-problem based on the approximate model in this region. It should be noted that this calculation
is performed in the vector space TxkM. The next candidate iterate x+

k = Rxk(ηk) is accepted as
xk+1 = x+

k when the decrease of the true objective function f̂k(xk) − f̂k(x
+
k) is sufficiently large

against that of the approximate model m̂k(0xk) − m̂k(ηk). Otherwise, we accept as xk+1 = xk.
Here, f̂k and m̂k represent f̂xk and m̂xk , respectively, and hereinafter we use them for notational
simplicity. The trust region ∆k is enlarged, unchanged, or shrunk by the parameter γ > 1 according
to the degree of the agreement of the model decrease and the true function decrease.

2.2 Essential assumptions

Since the first-order optimality condition, i.e., ∥gradf(x)∥x = 0, is not sufficient in non-convex
minimization problems due to existence of saddle points and local maximum points, we typically
design algorithms that guarantee convergence to a point satisfying the second-order optimality con-
ditions ∥gradf(x)∥x = 0 and Hessf(x) ≽ 0. In practice, however, we use its approximate condi-
tion, which is defined as (ϵg, ϵH)-optimality as presented below.
Definition 2.1 ((ϵg, ϵH)-optimality [42]). Given 0 < ϵg, ϵH < 1, x is said to be an (ϵg, ϵH)-
optimality of (1) when

∥gradf(x)∥x ≤ ϵg, and Hessf(x) ≽ −ϵHId,

where gradf(x) is the Riemannian gradient, and Hessf(x) is the Riemannian Hessian of f at x. Id
is the identity mapping.

We now provide essential assumptions below. We consider the inexact Hessian H(xk) : TxkM →
TxkM and the inexact gradient G(xk) ∈ TxkM for gradf(x) in (2). Hereinafter, we particularly
use Hk ! H(xk) and Gk ! G(xk) at xk for notational simplicity.
Assumption 1 (Compact submanifold in Rn and second-order retraction). We consider compact
submanifolds in Rn. We also assume that the retraction is the second-order retraction.

It should be noted that, although the Hessian ∇2f̂x(0x) and the Riemannian Hessian Hessf(x) are
in general different from each other, they are identical under second-order retraction [33, Lem. 17].
This assumption ensures that, as stated in Theorem 3.1, Algorithm 1 provides a solution that satisfies
the (ϵg, ϵH)-optimality. Otherwise, it gives a solution satisfying λmin(H(x)) ≥ −ϵH . It should
be stressed that the second-order retractions are available in many submanifolds such as Rx(η) =
(x+η)/∥x+η∥x in the case of spherical manifold [1, Sec. 4].

3

Assumption 2 (Restricted Lipschitz Hessian [33, A.5]). If ϵH < ∞, there exists LH ≥ 0 such that,
for all xk, f̂k satisfies

∣∣∣∣f̂k(ηk)− f(xk)− ⟨gradf(xk), ηk⟩xk − 1

2
⟨ηk,∇2f̂k(0xk)[ηk]⟩xk

∣∣∣∣ ≤ 1

2
LH∥ηk∥3xk

,

for all ηk ∈ TxkM such that ∥η∥xk ≤ ∆k.

It should be noted that the retraction Rx needs to be defined only in the radius of ∆k. Since the
manifold under consideration is compact, Assumption 2 holds [33, Lem. 9]. We also assume a
bound of the norm of the inexact Riemannian Hessian Hk [33, A.6].
Assumption 3 (Norm bound on Hk). There exists KH ≥ 0 such that, for all xk, Hk satisfies

∥Hk∥xk ! sup
η∈Txk

M,∥η∥xk
≤1

⟨η, Hk[η]⟩xk ≤ KH .

We now provide essential assumptions on the bounds for approximation error of the inexact Rieman-
nian gradient Gk and the inexact Riemannian Hessian Hk at iteration k. As seen later in Section 4,
this ensures that the sample size of sub-sampling can be fixed.
Assumption 4 (Approximation error bounds on inexact gradient and Hessian). There exist constants
0 < δg, δH < 1 such that the approximation of the gradient, Gk, and the approximation of the
Hessian, Hk, at iterate k, satisfy

∥Gk − gradf(xk)∥xk ≤ δg, (3)

∥(Hk −∇2f̂k(0xk))[ηk]∥xk ≤ δH∥ηk∥xk . (4)

The latter is a weaker condition than the below condition [33, A7].

∥Hk −∇2f̂k(0xk)∥xk ≤ δH .

It should be emphasized that the approximation error bound for Hk is defined with the Hessian of
the pullback of f at xk, i.e., ∇2f̂k(0xk), instead of the Riemannian Hessian of f , i.e., Hessf(xk).
Furthermore, it should be noted that Assumption 4 is a relax form in comparison with a typical
condition in the Euclidean setting, which is defined as [43, AM.4]

∥(Hk −∇2f̂k(0xk))[ηk]∥xk ≤ δH∥ηk∥2xk
. (5)

This typical form (5) is different from (4). It should be noted that the condition (5) requires that
the sizes of the sub-sampled Hessian and gradient need to be increased towards the convergence,
whereas our new condition (4) allows the size to be fixed, as seen later in Section 4 [37, 38].

Finally, we give an assumption for the step ηk. We need a sufficient decrease in m̂k(ηk), and there
exit ways to solve the sub-problem (See [41, 1] for more details). However, the calculation of the
exact solution of the problem is prohibitive, especially in large-scale problems. To this end, various
approximate solvers have been investigated in the literature that require certain conditions to be met.
The popular conditions are the Cauchy and Eigenpoint conditions [41]. The assumptions required
for the convergence analysis of Algorithm 1 by generalizing [37, Cond. 2] are provided below.
Assumption 5 (Sufficient descent relative to the Cauchy and Eigen directions [41, 37]). We assume
the first-order step, called the Cauchy step, as

m̂k(0xk)− m̂k(ηk) ≥ m̂k(0xk)− m̂k(η
C
k) ≥ 1

2
∥Gk∥xk min

{
∥Gk∥xk

1 + ∥Hk∥
,∆k

}
.

We assume the second-order step, called the Eigen step, for some ν ∈ (0, 1] when λmin(Hk) < −ϵH
as

m̂k(0xk)− m̂k(ηk) ≥ m̂k(0xk)− m̂k(η
E
k) ≥ 1

2
ν|λmin(Hk)|∆2

k.

Here, ηCk is the negative gradient direction and ηEk is an approximation of the negative curvature
direction such that ⟨ηEk , Hk[ηEk]⟩xk ≤νλmin(Hk)∥ηEk ∥2xk

<0. Assumption 5 is ensured by using TR
subproblem solvers, e.g., the Steihaug-Toint truncated conjugate gradients algorithm [44].

4

Algorithm 1 Inexact Riemannian trust-region (Inexact RTR) algorithm
Require: 0 < ∆max < ∞, ϵg, ϵH ∈ (0, 1), ρTH ,γ > 1.

1: Initialize 0 < ∆0 < ∆max, and a starting point x0 ∈ M.
2: for k = 1, 2, . . . do
3: Set the approximate (inexact) gradient Gk and Hk.
4: if ∥Gk∥ ≤ ϵg and λmin(Hk) ≥ −ϵH then Return xk. end if
5: if ∥Gk∥ ≤ ϵg then Gk = 0. end if
6: Calculate ηk ∈ TxkM by solving ηk ≈ arg min

∥η∥≤∆k

f(xk) + ⟨Gk, η⟩xk + 1
2 ⟨η, Hk[η]⟩xk .

7: Set ρk =
f̂k(0xk

)−f̂k(ηk)

m̂k(0xk
)−m̂k(ηk)

.

8: if ρk ≥ ρTH then xk+1 = Rxk(ηk) and ∆k+1 = γ∆k.
9: else xk+1 = xk and ∆k+1 = ∆k/γ. end if

10: end for
11: Output xk.

3 Riemannian trust-regions with inexact Hessian and gradient

This section proposes an inexact variant of the Riemannian trust-region algorithm, i.e., inexact RTR,
which approximates gradient and Hessian as well as the solution of a sub-problem. The proposed
algorithm is summarized in Algorithm 1. The inexact RTR algorithm solves approximately a sub-
problem m̂k(η) : TxkM → R for η ∈ TxkM of the form

ηk ≈ arg min
η∈Txk

M
m̂k(η) subject to ∥η∥xk ≤ ∆k, (6)

where m̂k(η) is notably defined as

m̂k(η) =

⎧
⎪⎨

⎪⎩

f(xk) + ⟨Gk, η⟩xk +
1

2
⟨η, Hk[η]⟩xk , ∥Gk∥xk ≥ ϵg , (7a)

f(xk) +
1

2
⟨η, Hk[η]⟩xk , otherwise. (7b)

It should be stressed that, as (7b) represents, we ignore the gradient when it is smaller than ϵg , i.e.,
∥Gk∥xk < ϵg , which is crucial for the convergence analysis in Theorem 3.1 [38].

Now, we show the convergence analysis of the proposed inexact RTR. To this end, we assume an
additional approximation condition on the inexact gradient and Hessian for the constants in Assump-
tion 4 [38, Cond. 1]. This additional assumption is essential for the relax form of (4).
Assumption 6 (Gradient and Hessian approximations for Algorithm 1 [38]). Let ρTH be the thresh-
old parameter of the reduction ratio of the true objective function and the approximate model in
Algorithm 1. For ν ∈ (0, 1] in Assumption 5, we assume that the constants of the inexact gradient
and Hessian satisfy δg < 1−ρTH

4 ϵg and δH < min
{ 1−ρTH

2 νϵH , 1
}

.

This implies that we only need δg ∈ O(ϵg) and δH ∈ O(ϵH) [38, Cond. 1].
Theorem 3.1 (Optimal complexity of Algorithm 1). Consider 0 < ϵg, ϵH < 1. Suppose Assump-
tions 1, 2, and 3 hold. Also, suppose that the inexact Hessian Hk and gradient Gk satisfy Assumption
4 with the approximation tolerance δg and δH . Suppose that the solution of the sub-problem (6) sat-
isfies Assumption 5 and Assumption 6 holds. Then, Algorithm 1 returns an (ϵg, ϵH)-optimal solution
in, at most, T ∈ O(max{ϵ−2

g ϵ−1
H , ϵ−3

H }) iterations.

The proof of Theorem 3.1 follows that of [37, 38, 33]. Therefore, we only provide the proof sketch
in Section B.1 of the supplementary material file.

4 Sub-sampled Riemannian trust-regions for finite-sum problems
Particularly addressing large-scale finite-sum minimization problems, we propose an inexact gradi-
ent and Hessian trust-region algorithm, Sub-RTR, by exploiting a sub-sampling technique to gener-
ate inexact gradient and Hessian. The generated inexact gradient and Hessian satisfy Assumption 4
in a probabilistic way. More concretely, we derive sampling conditions based on the probabilistic

5

deviation bounds for random matrices, which originate from the Bernstein inequality in Lemma B.2
of the supplementary material file.

We first define the sub-sampled inexact gradient and Hessian as

Gk ! 1

|Sg|
∑

i∈Sg

gradfi(xk) and Hk ! 1

|SH |
∑

i∈SH

Hessfi(xk), i = 1, 2, . . . , n,

where Sg,SH ⊂ {1, . . . , n} are the set of the sub-sampled indexes for the estimates of the approx-
imate gradient and Hessian, respectively. Their sizes, i.e., the cardinalities, are denoted as |Sg| and
|SH |, respectively. Next, we provide the sampling conditions. For simplicity, we use the standard
Riemannian metric in the analysis. Equivalently, M is endowed with a smooth inner product ⟨·, ·⟩2
and the norm ∥ · ∥2. We suppose that

sup
x∈M

∥gradfi(x)∥2 ≤ Ki
g and sup

x∈M
∥Hessfi(x)∥2 ≤ Ki

H i = 1, 2, . . . , n,

and we also define Kmax
g ! maxi Ki

g and Kmax
H ! maxi Ki

H . As for the sufficient size of sub-
sampling to guarantee the convergence in Theorem 3.1, we have the following theorem.
Theorem 4.1 (Bounds on sampling size). Given Ki

g,K
max
g and Ki

H ,Kmax
H , and 0 < δ, δg, δH < 1,

we define

|Sg| ≥
32(Kmax

g)2 log(1/δ) + 1/4

δ2g
and |SH | ≥ 32(Kmax

H)2 log(1/δ) + 1/4

δ2H
.

At any xk ∈ M, suppose that the sampling is done uniformly at random to generate Sg and SH .
Then, we have

Pr(∥Gk − gradf(xk)∥2 ≤ δg) ≥ 1− δ,

Pr(∥(Hk −∇2f̂k(0x))[ηk]∥2 ≤ δH∥ηk∥2) ≥ 1− δ.

From Theorem 4.1, it can be easily seen that Assumption 4 follows with the same probability with
Kg = Kmax

g and KH = Kmax
H . It should be emphasized that if we use the typical condition

(5) instead of Assumption 4, we obtain, e.g., |SH | ≥ 32(Kmax
H)2 log(1/δ)+1/4

δ2H∥ηk∥2
2

for the sub-sampled
Hessian Hk. Considering that ∥ηk∥ goes to nearly zero as the iterations proceed, this obtained
bound indicates that |SH | increases accordingly. Consequently, the size of the sub-sampled Hessian
needs to be increased towards the convergence. On the other hand, our results ensure that the sample
size can be fixed to guarantee the convergence of Algorithm 1.

5 Numerical comparisons
This section evaluates the performance of our two proposed inexact RTR algorithms: the sub-
sampled Hessian RTR (Sub-H-RTR) and the sub-sampled Hessian and gradient RTR (Sub-HG-
RTR). We compare them with the Riemannian deterministic algorithms: RSD, Riemannian conju-
gate gradient (RCG), RLBFGS, and RTR. We also show comparisons with RSVRG [20, 21]. We
compare the algorithms in terms of the total number of oracle calls and run time, i.e., “wall-clock”
time. The former measures the number of function, gradient, and Hessian-vector product compu-
tations. The sub-sampled RTR requires (n + |Sg| + rs|SH |) oracle calls per iteration, whereas the
original RTR requires (2n+ rsn) oracle calls. Here, rs is the number of iterations required for solv-
ing the trust-region sub-problem approximately. RSD, RCG, and RLBFGS require (n+ rln) oracle
calls per iteration, where rl is the number of line searches carried out. RSVRG requires (n +mn)
oracle calls per outer iteration, where m is the update frequency of the outer loop. Algorithms are
initialized randomly and are stopped when either the gradient norm is below a particular threshold.
Multiple constant stepsizes from {10−10, 10−9, . . . , 1} are used for RSVRG and the best-tuned re-
sults are shown. By following [38], we set |Sg| = n/10 and |SH | = n/102 except Cases P5, P6,
M4, and M5. We set the batch-size to n/10 in RSVRG. All simulations are performed in MATLAB
on a 4.0 GHz Intel Core i7 machine with 32 GB RAM.

We address the independent component analysis (ICA) problem on the Stiefel manifold and two
problems on the Grassmann manifold, namely the principal component analysis (PCA) and the low-
rank matrix completion (MC) problems. The Stiefel manifold is the set of orthogonal r-frames in

6

0 1 2 3 4 5

Oracle calls 10
4

-6000

-5000

-4000

-3000

-2000

-1000

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(a-1) Case I1: Oracle calls.

0 0.2 0.4 0.6 0.8 1

Time [sec]

-6000

-5000

-4000

-3000

-2000

-1000

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(a-2) Case I1: Run time.

0 2 4 6 8 10

Oracle calls 10
4

-10
7

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(b-1) Case I2: Oracle calls.

0 0.5 1 1.5 2 2.5 3

Time [sec]

-10
7

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(b-2) Case I2: Run time.

0 2 4 6 8 10

Oracle calls 10
5

-10
7

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(c-1) Case I3: Oracle calls.

0 2 4 6 8 10 12

Time [sec]

-10
7

C
o

s
t

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(c-2) Case I3: Run time.

Figure 1: Performance evaluations on the ICA problem.

Rd for some r ≤ d and is viewed as an embedded submanifold of Rd×r [1, Sec. 3.3]. On the
other hand, the Grassmann manifold Gr(r, d) is the set of r-dimensional subspaces in Rd and is a
Riemannian quotient manifold of the Stiefel manifold [1, Sec. 3.4]. The motivation behind including
the latter two applications is to show that our proposed algorithms empirically work very well even
if the manifold is not a submanifold. In all these problems, full gradient methods, i.e., RSD, RCG,
RLBFGS, and RTR, become prohibitively computationally expensive when n is very large and the
inexact approach is one promising way to achieve scalability. The details of the manifolds and the
derivations of the Riemannian gradient and Hessian are provided as supplementary material.

5.1 ICA problem
The ICA or the blind source separation problem refers to separating a signal into components so
that the components are as independent as possible [45]. A particular preprocessing step is the
whitening step that is proposed through joint diagonalization on the Stiefel manifold [13], i.e.,
minU∈Rd×r − 1

n

∑n
i=1 ∥diag(U

⊤CiU)∥2F , where ∥diag(A)∥2F defines the sum of the squared di-
agonal elements of A. The symmetric matrices Cis are of size d × d and can be cumulant matrices
or time-lagged covariance matrices of different signal samples [13].

We use three real-world datasets: YaleB [46], COIL-100 [47], and CIFAR-100 [48]. From these
datasets, we create a Gabor-Based region covariance matrix (GRCM) descriptor [49, 50, 51]. A
43 × 43 GRCM is computed from the pixel coordinates and Gabor features that are obtained by
convolving Gabor kernels with an intensity image. We set m = 1 in RSVRG. Figures 1 (a), (b), and
(c) show the results on the YaleB dataset with (n, d, r) = (2015, 43, 43) (Case I1), the COIL-100
dataset with (n, d, r) = (7.2 × 103, 43, 43) (Case I2) and the CIFAR-100 dataset with (n, d, r) =
(6 × 104, 43, 43) (Case I3), respectively. As seen, the proposed Sub-H-RTR and Sub-HG-RTR
perform better in terms of both the number of oracle calls and run time than others except RSVRG.
It should be emphasized that though RSVRG performs comparable to or slightly better than our
proposed algorithms, its results require fine tuning of stepsizes.

5.2 PCA problem
Given an orthonormal matrix projector U ∈ St(r, d), the PCA problem is to minimize
the sum of squared residual errors between projected data points and the original data as
minU∈St(r,d)

1
n

∑n
i=1 ∥zi − UU⊤zi∥22, where zi is a data vector of size d × 1. This problem is

equivalent to minU∈St(r,d) = − 1
n

∑n
i=1 z

⊤
i UU⊤zi. Here, the critical points in the space St(r, d)

are not isolated because the cost function remains unchanged under the group action U 0→ UO for
all orthogonal matrices O of size r× r. Subsequently, the PCA problem is an optimization problem
on the Grassmann manifold Gr(r, d).

7

0 2 4 6 8 10 12

Oracle calls 10
8

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(a-1) Case P1: Oracle calls.

0 50 100 150 200 250

Time [sec]

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(a-2) Case P1: Run time.

0 2 4 6 8 10 12

Oracle calls 10
7

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(b-1) Case P2: Oracle calls.

0 50 100 150 200

Time [sec]

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(b-2) Case P2: Run time.

0 5 10 15 20

Time [sec]

10
-15

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(c) Case P3: MNIST dataset.

0 10 20 30 40

Time [sec]

10
-10

10
-5

10
0

O
p

ti
m

a
li

ty
 g

a
p

RSD

RCG

RLBFGS

RSVRG

RTR

Sub-H-RTR

Sub-HG-RTR

(d) Case P4: Covertype dataset.

0 20 40 60 80 100
Time [sec]

10-10

10-5

100

O
p

ti
m

a
li

ty
 g

a
p

RTR
Sub-H-RTR (|S

H
|=500000)

Sub-H-RTR (|S
H

|=50000)

Sub-H-RTR (|S
H

|=5000)

(e) Case P5: Sampling size insensitivity.

0 20 40 60 80 100 120
Time [sec]

10-10

10-5

100

O
p

ti
m

a
li

ty
 g

a
p

RTR
Sub-H-RTR (fix)
Sub-HG-RTR (fix)
Sub-H-RTR (linear)
Sub-HG-RTR (linear)
Sub-H-RTR (adaptive)
Sub-HG-RTR (adaptive)

(f) Case P6: Sampling algorithms.

Figure 2: Performance evaluations on the PCA problem.

Figures 2(a) and (b) show the results on two synthetic datasets with (n, d, r) = (5 × 106, 102, 5)
(Case P1), and (n, d, r) = (5×105, 103, 5) (Case P2). We set m = 5 in RSVRG. It should be noted
that, although RSVRG is competitive in terms of the oracle calls in (a), its run time performance is
poor than others. This is attributed to RSVRG requiring retraction and vector transport operations
at every iteration. Overall, the proposed Sub-H-RTR outperforms others, whereas the proposed
Sub-HG-RTR is inferior to others. Figures 2(c) and (d) show the results on two real-world datasets
with r = 10, where Case P3 deals with the MNIST dataset [52] with (n, d) = (6 × 104, 784)
and Case P4 deals with the Covertype dataset [53] with (n, d) = (581012, 54). From the figure,
our proposed Sub-H-RTR outperforms others. We also change the sample size in Sub-H-RTR as
|SH | = {n/10, n/102, n/103} in Case P1. We observe that Sub-H-RTR has low sensitivity to the
size |SH | from Figures 2(e) (Case P5). Additionally, we compare three different ways to decide the
sample size of |SH | and |Sg|: (i) “fixed”, (ii) “linear”, and (iii) “adaptive” variants (Case P6). The
“fixed” variant keeps the size as the initial |Sg| and |SH | as theoretically supported by Theorem 4.1.
The “linear” variant uses k|Sg| and k|SH | at iteration k. The “adaptive” variant decides the sizes
based on (5) [39]. The results on the synthetic dataset same as Case P2 show that all the proposed
algorithms except Sub-HG-RTR with fixed sample size outperform the original RTR.

5.3 MC problem

The MC problem amounts to completing an incomplete matrix Z, say of size d × n, from a small
number of entries by assuming a low-rank model for the matrix. If Ω is the set of the indices
for which we know the entries in Z, the rank-r MC problem amounts to solving the problem
minU∈Rd×r,A∈Rr×n ∥PΩ(UA) − PΩ(Z)∥2F , where the operator PΩ(Zpq) = Zpq if (p, q) ∈ Ω and
PΩ(Zpq) = 0 otherwise is called the orthogonal sampling operator and is a mathematically conve-
nient way to represent the subset of known entries. Partitioning Z = [z1, z2, . . . , zn], the problem
is equivalent to the problem minU∈Rd×r,ai∈Rr

1
n

∑n
i=1 ∥PΩi(Uai) − PΩi(zi)∥22, where zi ∈ Rd

and the operator PΩi is the sampling operator for the i-th column.

8

0 0.5 1 1.5 2 2.5 3 3.5

Oracle calls 10
7

10
-15

10
-10

10
-5

10
0

M
e

a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e

s
t

s
e

t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(a-1) Case M1: Oracle calls.

0 100 200 300 400 500 600 700

Time [sec]

10
-15

10
-10

10
-5

10
0

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(a-2) Case M1: Run time.

0 1 2 3 4 5

Oracle calls 10
7

10
-15

10
-10

10
-5

10
0

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(b-1) Case M2: Oracle calls.

0 200 400 600 800 1000 1200

Time [sec]

10
-15

10
-10

10
-5

10
0

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(b-2) Case M2: Run time.

0 5 10 15

Oracle calls 10
5

70

80

90

100

110

120

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(c-1) Case M3: Oracle calls.

0 5 10 15 20 25 30

Time [sec]

70

80

90

100

110

120

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RSD

RCG

RLBFGS

RSVRG

RTRMC

RTR

Sub-H-RTR

Sub-HG-RTR

(c-2) Case M3: Run time.

0 500 1000 1500
Time [sec]

10-15

10-10

10-5

100

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RTR

Sub-H-RTR (fixed)
Sub-HG-RTR (fixed)
Sub-H-RTR (linear)
Sub-HG-RTR (linear)
Sub-H-RTR (adaptive)
Sub-HG-RTR (adaptive)

(d) Case M4: Sampling algorithms.

0 5 10 15 20 25 30
Time [sec]

70

80

90

100

110

120

M
e
a
n

s
 s

q
u

a
re

 e
rr

o
r

o
n

 t
e
s
t

s
e
t RTR

Sub-H-RTR (fixed)
Sub-HG-RTR (fixed)
Sub-H-RTR (linear)
Sub-HG-RTR (linear)
Sub-H-RTR (adaptive)
Sub-HG-RTR (adaptive)

(e) Case M5: Sampling algorithms.

Figure 3: Performance evaluations on the MC problem.

We also compared our proposed algorithms with RTRMC [10], a state-of-the-art MC algorithm. The
code of RTRMC is optimized for the MC problem. Therefore, we mainly compare the oracle calls
of RTRMC for fair comparison. We first consider a synthetic dataset with (n, d, r) = (105, 102, 5).
We show the mean squares error (MSE) on a test set, which is different from the training set. The
over-sampling ratio (OS) is 4, where the OS determines the number of entries that are known. An
OS of 4 implies that 4(n + d − r)r number of randomly and uniformly selected entries are known
a priori out of the total nd entries. We also impose an exponential decay of singular values. The
ratio of the largest to the lowest singular value is known as the condition number (CN) of the matrix.
We set m = 5 in RSVRG. We consider a well-conditioned case with CN=5 (Case M1) and an ill-
conditioned case with CN=20 (Case M2). Figures 3(a) and (b) show relatively good performance
of RSVRG for Case M1 . RTRMC is, as expected, extremely fast in terms of run time (owing to its
optimized code). Sub-H-RTR and Sub-HG-RTR show superior performance than others, especially
for the ill-conditioned case M2. Next, we consider the Jester dataset 1 [54] consisting of ratings
of 100 jokes by 24983 users (Case M3). Each rating is a real number between −10 and 10. The
algorithms are run by fixing the rank to r = 5. Figure 3(c) shows the comparable or superior
performance of the sub-sampled RTR on the test sets against state-of-the-art algorithms. Finally,
we compare three variants: “fixed”, “linear”, and “adaptive” to decide the sample size in Cases M4
and M5 under the same conditions as Cases M2 and M3, respectively. Figures 3(d) and (e) show
that all the proposed algorithms outperform the original RTR. In particular, the “fixed” variant gives
superior performance than others as supported by Theorem 4.1.

6 Conclusion
We have proposed an inexact trust-region algorithm in the Riemannian setting with a worst case
total complexity bound. Additionally, we have also proposed sub-sampled trust-region algorithms
for finite-sum problems, which need only fixed sample bounds of sub-sampled gradient and Hessian.
The numerical comparisons show the benefits of our proposed inexact RTR algorithms on a number
of applications.

9

Acknowledgements

H. Kasai was partially supported by JSPS KAKENHI Grant Numbers JP16K00031 and
JP17H01732. We thank Nicolas Boumal and Hiroyuki Sato for insight discussions and also express
our sincere appreciation to Jonas Moritz Kohler for sharing his expertise on sub-sampled algorithms
in the Euclidean case.

References
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.

Princeton University Press, 2008.

[2] L. Balzano, R. Nowak, and B. Recht. Online identification and tracking of subspaces from
highly incomplete information. In Allerton, 2010.

[3] B. Mishra, H. Kasai, P. Jawanpuria, and A. Saroop. A Riemannian gossip approach to subspace
learning on Grassmann manifold. Machine Learning (to appear), 2019.

[4] B. Mishra and R. Sepulchre. R3MC: A Riemannian three-factor algorithm for low-rank matrix
completion. In IEEE CDC, pages 1137–1142, 2014.

[5] H. Kasai and B. Mishra. Low-rank tensor completion: a Riemannian manifold preconditioning
approach. In ICML, 2016.

[6] M. Nimishakavi, P. Jawanpuria, and B. Mishra. A dual framework for low-rank tensor com-
pletion. In NeurIPS, 2018.

[7] D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor completion by Rieman-
nian optimization. BIT Numer. Math., 54(2):447–468, 2014.

[8] B. Vandereycken. Low-rank matrix completion by Riemannian optimization. SIAM J. Optim.,
23(2):1214–1236, 2013.

[9] C. Da Silva and F. J. Herrmann. Optimization on the hierarchical tucker manifold–applications
to tensor completion. Linear Algebra Its Appl., 481:131–173, 2015.

[10] N. Boumal and P.-A Absil. Low-rank matrix completion via preconditioned optimization on
the Grassmann manifold. Linear Algebra Its Appl., 475(15):200–239, 2015.

[11] G. Meyer, S. Bonnabel, and R. Sepulchre. Linear regression under fixed-rank constraints: a
Riemannian approach. In ICML, 2011.

[12] U. Shalit, D. Weinshall, and G. Chechik. Online learning in the embedded manifold of low-
rank matrices. J. Mach. Learn. Res., 13(Feb):429–458, 2012.

[13] F. J. Theis, T. P. Cason, and P.-A. Absil. Soft dimension reduction for ICA by joint diagonal-
ization on the Stiefel manifold. In ICA, 2009.

[14] W. Huang, P.-A. Absil, and K. A. Gallivan. A Riemannian BFGS method for nonconvex
optimization problems. In ENUMATH 2015. Springer, 2016.

[15] D. G. Luenberger. The gradient projection method along geodesics. Manag. Sci., 18(11):620–
631, 1972.

[16] S. Bonnabel. Stochastic gradient descent on Riemannian manifolds. IEEE Trans. on Automatic
Control, 58(9):2217–2229, 2013.

[17] H. Robbins and S. Monro. A stochastic approximation method. Ann. Math. Statistics, pages
400–407, 1951.

[18] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization mehtods for large-scale machine learning.
SIAM Rev., 60(2):223–311, 2018.

[19] H. Kasai. SGDLibrary: A MATLAB library for stochastic optimization algorithms. JMLR,
18(215):1–5, 2018.

10

[20] H. Sato, H. Kasai, and B. Mishra. Riemannian stochastic variance reduced gradient. arXiv
preprint: arXiv:1702.05594, 2017.

[21] H. Zhang, S. J. Reddi, and S. Sra. Riemannian SVRG: fast stochastic optimization on Rieman-
nian manifolds. In NIPS, 2016.

[22] H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic recursive gradient algorithm. In
ICML, 2018.

[23] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, 2013.

[24] N. L. Roux, M. Schmidt, and F. R. Bach. A stochastic gradient method with an exponential
convergence rate for finite training sets. In NIPS, 2012.

[25] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized
loss minimization. JMLR, 14:567–599, 2013.

[26] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: a fast incremental gradient method with
support for non-strongly convex composite objectives. In NIPS, 2014.

[27] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola. Stochastic variance reduction for
nonconvex optimization. In ICML, 2016.

[28] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takac. SARAH: a novel method for machine
learning problems using stochastic recursive gradient. In ICML, 2017.

[29] W. H. Yang, L.-H. Zhang, and R. Song. Optimality conditions for the nonlinear programming
problems on riemannian manifolds. Pac. J. Optim., 10(2):415–434, 2014.

[30] W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for
Riemannian optimization. SIAM J. Optim., 25(3):1660–1685, 2015.

[31] D. Gabay. Minimizing a differentiable function over a differential manifold. J. Optim. Theory
Appl., 37(2):177–219, 1982.

[32] W. Ring and B. Wirth. Optimization methods on Riemannian manifolds and their application
to shape space. SIAM J. Optim., 22(2):596–627, 2012.

[33] N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization
on manifolds. IMA J. Numer. Anal., 2018.

[34] H. Kasai, H. Sato, and B. Mishra. Riemannian stochastic quasi-Newton algorithm with vari-
ance reduction and its convergence analysis. In AISTATS, 2018.

[35] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hessian infor-
mation in optimization methods for machine learning. SIAM J. Optim., 21(3):977–995, 2011.

[36] M. A. Erdogdu and A. Montanari. Convergence rates of sub-sampled Newton methods. In
NIPS, 2015.

[37] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Newton-type methods for non-convex opti-
mization under inexact Hessian information. arXiv preprint arXiv:1708.07164, 2017.

[38] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney. Inexact non-convex Newton-type
methods. arXiv preprint arXiv:1802.06925, 2018.

[39] J. M. Kohler and A. Lucchi. Sub-sampled cubic regularization for non-convex optimization.
In ICML, 2017.

[40] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimiza-
tion on manifolds. J. Mach. Learn. Res., 15(1):1455–1459, 2014.

[41] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust Region Methods. MOS-SIAM Series on
Optimization. SIAM, 2000.

11

[42] J. Nocedal and Wright S.J. Numerical Optimization. Springer, New York, USA, 2006.

[43] C. Cartis, N. I. M. Gould, and P. L. Toint. Adaptive cubic regularisation methods for uncon-
strained optimization. part I: motivation, convergence and numerical results. Math. Program.,
127(2):245–295, 2011.

[44] P. L. Toint. Towards an efficient sparsity exploiting Newton method for minimization. Sparse
matrices and their uses, page 1981, 1981.

[45] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications. Neu-
ral networks, 13(4-5):411–430, 2000.

[46] The extended Yale Face Database b. http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html.

[47] Columbia university image library (COIL-100). http://www1.cs.columbia.edu/CAVE/software/softlib/coil-
100.php.

[48] The CIFAR-100 dataset. http://www.cs.toronto.edu/ kriz/cifar.html.

[49] F. Porikli and O. Tuzel. Fast construction of covariance matrices for arbitrary size image
windows. In ICIP, 2006.

[50] O. Tuzel, F. Porikli, and P. Meer. Region covariance: a fast descriptor for detection and classi-
fication. In ECCV, 2006.

[51] Y. Pang, Y. Yuan, and X. Li. Gabor-based region covariance matrices for face recognition.
IEEE Trans. Circuits Syst. Video Technol., 18(7):989–993, 2008.

[52] The MNIST database. http://yann.lecun.com/exdb/mnist/.

[53] Covertype dataset. https://archive.ics.uci.edu/ml/datasets/covertype.

[54] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: a constant time collaborative
filtering algorithm. Inform. Retrieval, 4(2):133–151, 2001.

[55] D. Gross. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. on
Inf. Theory, 57(3):1548–1566, 2011.

[56] R. Kueng and D. Gross. Ripless compressed sensing from anisotropic measurements. Linear
Algebra and its Applications, 441:110–123, 2014.

12

