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Early Stopping for Nonparametric Testing

A Proof

A.1 Proof of Theorem 3.1
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We first derive the null limiting distribution of Dn,t conditional on x. By the Gaussian assumption of
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where i =
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Therefore, when n ! 1 and t ! 1, by Assumption A2, we have ⌘t ! 1; and by Assumption A3
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For W

3

, since kf⇤k2n = k�⇤k2
2

� C

2

"d
2

n,t,

W

3

= k(I � S

t
)�

⇤k2
2

� 1

2

k�⇤k2
2

� kSt
�

⇤k2
2

� C

2

"

2

(

1

⌘t
+ �n,t) �

1

e⌘t
� C

2

"�n,t

2

,

where C

2

" � 2

e is a constant, and the specfic requirement of C

2

" will be illustrated later.

Recall W

2

=

1p
n
✏

>
(I � S

t
)

2

�

⇤. Consider a

>
(I � S

t
)

2

a, where a = (a

1

, · · · , an) 2 Rn is an
arbitrary vector. Then a

>
(I � S

t
)

2

a  �

max

((I � S

t
)

2

)a

>
a  a

>
a. For W

2

, we have

E✏ W

2

2

= �

⇤>
(I � S

t
)

4

�

⇤  �

⇤>
(I � S

t
)

2

�

⇤
= W

3

.

Then

P
⇣
|W

2

| � "

� 1
2
W

1/2
3

⌘
 E✏ W

2

2

"

�1

W

3

 " (A.7)
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The second to the last equality is achieved by choosing C" to satisfy
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A.3 Proof of Corollary 3.4 and Corollary 3.5

We first prove Corollary 3.4.
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A.4 Proof of Theorem 3.6
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By (A.6), we have
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A.5 Proof of Sharpness in estimation
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� µn,t. Then we have W

2

= op(W1

), and W

3

= oP (W

1

) due to Cauchy-Schwarz inequality

W

3

 W

1/2
1

W

1/2
2

. Finally, by Lemma A.5, with probability approaching 1,

sup

f2B
kft � f

⇤k2n & sup

f2B
kE✏ ft � f

⇤k2n & 1

⌘t
� 1

⌘eT
.

We next prove Theorem 4.2 (b) for EDK. Similar to the proof of Theorem 4.2 (a), we construct the
coefficients {↵⌫}n⌫=1

as

↵

2

⌫ =

⇢
C
2nµ

�1

̆t+1

for ⌫ = ̆t + 1;

0 otherwise.
(A.12)

Then, it is easy to see that, conditional on A, kfk2H = n↵

>
D↵  C. Equation (A.11) also holds in

EDK. W

1

= kE✏ ft � f

⇤k2n can be lower bounded as follows

W

1

�n

nX

i=1

↵

2

i bµ2

i (1 � min{1, ⌘tbµi})2 � n

4

↵

2

̆t+1

bµ2

̆t+1

� C

8

bµ̆t+1

� C

16

µ̆t+1

� µ eT
>

1

⌘eT
,

where the second to last step is based on ̆t + 1 ⌧ eT , which will be shown in the following. By
the definition of ̆t, µ̆t >

1

3⌘t
, then ̆t < (

log 3⌘t
� )

1/p by plugging in µi ⇣ exp(��i

p
). Similarily,

eT > (

log ⌘ eT
� )

1/p � 1. By Assumption A2, as t ⌧ e
T , ⌘t ⌧ ⌘eT = n/(log n)

1/p with n diverges, we
have

̆t + 1 <

�
log 3⌘t

�

�
1/p

+ 1 ⌧
�
log ⌘eT

�

�
1/p � 1 < eT .

The analysis of W

2

and W

3

are as the same in the proof of Theorem 4.2 (a). Finally we have with
probability approaching 1,

sup

f2B
kft � f

⇤k2n & sup

f2B
kE✏ ft � f

⇤k2n � 1

⌘eT
.

We provide the following lemma to bound the variance of ft.
Lemma A.1. Suppose Assumption A2 is satisfied. Then for t = 1, 2, · · · , it holds that

kft � E✏ ftk2n = OP (µn,t)

where µn,t ⇣ 1

n

Pn
i=1

min{1, ⌘tbµi}.

Proof. First, by (A.3) and the fact that f t =

p
nU�

t, we have E✏ f t = (In � S

t
)f

⇤. Thus the
squared bias kE✏ ft � f

⇤k2n = kSt
f

⇤k2n = kSt
�

⇤k2
2

. By Lemma A.3, kE✏ ft � f

⇤k2n  C
e⌘t

.

Next, we consider the variance kft � E✏ ftk2n. Note that kft � E✏ ftk2n =

✏>p
n
(I � S

t
)

2

✏p
n

, where
k ✏p

n
k 2  Lp

n
and ||(I � S

t
)

2||op  1. Recall k · k 2 is the sub-Gaussian norm defined as k✏k =

supp�1

p

�1/2
(E |✏|p)1/p. Here k✏k 2  L, with L as an absolute constant. Then by Hanson-Wright

concentration inequality (Rudelson and Vershynin [2013]),

P
⇣
kft � E✏ ftk2n � E✏ kft � E✏ ftk2n � tr((I � S

t
)

2

)

2n

��
x

⌘

=P
⇣

1

n

✏

>
(I � S

t
)

2

✏ � tr((I � S

t
)

2

)

n

� tr((I � S

t
)

2

)

2n

��
x

⌘

 exp

⇣
� c min

�
tr

2

((I � S

t
)

2

)

4K

4k(I � S

t
)

2k2F
,

tr((I � S

t
)

2

)

||(I � S

t
)

2||op

�⌘

 exp(�c tr((I � S

t
))

2

)),

where k · kF is the Frobenius norm. The last inequality holds by the fact that k(I � S

t
)

2k2F 
||(I � S

t
)

2||op tr((I � S

t
)

2

) and ||(I � S

t
)

2||op  1. Lastly, by (A.5), tr((I � S

t
)

2

) � et
2

4 , which
goes to +1 as t ! 1. Then we have, with probability approaching 1, kft � E✏ ftk2n  3

2

µn,t.
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A.6 Proof of Lemma 5.1

Proof. Note that tr

�
(⇤ + �In)

�1

⇤

�
4 ⇣ tr

�
I � S

t
�
4 is equivalent to tr

�
(⇤ + �In)

�1

⇤

�
⇣

tr

�
I � S

t
�
. Let � = argmin{j : bµj  �}� 1, then

tr

�
(⇤ + �In)

�1

⇤

�
=

�X

i=1

bµi

bµi + �

+

nX

i=�+1

bµi

bµi + �

For i  �, we have 0 < � < bµi, then 1

2

� 
P�

i=1

bµi

bµi+�
 �. For i > �, we have 0  bµi < �,

then 1

2�

Pn
i=�+1

bµi 
Pn

i=�+1

bµi

bµi+�
 1

�

Pn
i=�+1

bµi. Therefore,

tr

�
(⇤ + �In)

�1

⇤

�
⇣ � +

1

�

nX

i=�+1

bµi ⇣
nX

i=1

min{1,

1

�

bµi}.

On the other hand, by Lemma A.2, we have tr

�
I � S

t
�
⇣
Pn

i=1

min{1, ⌘tbµi}. Then, it is obvious
that tr

�
(⇤ + �In)

�1

⇤

�
⇣ tr

�
I � S

t
�

holds if and only if � ⇣ 1

⌘t
.

A.7 Some auxiliary lemmas

Lemma A.2 (Raskutti et al. [2014]Property of Shrinkage matrices S

t). For all indices j 2
{1, 2, · · · , n}, the shrinkage matrices S

t satisfy the bounds

0  (S

t
)

2

jj 
1

2e⌘tbµj
, and

1

2

min{1, ⌘tbµj}  1 � S

t
jj  min{1, ⌘tbµj}

Lemma A.3 (Raskutti et al. [2014]Bounding the squared bias). kSt
�

⇤k2
2

 C
e⌘t

, where C is the
constrain that kfkH  C.
Lemma A.4 (Liu et al. [2018]). For t � 0, if ⌘t < n, then with probability at least 1 � 4e

�t ,Pn
i=bt+1

bµi  Ctµt , where C > 0 is an absolute constant.

Lemma A.5 (Liu et al. [2018]Properties of eigenvalues). (a) Suppose that K has eigenvalues sat-
isfying µi ⇣ i

�2m with m > 3/2. Then for i = 1, · · · , n

1/(2m),

P
✓
|bµi � µi| 

1

2

µi

◆
� 1 � e

�cmni�4m/(2m�1)

.

where cm is an universal constant depending only on m.

(b) Suppose that K has eigenvalues satisfying µi ⇣ exp(��i

p
) with � > 0, p � 1. Then for

i = o(n

1/2
),

P
�
|bµi � µi| 

1

2

µi

�
� 1 � e

�c�,pni
�2

,

where c�,p is an universal constant depending only on � and p.
For i = O(n

1/2
), we have

P (|bµi � µi|  iµi) � 1 � e

�c0�,pn
,

where c

0
�,p is an universal constant depending only on � and p.

A.8 Additional Numerical study

In this section, we further compare our testing method (ES) with an oracle version of stopping rule
(oracle ES) that uses knowledge of f

⇤, as well as the test based on the penalized regularization.

Data were generated from the regression model (2.1) with f(xi) = c(0.8(xi�0.5)

2

+0.2 sin(4⇡xi)),
where xi

iid⇠ Unif[0, 1] and c = 0, 0.5, 0.8, 1, 1.2 respectively. c = 0 is used for examining the size
of the test, and c > 0 is used for examining the power of the test. The sample size n is ranged from

7



100 to 1000. We use the second-order Sobolev kernel with polynomial eigen-decay (i.e., m = 2)
to fit the data. Significance level was chosen as 0.05. Both size and power were calculated as the
proportions of rejections based on 500 independent replications. For the ES, we use boostrap method
to approximate the bias with B = 10 and the step size ↵ = 1. For the penalization-based test, we
use 10�fold cross validation (10-fold CV) to select the penalty parameter. For the oracle ES, we
follow the stopping rule in Section 5.1 with constant step size ↵ = 1. The power increases when the
nonparametric signal c increases for c > 0. Overall, the interpretations are similar to Figure 2 for
EDK in Section 5.1.
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Figure 4: (a) is the size with signal strength c = 0; (b) is the power with signal strength c = 0.5; (c)

is the power with c = 0.8; (d) is the power with c = 1.0; (e) is the power with c = 1.2;(f) is the
computational time (in seconds) for the three testing rules.
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