
A Fake labels are not compressible

In the introduction, we stated that fake labels could not be compressed. This means that the optimal
codelength for this labels is almost the uniform one. This can be formalized as follows. We define a
code for y1:n as any program (in a reference Turing machine) that outputs y1:n, and denote L(y1:n)
the length of this program, or L(y1:n|x1:n) for programs that may use x1:n as their input.

Proposition 2. Assume that x1, ..., xn are inputs, and that Y1, ..., Yn are iid random labels uniformly
sampled in {1, ...,K}. Then for any δ ∈ N∗, with probability 1− 2−δ the values Y1, . . . , Yn satisfy
that for any possible coding procedure L (even depending on the values of x1:n), the codelength of
Y1:n is at least

L(Y1:n|x1:n) ≥ nH(Y )− δ − 1 (A.1)
= n log2K − δ − 1. (A.2)

We insist that this does not require any assumptions on the coding procedure used, so this result
holds for all possible models. Moreover, this is really a property of the sampled values Y1, . . . Yn:
most values of Y1:n can just not be compressed by any algorithm.

Proof. This proposition is a standard counting argument, or an immediate consequence of Theorem
2.2.1 in (Li and Vitányi, 2008). Let A = {1, ...,K}n be the set of all possible outcomes for the
sequence of random labels. We have |A| = Kn. Let δ be an integer, δ ∈ N∗, we want to know how
many elements in A can be encoded in less than log2 |A| − δ bits. We consider, on a given Turing
machine, the number of programs of length less than blog2 |A| − δc. This number is less than :

blog2 |A|c−δ−1∑
i=0

2i = 2blog2 |A|c−δ − 1 (A.3)

≤ 2−δ|A| − 1 (A.4)

Therefore, the number of elements in A which can be described in less than log2 |A| − δ bits is
less than 2−δ|A| − 1. We can deduce from this that the number of elements in A which cannot be
described by any program in less than 2−δ|A|−1 bits is at least |A|(1−2−δ). Equivalently, there are
at least |A|(1 − 2−δ) elements (y1, ..., yn) in |A| such that for any coding scheme, L(y1:n|x1:n) ≥
n log2K−δ−1. Since the random labels Y1, ..., Yn are uniformly distributed, the result follows.

B Technical details on compression bounds with random affine subspaces

We describe in Algorithm 1 the detailed procedure which allows to compute compression bounds
with the random affine subspace method (Li et al., 2018). To compute the numerical results in
Table 1, we took the intrinsic dimension computed in the original paper, and considered that the pre-
cision of the parameter was 32 bits, following the authors’ suggestion. Then, the description length
of the model itself is 32× the intrinsic dimension. This does not take into account the description
length of the labels given the model, which is non-negligible (to take this quantity into account, we
would need to know the loss on the training set of the model, which was not specified in the original
paper). Thus we only get a lower bound.

Algorithm 1 Encoding with random affine subspaces

Alice transmits a parametric model (pθ)θ∈Θ.
Alice transmits the random seed ω (if using stochastic optimization), and a dimension k.
Alice and Bob both sample a random affine subspace Θ̃ ⊂ Θ, with the seed ω. This means that
they sample θ0 and a matrix W of dimension k × d where d is the dimension of Θ. It defines a
new parametric model p̃φ = pθ0+W ·φ
Alice optimizes the parameter φ∗ with a gradient descent algoritm in order to minimize
− log2 p̃φ(y1:n|x1:n).
Alice sends φ∗ with a precision ε to Bob. It costs k × log2 ε.
Alice sends the labels y1:n with the models p̃φ∗ . It costs − log2 p̃φ∗(y1:n|x1:n)

12



For MNIST, the model with the smaller intrinsic dimension is the LeNet, which has an intrinsic
dimension of 290 for an accuracy of 90% (the threshold at which (Li et al., 2018) stop by definition,
hence the performance in Table 1). This leads to a description length for the model of 9280 bits,
which corresponds to a 0.05 compression ratio, without taking into account the description length
of the labels given the model.

For CIFAR, again with the LeNet architecture, the intrinsic dimension is 2,900. This leads to a
description length for the model of 92800 bits, which corresponds to a 0.05 compression ratio,
without taking into account the description length of the labels given the model.

These bounds could be improved by optimizing the precision ε. Indeed, reducing the precision
makes the model less accurate and increases the encoding cost of the labels with the model, but it
decreases the encoding cost of the parameters. Therefore, we could find an optimal precision ε∗ to
improve the compression bound. This would be a topic for future work.

C Technical Details on Variational Learning for Section 3.3

Variational learning was performed using the library Pyvarinf (Tallec and Blier, 2018).

We used a prior α = N (0, σ2
0Id) with σ0 = 0.05, chosen to optimize the compression bounds.

The chosen class of posterior was the class of multivariate gaussian distributions with diagonal
covariance matrix {N (µ,Σ) , µ ∈ Rd Σ diagonal}. It was parametrized by (βµ,ρ)(µ,ρ)∈Rd×Rd ,
with σ ∈ Rd defined as σi = log(1 + exp(ρi)), and the covariance matrix Σ as the diagonal matrix
with diagonal values σ2

1 , ..., σ
2
d.

We optimize the bound (3.2) as a function of (µ, ρ) with a gradient descent method, and estimate
its values and gradient with a Monte-Carlo method. Since the prior and posteriors are gaussian, we
have an explicit formula for the first part of the variational loss KL(βµ,ρ‖α) (Hinton and Van Camp,
1993). Therefore, we can easily compute its values and gradients. For the second part

(µ, ρ)→ Eθ∼βµ,ρ
[ n∑
i=1

− log2 pθ(yi|xi)
]
, (C.1)

we can use the following proposition (Graves, 2011). For any function f : Θ→ R, we have

∂

∂µi
Eθ∼βµ,ρ [f(θ)] = Eθ∼βµ,ρ

[ ∂f
∂θi

(θ)
]

(C.2)

∂

∂ρi
Eθ∼βµ,ρ [f(θ)] =

∂σi
∂ρi
· Eθ∼βµ,ρ

[ ∂f
∂θi
· θi − µi

σi

]
(C.3)

Therefore, we can estimate the values and gradients of (3.2) with a Monte-Carlo algorithm:

∂

∂µi
Eθ∼βµ,ρ [f(θ)] ≈

S∑
s=1

∂f

∂θi
(θs) (C.4)

∂

∂ρi
Eθ∼βµ,ρ [f(θ)] ≈ ∂σi

∂ρi
·
S∑
s=1

∂f

∂θi
(θs) · θ

s
i − µi
σi

(C.5)

where θ1, ..., θS are sampled from βµ,ρ. In practice, we used S = 1 both for the computations of
the variational loss and its gradients.

We used both convolutional and fully connected architectures, but in our experiments fully con-
nected models were better for compression. For CIFAR and MNIST, we used fully connected
networks with two hidden layers of width 256, trained with SGD, with a 0.005 learning rate and
mini-batchs of size 128.

For CIFAR and MNIST, we used a LeNet-like network with 2 convolutional layers with 6 and 16
filters, both with kernels of size 5 and 3 fully connected layers. Each convolutional is followed by
a ReLU activation and a max-pooling layer. The code will be publicly available. The first and the
second fully connected layers are of dimension 120 and 84 and are followed by ReLU activations.
The last one is followed by a softmax activation layer. The code for all models will be publicly
available.

13



During the test phase, we sampled parameters θ̂ from the learned distribution β, and used the model
pθ̂ for prediction. This explains why our test accuracy on MNIST is lower than other numerical
results (Blundell et al., 2015), since they use for prediction the averaged model with parameters
θ̂ = Eθ∼βm,r [θ] = µ. But our goal was not to get the best prediction score, but to evaluate the model
which was used for compression on the test set.

D Technical details on prequential learning

Prequential Learning on MNIST. On MNIST, we used three different models:

1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden layers of di-
mension 256.

3. A VGG-like convolutional network with 8 convolutional layers with 32, 32, 64, 64, 128,
128, 256 and 256 filters respectively and max pooling operators every two convolutional
layers, followed by two fully connected layers of size 256.

For the two neural networks we used Dropout with probability 0.5 between the fully connected
layers, and optimized the network with the Adam algorithm with learning rate 0.001.

The successive timestep for the prequential learning t1, t2, ..., ts are 8, 16, 32, 64, 128, 256, 512,
1024, 2048, 4096, 8192, 16384 and 32768.

For the prequential code results in Table 1, we selected the best model, which was the VGG-like
network.

Prequential Learning on CIFAR. On CIFAR, we used five different models:

1. The uniform probability over the labels.

2. A fully connected network or Multilayer Perceptron (MLP) with two hidden layers of di-
mension 512.

3. A shallow network, with one hidden layer and width 5000.

4. A convolutional network (tinyCNN) with four convolutional layers with 32 filters, and a
maxpooling operator after every two convolutional layers. Then, two fully connected layers
of dimension 256. We used Dropout with probability 0.5 between the fully connected
layers.

5. A VGG-like network with 13 convolutional layers from (Zagoruyko, 2015). We trained
this architecture with two learning procedures. The first one (VGGa) without batch-
normalization and data augmentation, and the second one (VGGb) with both of them, as
introduced in (Zagoruyko, 2015). In both of them, we used dropout regularization with
parameter 0.5.

We optimized the network with the Adam algorithm with learning rate 0.001.

For prequential learning, the timesteps t1, t2, ..., ts were: 10, 20, 40, 80, 160, 320, 640, 1280, 2560,
5120, 10240, 20480, 40960. The training results can be seen in Figure 2.

For the prequential code, all the results are in Figure 2. For the results in Table 1, we selected the
best model for the prequential code, which was VGGb.

E Switching between models against the catch-up phenomenon

E.1 Switching between model classes

The solution introduced by (Van Erven et al., 2012) against the catch-up phenomenon described
in Section 3.4, is to switch between models, to always encode a data block with the best model at
that point. That way, the encoding adapts itself to the number of data samples seen. The switching
pattern itself has to be encoded.

14



Algorithm 2 Prequential encoding

Input: data x1:n, y1:n, timesteps 1 = t0 < t1 < ... < tS = n
Alice transmits the random seed ω (if using stochastic optimization).
Alice encodes y1:t1 with the uniform code. This costs t1 log2K bits. Bob decodes y1:t1 .
for s = 1 to S − 1 do

Alice and Bob both compute θ̂s = θ̂(x1:ts , y1:ts , ω).
Alice encodes yts+1:ts+1

with model pθ̂s . This costs − log2 pθ̂s(yts+1:ts+1
|xts+1:ts+1

) bits
Bob decodes yts+1:ts+1

end for

Table 2: Compression bounds by switching between models. Compression bounds given by dif-
ferent codes on two datasets, MNIST and CIFAR10. The Codelength is the number of bits necessary
to send the labels to someone who already has the inputs. This codelength includes the description
length of the model. The compression ratio for a given code is the ratio between its codelength and
the codelength of the uniform code. The test accuracy of a model is the accuracy of its predictions
on the test set. For variational and prequential codes, we selected the model and hyperparameters
providing the best compression bound.

CODE MNIST CIFAR10
CODELENGTH COMP. TEST CODELENGTH COMP. TEST

(kbits) RATIO ACC (kbits) RATIO ACC

UNIFORM 199 1. 10% 166 1. 10%

VARIATIONAL 24.1 0.12 95.5% 89.0 0.54 61,6%
PREQUENTIAL 4.10 0.02 99.5% 45.3 0.27 93.3%
SWITCH 4.05 0.02 99.5% 34.6 0.21 93.3%
SELF-SWITCH 4.05 0.02 99.5% 34.9 0.21 93.3%

Assume that Alice and Bob have agreed on a set of prediction strategies M = {pk, k ∈ I}. We
define the set of switch sequences, S = {((t1, k1), ..., (tL, kL)), 1 = t1 < t2 < ... < tL , k ∈ I}.
Let s = ((t1, k1), ..., (tL, kL)) be a switch sequence. The associated prediction strategy
ps(y1:n|x1:n) uses model pki on the time interval [ti; ti+1), namely

ps(y1:i+1|x1:i+1, y1:i) = pKi(yi+1|x1:i+1, y1:i) (E.1)

whereKi is such thatKi = kl for tl ≤ i < tl+1. Fix a prior distribution π over switching sequences
(see (Van Erven et al., 2012) for typical examples).
Definition 4 (Switch code). Assume that Alice and Bob have agreed on a set of prediction strategies
M and a prior π over S. The switch code first encodes a switch sequence s strategy, then uses the
prequential code with this strategy:

Lsw
s (y1:n, x1:n) = Lπ(s) +Lpreq

ps (y1:n, x1:n) = − log2 π(s)−
n∑
i=1

log2 p
Ki(yi|x1:i, y1:i−1) (E.2)

where Ki is the model used by switch sequence s at time i.

We then choose the switching strategy s∗ wich minimizes Lsw
s (y1:n, x1:n). We tested switching

between the uniform model, a small convolutional network (tinyCNN), and a VGG-like network
with two training methods (VGGa, VGGb) (Appendix D). On MNIST, switching between models
does not make much difference. On CIFAR10, switching by taking the best model on each interval
[tk; tk+1) saves more than 11 kbits, reaching a codelength of 34.6 kbits, and a compression ratio of
0.21. The cost Lπ(s) of encoding the switch s is negligible (see Table 2).

E.2 Self-Switch: Switching between variants of a model or hyperparameters

With standard switch, it may be cumbersome to work with different models in parallel. Instead, for
models learned by gradient descent, we may use the same architecture but with different parame-
ter values corresponding obtained at different gradient descent stopping times. This is a form of
regularization via early stopping.

15



0 10000 20000 30000 40000 50000
0

2

4

6

En
co
di
ng
 c
os
t p
er
 

sa
 
pl
e 
(b
its
)

0 10000 20000 30000 40000 50000

−100

−50

0

Cu
 
ul
at
i(
e 
en
co
di
ng
 c
os
t

(d
iff
er
en
ce
 )
ith
 u
ni
fo
r 
) (
kb
its
)

0 10000 20000 30000 40000 50000
Nu ber of sa ples

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy
 o
n 
th
e 
ne
xt

da
ta
 p
ac
k 
(%
)

uniform
Shallow
VGGb

Shallow+SelfSw
VGGb+SelfSw

0 10000 20000 30000 40000 50000
Number of samples

0.0

0.5

1.0

1.5

2.0

Co
m
pr
es
sio
n 
ra
tio

Figure 3: Compression with the self-switch method: Results of the self-switch code on CIFAR
with 2 different models: the shallow network, and the VGG-like network trained with data aug-
mentation and batch normalization (VGGb). Performance is reported during online training, as a
function of the number of samples seen so far. Top: test accuracy on a pack of data [tk; tk+1) given
data [1; tk), as a function of tk. Second: codelength per sample (log loss) on a pack of data [tk; tk+1)
given data [1; tk). Third: difference between the prequential cumulated codelength on data [1; tk],
and the uniform encoding. Bottom: compression ratio of the prequential code on data [1; tk]. The
catch-up phenomenon is clearly visible for both models: even if models with and without the self-
switch have similar performances after a training on the entire dataset, the standard model has lower
performances than the uniform model (for the 1280 first labels for the VGGb network, and for the
10,000 first labels for the shallow network), and the code length for these first labels is large. The
self-switch method solves this problem.

Let (pθ)θ∈Θ be a model class. Let θ̂j(x1:k, y1:k) be the parameter obtained by some optimization
procedure after j epochs of training on data [1; k]. For instance, j = 0 would correspond to using
an untrained model (usually close to the uniform model).

We call self-switch code the switch code obtained by switching among the family of models with
different gradient descent stopping times j (based on the same parametric family (pθ)θ∈Θ). In
practice, this means that at each step of the prequential encoding, after having seen data [1; tk),
we train the model on those data and record, at each epoch j, the loss obtained on data [tk; tk+1).
We then switch optimally between those. We incur the small additional cost of encoding the best
number of epochs to be used (which was limited to 10) at each step.

The catch-up phenomenon and the beneficial effect of the self-switch code can be seen in Figure 3.

The self-switch code achieves similar compression bounds to the switch code, while storing only
one network. On MNIST, there is no observable difference. On CIFAR, self-switch is only 300 bits
(0.006 bit/label) worse than full 4-architecture switch.

16


	Fake labels are not compressible
	Technical details on compression bounds with random affine subspaces
	Technical Details on Variational Learning for Section 3.3
	Technical details on prequential learning
	Switching between models against the catch-up phenomenon
	Switching between model classes
	Self-Switch: Switching between variants of a model or hyperparameters


