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Abstract

We study consistency properties of machine learning methods based on minimizing
convex surrogates. We extend the recent framework of Osokin et al. [14] for the
quantitative analysis of consistency properties to the case of inconsistent surrogates.
Our key technical contribution consists in a new lower bound on the calibration
function for the quadratic surrogate, which is non-trivial (not always zero) for in-
consistent cases. The new bound allows to quantify the level of inconsistency of the
setting and shows how learning with inconsistent surrogates can have guarantees on
sample complexity and optimization difficulty. We apply our theory to two concrete
cases: multi-class classification with the tree-structured loss and ranking with the
mean average precision loss. The results show the approximation-computation
trade-offs caused by inconsistent surrogates and their potential benefits.

1 Introduction

Consistency is a desirable property of any statistical estimator, which informally means that in the
limit of infinite data, the estimator converges to the correct quantity. In the context of machine
learning algorithms based on surrogate loss minimization, we usually use the notion of Fisher
consistency, which means that the exact minimization of the expected surrogate loss leads to the exact
minimization of the actual task loss. It can be shown that Fisher consistency is closely related to the
question of infinite-sample consistency (a.k.a. classification calibration) of the surrogate loss with
respect to the task loss (see [2, 17] for a detailed review).

The property of infinite-sample consistency (which we will refer to as simply consistency) shows
that the minimization of a particular surrogate is the right problem to solve, but it becomes especially
attractive when one can actually minimize the surrogate, which is the case, e.g, when the surrogate
is convex. Consistency of convex surrogates has been the central question of many studies for such
problems as binary classification [2, 24, 19], multi-class classification [23, 21, 1, 17], ranking [11, 4,
5, 18, 15] and, more recently, structured prediction [7, 14].

Recently, Osokin et al. [14] have pinpointed that in some cases minimizing a consistent convex
surrogate might be not sufficient for efficient learning. In particular, when the number of possible
predictions is large (which is typically the case in the settings of structured prediction and ranking)
reaching adequately small value of the expected task loss can be practically impossible, because
one would need to optimize the surrogate to high accuracy, which requires an intractable number of
iterations of the optimization algorithm.
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It also turns out [14] that the possibility of efficient learning is related to the structure of the task loss.
The 0-1 loss, which does not make distinction between different kinds of errors, shows the worst case
behavior. However, more structured losses, e.g., the Hamming distance between sequence labelings,
allow efficient learning if the score vector is designed appropriately (for the Hamming distance, the
score for a complete configuration should be decomposable into the sum of scores for individual
elements).

However, the analysis of Osokin et al. [14] gives non-trivial conclusions only for consistent surrogates.
At the same time it is known that inconsistent surrogates often work well in practice (for example, the
Crammer-Singer formulation of multi-class SVM [8], or its generalization structured SVM [20, 22]).
There have indeed been several works to analyze inconsistent surrogates [12, 18, 5, 14], but they
usually end the story with proving that some surrogate (or a family or surrogates) is not consistent.

Contributions. In this work, we look at the problem from a more quantitative angle and analyze
to which extent inconsistent surrogates can be useful for learning. We focus on the same setting
as [14] and generalize their results to the case of inconsistent surrogates (their bounds are trivial for
these cases) to be able to draw non-trivial conclusions. The main technical contribution consists in
a tighter lower bound on the calibration function (Theorem 3), which is strictly more general than
the bound of [14]. Notably, our bound is non-trivial in the case when the surrogate is not consistent
and quantifies to which degree learning with inconsistent surrogates is possible. We further study
the behavior of our bound in two practical scenarios: multi-class classification with a tree-structured
loss and ranking with the mean average precision (mAP) loss. For the tree-structured loss, our bound
shows that there can be a trade-off between the best achievable accuracy and the speed of convergence.
For the mAP loss, we use our tools to study the (non-)existence of consistent convex surrogates of a
particular dimension (an important issue for the task of ranking [11, 4, 5, 18, 17]) and quantify to
which extent our quadratic surrogate with the score vector of insufficient dimension is consistent.

This paper is organized as follows. First, we introduce the setting we work with in Section 2 and
review the key results of [14] in Section 3. In Section 4, we prove our main theoretical result, which
is a new lower bound on the calibration function. In Section 5, we analyze the behavior of our bound
for the two different settings: multi-class classification and ranking (the mean average precision loss).
Finally, we review the related works and conclude in Section 6.

2 Notation and Preliminaries

In this section, we introduce our setting, which closely follows [14]. We denote the input features
by x ∈ X where X is the input domain. The particular structure of X is not of the key importance
for this study. The output variables, that are in the center of our analysis, will be denoted by ŷ ∈ Ŷ
with Ŷ being the set of possible predictions or the output domain.5 In such settings as structured
prediction or ranking, the predictions are very high-dimensional and with some structure that is useful
to model explicitly (for example, a sequence, permutation or image).

The central object of our study is the loss function L(ŷ,y) ≥ 0 that represents the cost of making the
prediction ŷ ∈ Ŷ when the ground-truth label is y ∈ Y . Note that in some applications of interest
the sets Ŷ and Y are different. For example, in ranking with the mean average precision (mAP) loss
function (see Section 5.2 and, e.g., [18] for the details), the set Ŷ consists of all the permutations
of the items (to represent the ranking itself), but the set Y consists of all the subsets of items (to
represent the set of relevant items, which is the ground-truth annotation in this setting). In this paper,
we only study the case when both Ŷ and Y are finite. We denote the cardinality of Ŷ by k, and the
cardinality of Y by m. In this case, the loss function can be encoded as a matrix L of size k ×m.

In many applications of interest, both quantities k and m are exponentially large in the size of the
natural dimension of the input x. For example, in the task of sequence labeling, both k and m are
equal to the number of all possible sequences of symbols from a finite alphabet. In the task of ranking
(the mAP formulation), k is equal to the number of permutations of items and m is equal to the
number of item subsets.

5The output domain Ŷ itself can depend on the vector of input features x (for example, if x can represent
sequences of different lengths and the length of the output sequence has to equal the length of the input), but we
will not use this dependency and omit it for brevity.
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Following usual practices, we work with the prediction model defined by a (learned) vector-valued
score function f : X → Rk, which defines a scalar score fŷ(x) for each possible output ŷ ∈ Ŷ . The
final prediction is then chosen as an output configuration with the maximal score:

pred(f(x)) := argmax
ŷ∈Ŷ

fŷ(x). (1)

If the maximal score is given by multiple outputs ŷ (so-called ties), the predictor follows a simple
deterministic tie-breaking rule and picks the output appearing first in some predefined ordering on Ŷ .

In this setup, learning consists in finding a score function f for which the predictor gives the smallest
expected loss with features x and labels y coming from an unknown data-generating distribution D:

RL(f) := IE(x,y)∼D L
(
pred(f(x)),y

)
. (2)

The quantity RL(f) is usually referred to as the actual (or population) risk based on the loss L.
Minimizing the actual risk directly is usually difficult (because of non-convexity and non-continuity
of the predictor (1)). The standard approach is to substitute (2) with another objective, a surrogate risk
(or the Φ-risk), which is easier for optimization (in this paper, we only consider convex surrogates):

RΦ(f) := IE(x,y)∼D Φ(f(x),y), (3)

where we will refer to the function Φ : Rk ×Y → R as the surrogate loss. To make the minimization
of (3) well-defined, we will always assume the surrogate loss Φ to be bounded from below and
continuous.

The surrogate loss should be chosen in such a way that the minimization of (3) also leads to the
minimization of (2), i.e., to the solution of the original problem. The property of consistency of
the surrogate loss is an approach to formalize this intuition, i.e., to guarantee that no matter the
data-generating distribution, minimizing (3) w.r.t. f implies minimizing (2) w.r.t. f as well (both
of these are possible only in the limit of infinite data and computational budget). Osokin et al.
[14] quantified what happens if the surrogate risk is minimized approximately by translating the
optimization error of (3) to the optimization error of (2). The main goal of this paper is to generalize
this analysis to the cases when the surrogate is not consistent and to show that there can be trade-offs
between the minimum value of the actual risk that can be achieved by minimizing an inconsistent
surrogate and the speed with which this minimum can be achieved.

3 Calibration Functions and Consistency

In this section, we review the approach of Osokin et al. [14] for studying consistency in the context
of structured prediction. The first part of the analysis establishes the connection between the
minimization of the actual risk RL (2) and the surrogate risk RΦ (3) via the so-called calibration
function (see Definition 1 [14, and references therein]). This step is usually called non-parametric (or
pointwise) because it does not explicitly model the dependency of the scores f := f(x) on the input
variables x. The second part of the analysis establishes the connection with an optimization algorithm
allowing to make a statement about how many iterations would be enough to find a predictor that is
(in expectation) within ε of the global minimum of the actual riskRL.

Non-parametric analysis. The standard non-parametric setting considers all measurable score
functions f to effectively ignore the dependency on the features x. As noted by [14], it is beneficial to
consider a restricted set of the score functions FF that consists of all vector-valued Borel measurable
functions f : X → F where F ⊆ Rk is a subspace of allowed score vectors. Compatibility of the
subspace F and the loss function L will be a crucial point of this paper. Note that the analysis is still
non-parametric because the dependence on x is not explicitly modeled.

Within the analysis, we will use the conditional actual and surrogate risks defined as the expectations
of the corresponding losses w.r.t. a categorical distribution q on the set of annotations Y , m := |Y|:

`(f , q) :=
∑m

y=1
qyL(pred(f),y), φ(f , q) :=

∑m

y=1
qyΦ(f ,y). (4)

Hereinafter, we represent an m-dimensional categorical distribution q as a point in the probability
simplex ∆m and use the symbol qy to denote the probability of the y-th outcome. Using this notation,
we can rewrite the riskRL and surrogate riskRΦ as

RL(f) = IEx∼DX `(f(x), IPD(· | x)), RΦ(f) = IEx∼DX φ(f(x), IPD(· | x)), (5)
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where DX is the marginal distribution of x and IPD(· | x) denotes the conditional distribution of y
given x (both defined for the joint data-generating distribution D).

For each score vector f ∈ F and a distribution q ∈ ∆m over ground-truth labels, we now define the
excess actual and surrogate risks

δφ(f , q) = φ(f , q)− inf
f̂∈F

φ(f̂ , q), δ`(f , q) = `(f , q)− inf
f̂∈Rk

`(f̂ , q), (6)

which show how close the current conditional actual and surrogate risks are to the corresponding
minimal achievable conditional risks (depending only on the distribution q). Note that the two infima
in (6) are defined w.r.t. different sets of score vectors. For the surrogate risk, the infimum is taken
w.r.t. the set of allowed scores F capturing only the scores obtainable by the learning process. For the
actual risk, the infimum is taken w.r.t. the set of all possible scores Rk including score vectors that
cannot be learned. This distinction is important when analyzing inconsistent surrogates and allows to
characterize the approximation error of the selected function class.6

We are now ready to define the calibration function, which is the final object of the non-parametric
part of the analysis. Calibration functions directly show how well one needs to minimize the surrogate
risk to guarantee that the excess of the actual risk is smaller than ε.
Definition 1 (Calibration function, [14]). For a task loss L, a surrogate loss Φ, a set of feasible
scores F , the calibration function HΦ,L,F (ε) is defined as:

HΦ,L,F (ε) := inf
f∈F, q∈∆m

δφ(f , q) (7)

s.t. δ`(f , q) ≥ ε, (8)
where ε ≥ 0 is the target accuracy. We set HΦ,L,F (ε) to +∞ when the feasible set is empty.

By construction, HΦ,L,F is non-decreasing on [0,+∞), HΦ,L,F (ε) ≥ 0 and HΦ,L,F (0) = 0. The
calibration function also provides the so-called excess risk bound

HΦ,L,F (δ`(f , q)) ≤ δφ(f , q), ∀f ∈ F , ∀q ∈ ∆m, (9)
which implies the formal connection between the surrogate and task risks [14, Theorem 2].

The calibration function can fully characterize consistency of the setting defined by the surrogate loss,
the subspace of scores and the task loss. The maximal value of ε at which the calibration function
HΦ,L,F (ε) equals zero shows the best accuracy on the actual loss that can be obtained [14, Theorem
6]. The notion of level-η consistency captures this effect.
Definition 2 (level-η consistency, [14]). A surrogate loss Φ is consistent up to level η ≥ 0 w.r.t. a
task loss L and a set of scores F if and only if the calibration function satisfies HΦ,L,F (ε) > 0 for
all ε > η and there exists ε̂ > η such that HΦ,L,F (ε̂) is finite.

The case of level-0 consistency corresponds to the classical consistent surrogate and Fisher consistency.
When η > 0, the surrogate is not consistent, meaning that the actual risk cannot be minimized
globally. However, Osokin et al. [14, Appendix E.4] give an example where even though constructing
a consistent setting is possible (by the choice of the score subspace F), it might still be beneficial
to use only a level-η consistent setting because of the exponentially faster growth of the calibration
function. The main contribution of this paper is a lower bound on the calibration function (Theorem 3),
which is non-zero for η > 0 and thus can be used to obtain convergence rates in inconsistent settings.

Optimization and learning guarantees; normalizing the calibration function. Osokin et al. [14]
note that the scale of the calibration function is not defined, i.e., if one multiplies the surrogate loss
by some positive constant, the calibration function is multiplied by the same constant as well. One
way to define a “natural normalization” is to use a scale-invariant convergence rate of a stochastic
optimization algorithm. Osokin et al. [14, Section 3.3] applied the classical online ASGD [13] (under
the well-specification assumption) and got the sample complexity (and the convergence rate of ASGD
at the same time) result saying that N∗ steps of ASGD are sufficient to get ε-accuracy on the task
loss (in expectation), where N∗ is computed as follows:

N∗ := 4D2M2

Ȟ2
Φ,L,F (ε)

. (10)

6Note that Osokin et al. [14] define the excess risks by taking both infima w.r.t. the the set of allowed
scores F , which is subtly different from us. The results of the two setups are equivalent in the cases of consistent
surrogates, which are the main focus of Osokin et al. [14], but can be different in inconsistent cases.
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Here the quantity N∗ depends on a convex lower bound ȞΦ,L,F (ε) on the calibration func-
tion HΦ,L,F (ε) and the constants D, M , which appear in the convergence rate of ASGD: D is
an upper bound on the norm of an optimal solution and M2 is an upper bound on the expected square
norm of the stochastic gradient. Osokin et al. [14] show how to bound the constant DM for a very
specific quadratic surrogate defined below (see Section 3.1).

3.1 Bounds for the Quadratic Surrogate

The major complication in applying and interpreting the theoretical results presented in Section 3
is the complexity of computing the calibration function. Osokin et al. [14] analyzed the calibration
function only for the quadratic surrogate

Φquad(f , ŷ) := 1
2k‖f + L(:,y)‖22 = 1

2k

∑
ŷ∈Ŷ

(f2
ŷ + 2fŷL(ŷ,y) + L(ŷ,y)2). (11)

For any task loss L, this surrogate is consistent whenever the subspace of allowed scores is rich
enough, i.e., the subspace of scores F fully contains span(L). To connect with optimization, we
assume a parametrization of the subspace F as a span of the columns of some matrix F , i.e.,
F = span(F ) = {f = Fθ | θ ∈ Rr}.7 In the interesting settings, the dimension r is much smaller
than both k and m. Note that to compute the gradient of the objective (11) w.r.t. the parameters θ,
one needs to compute matrix products FTF ∈ Rr×r and FTL(:,y) ∈ Rr, which are usually both of
feasible sizes, but require exponentially big sum (k summands) inside. Computing these quantities
can be seen as some form of inference required to run the learning process.

Osokin et al. [14] proved a lower bound on the calibration functions for the quadratic surro-
gate (11) [14, Theorem 7], which we now present to contrast our result presented in Section 4.
When the subspace of scores F contains span(L), span(L) ⊆ F , implying that the setting is con-
sistent, the calibration function is bounded from below by mini 6=j

ε2

2k‖PF∆ij‖22
, where PF is the

orthogonal projection on the subspace F and ∆ij := ei−ej ∈ Rk with ec being the c-th basis vector
of the standard basis in Rk. They also showed that for some very structured losses (Hamming and
block 0-1 losses), the quantity k‖PF∆ij‖22 is not exponentially large and thus the calibration function
suggests that efficient learning is possible. One interesting case not studied by Osokin et al. [14] is
the situation where the subspace of scores F does not fully contain the subspace span(L). In this
case, the surrogate might not be consistent but still lead to effective and efficient practical algorithms.

Normalizing the calibration function. The normalization constant DM appearing in (10) can
also be computed for the quadratic surrogate (11) under the assumption of well-specification (see
[14, Appendix F] for details). In particular, we have DM = L2

maxξ(κ(F )
√
rRQmax), ξ(z) =

z2 + z, where Lmax denotes the maximal value of all elements in L, κ(F ) is the condition number of
the matrix F and r in an upper bound on the rank of F . The constants R and Qmax come from the
kernel ASGD setup and, importantly, depend only on the data distribution, but not on the loss L or
score matrix F . Note that for a given subspace F , the choice of matrix F is arbitrary and it can always
be chosen as an orthonormal basis of F giving a κ(F ) of one. However, such F can lead to inefficient
prediction (1), which makes the whole framework less appealing. Another important observation
coming from the value of DM is the justification of the 1

k scaling in front of the surrogate (11).

4 Calibration Function for Inconsistent Surrogates

Our main result generalizes the Theorem 7 of [14] to the case of inconsistent surrogates (the key
difference consists in the absence of the assumption span(L) ⊆ F).
Theorem 3 (Lower bound on the calibration function HΦquad,L,F (ε)). For any task loss L, its
quadratic surrogate Φquad, and a score subspace F , the calibration function is bounded from below:

HΦquad,L,F (ε) ≥ min
i 6=j

max
v≥0

(εv−ξij(v))2
+

2k‖PF∆ij‖22
, where ξij(v) :=

∥∥ LT(vIk − PF )∆ij

∥∥
∞, (12)

where PF is the orthogonal projection on the subspace F , (x)2
+ := [x > 0]x2 is the truncation of

the parabola to its right branch and ∆ij := ei − ej ∈ Rk with ec ∈ Rk being the c-th column of the
7We do a pointwise analysis in this section, so we are not modeling the dependence of θ on the features x.

However, in an actual implementation, the vector θ should be a function of the features x coming from some
flexible family such as a RKHS or some neural networks.
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identity matrix Ik. By convention, if both numerator and denominator of (12) equal zero the whole
bound equals zero. If only the denominator equals zero then the whole bound equals infinity (the
particular pair of i and j is effectively not considered).

The proof of Theorem 3 starts with using the idea of [14] to compute the calibration function by
solving a collection of convex quadratic programs (QPs). Then we diverge from the proof of [14]
(because it leads to a non-informative bound in inconsistent settings). For each of the formulated
QPs, we construct a dual by using the approach of Dorn [10]. The dual of Dorn is convenient for our
needs because it does not require inverting the matrix defining the quadratic terms (compared to the
standard Lagrangian dual). The complete proof is given in Appendix B.
Remark 4. The numerator of the bound (12) explicitly specifies the point at which the bound becomes
non-zero, implying level-η consistency with η =

ξij(v)
v for the values of i, j, v that are active for a

particular ε. The quantity v2

2k‖PF∆ij‖22
bounds the weight of the ε2 term in the calibration function

after it leaves zero. Moving the quantity v defines the trade-off between the slope, which is related to
the convergence speed of the algorithm, and the value of η defining the best achievable accuracy.
Remark 5. If we have conditions of Theorem 7 of [14] satisfied, i.e., span(L) ⊆ F , then the
vector LT(Ik − PF )∆ij equals zero and ξij(v) becomes |v − 1| ‖LT∆ij‖∞, which equals zero
when v = 1. It might seem that having v > 1 can potentially give us a tighter lower bound than
Theorem 7 [14] even in consistent cases. However, the quantity ‖LT∆ij‖∞ upper bounds the
maximal possible (w.r.t. the conditional distribution IPD(· | x)) value of the excess task loss for a
fixed pair i, j leading to the identity vε− |v− 1| ‖LT∆ij‖∞ = ‖LT∆ij‖∞ for ε = ‖LT∆ij‖∞ and
v ≥ 1. Together with the convexity of the function (x)2

+, this implies that the best possible value of v
in consistent settings equals one.
Remark 6. Setting v in (12) to any non-negative constant gives a valid lower bound. In particular,
setting v to 1 (while potentially making the bound less tight) highlights the separation between the
weight of the quadratic term and the best achievable accuracy η. The bound now reads as follows:

HΦquad,L,F (ε) ≥ min
i 6=j

(ε−ξij)2
+

2k‖PF∆ij‖22
, where ξij :=

∥∥ LT(Ik − PF )∆ij

∥∥
∞. (13)

Note that the weight of the ε2 term now equals the corresponding coefficient of the bound of
Theorem 7 [14]. Notably, this weight depends only on the score subspace F , but not on the loss L.

5 Bounds for Particular Losses
5.1 Multi-Class Classification with the Tree-Structured Loss
As an illustration of the obtained lower bound (12), we consider the task of multi-class classification
and the tree-structured loss, which is defined for a weighted tree built on labels (such trees on labels
often appear in settings with large number of labels, e.g., extreme classification [6]). Leaves in
the tree correspond to the class labels ŷ ∈ Ŷ = Y and the loss function is defined as the length
of the path ρ between the leaves, i.e., Ltree(y, ŷ) := ρ(y, ŷ). To compute the lower bound exactly,
we assume that the number of children ds and the weights of the edges connecting a node with its
children αs

2 are equal for all the nodes of the same depth level s = 0, . . . , D − 1 (see Figure 2 in
Appendix C for an example of such a tree) and that

∑D−1
s=0 αs = 1, which normalizes Lmax to one.

To define the score matrix Ftree,s0 , we set the consistency depth s0 ∈ {1, . . . , D} and restrict the
scores f to be equal for the groups (blocks) of leaves that have the same ancestor on the level s0. Let
B(i) be the set of leaves that have the same ancestor as a leaf i at the depth s0. With this notation, we
have Ftree,s0 = span {

∑
i∈B(j) ei | j = 1, . . . , k}. Theorem 3 gives us the bound (see Appendix C):

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > ηs0 ]

(ηs0−ρ̄s0+αs0−1)2

(
ηs0
2 +αs0−1)2

(ε−
ηs0
2 )2

+

4bs0
, (14)

where bs0 , ρ̄s0 := 1
|B(j)|

∑
i∈B(j) ρ(i, j) =

∑D−1
s=s0

αs
(
∏s
s′=s0

ds′ )−1∏s
s′=s0

ds′
and ηs0 := maxi∈B(j) ρ(i, j) =∑D−1

s=s0
αs are the number of blocks, the average and maximal distance within a block, respectively.

Now we discuss the behavior of the bound (14) when changing the truncation level s0. With the
growth of s0, the level of consistency ηs0 goes to 0 indicating that more labels can be distinguished.
At the same time, we have ηs0

2 ≤ ρ̄s0 for the trees we consider and thus the coefficient in front of the
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ε2 term can be bounded from above by 1
4bs0

, which means that the lower bound on the calibration
function decreases at an exponential rate with the growth of s0. These arguments show the trade-off
between the level of consistency and the coefficient of ε2 in the calibration function.

Finally, note that the mixture of 0-1 and block 0-1 losses considered in [14, Appendix E.4] is an
instance of the tree-structured loss with D = 2. Their bound [14, Proposition 17] matches (14) up to
the difference in the definition of the calibration function (they do not have the [ε > ηs0 ] multiplier
because they do not consider pairs of labels that fall in the same block).

5.2 Mean Average Precision (mAP) Loss for Ranking
The mAP loss, which is a popular way of measuring the quality of ranking, has attracted significant
attention from the consistency point of view [4, 5, 18]. In the mAP setting, the ground-truth labels
are binary vectors y ∈ Y = {0, 1}r that indicate the items relevant for the query (a subset of r
items-to-rank) and the prediction consists in producing a permutation of items σ ∈ Ŷ , Ŷ = Sr. The
mAP loss is based on averaging the precision at different levels of recall and is defined as follows:

LmAP(σ, y) := 1− 1
|y|

r∑
p:yp=1

1
σ(p)

σ(p)∑
q=1

yσ−1(q) = 1−
r∑
p=1

p∑
q=1

1
max(σ(p),σ(q))

ypyq
|y| , (15)

where σ(p) is the position of an item p in a permutation σ, σ−1 is the inverse permutation and
|y| :=

∑r
p=1 yp. The second identity provides a convenient form of writing the mAP loss [18]

showing that the loss matrix LmAP is of rank at most 1
2r(r + 1).8 The matrix FmAP ∈ Rr!×

1
2 r(r+1)

such that (FmAP)σ,pq := 1
max(σ(p),σ(q)) is a natural candidate to define the score subspace F to

get the consistent setting with the quadratic surrogate (11) (Eq. (15) implies that span(LmAP) =
span(FmAP)).

However, as noted in Section 6 of [18], although the matrix FmAP is convenient from the consistency
point of view (in the setup of [18]), it leads to the prediction problem maxσ∈Sr (FmAPθ)σ , which is a
quadratic assignment problem (QAP), and most QAPs are NP-hard.

To be able to predict efficiently, it would be beneficial to have the matrix F with r columns such
that sorting the r-dimensional θ would give the desired permutation. It appears that it is possible to
construct such a matrix by selecting a subset of columns of matrix FmAP. We define Fsort ∈ Rr!×r by
(Fsort)σ,p := 1

σ(p) . A solution of the prediction problem maxσ∈Sr (Fsortθ)σ is simply a permutation
that sorts the elements of θ ∈ Rr in the decreasing order (this statement follows from the fact that we
can always increase the score (Fsortθ)σ =

∑r
p=1

θp
σ(p) by swapping a pair of non-aligned items).

Most importantly for our study, the columns of the matrix Fsort are a subset of the columns of the
matrix FmAP, which indicates that learning with the convenient matrix Fsort might be sufficient for
the mAP loss. In what follows, we study the calibration functions for the loss matrix LmAP and score
matrices FmAP and Fsort. In Figure 1a-b, we plot the calibration functions for both FmAP and Fsort
and the lower bounds given by Theorem 3. All the curves were obtained for r = 5 (computing the
exact values of the calibration functions is exponential in r).

Next, we study the behavior of the lower bound (12) for large values of r. In Lemma 13 of
Appendix D, we show that the denominator of the bound (12) is not exponential in r (we have
2r!‖PFsort∆πω‖22 = O(r)). We also know that ‖PFsort∆πω‖22 ≤ ‖PFmAP∆πω‖22 (because Fsort is a
subspace of FmAP), which implies that the calibration function of the consistent setting grows not
faster than the one of the inconsistent setting. We can also numerically compute a lower bound on
the point η until which the calibration function is guaranteed to be zero (for this we simply pick two
permutations π, ω and a labeling y that delivers large values of

(
LT

mAP(Ik −PFsort)∆ij

)
y
≤ ξπ,ω(1)).

Figure 1c shows that the level of inconsistency η grows with the growth of r, which makes the method
less appealing for large-scale settings.

Finally, note that to run the ASGD algorithm for the quadratic surrogate (11), mAP loss and score
matrix Fsort, we need to efficiently compute FT

sortFsort and FT
sortLmAP(:,y). Lemmas 11 and 12 (see

Appendix D) provide linear in r time algorithms for doing this. The condition number of Fsort grows
as Θ(log r) keeping the sample complexity bound (10) well behaved.

8Ramaswamy & Agarwal [17, Proposition 21] showed that the rank of LmAP is a least 1
2
r(r + 1)− 2.
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Figure 1: Plot (a) shows the calibration function HΦquad,LmAP,FmAP(ε) for LmAP (red line) obtained
numerically. The solid blue line [14, Theorem 7] is its lower bound, LB, and the solid black line
is the worst case bound obtained for F = Ir! (which means not constructing an appropriate low-
dimension F). Difference between the blue and the black lines is exponential (proportional to r!).
The dashed blue line illustrates the inconsistent surrogate (note that it is zero for small ε > 0, but
then grows faster than the solid blue line – the consistent setting). Plot (b) shows the calibration
function HΦquad,LmAP,Fsort(ε) (red line) obtained numerically (this setting is level-η consistent for
η ≈ 0.08). The blue line (Theorem 3) is its lower bound for the optimal value of v and the green
line is the bound for v = 1 (easier to obtain). The black line shows the zero-valued trivial bound
from [14]. The dashed blue line shows HΦquad,LmAP,FmAP(ε) for the consistent surrogate to compare
the two settings. Note that in both plots (a) and (b) the solid blue lines are the lower bounds of
the corresponding calibration functions (red lines), but the dashed blue lines are not (shown for
comparison purposes). Plot (c) shows a lower bound on the point η where the exact calibration
function HΦquad,LmAP,Fsort(ε) stops being zero, indicating the level of consistency (Definition 2).

6 Discussion
Related works. Despite a large number of works studying consistency and calibration in the context
of machine learning, there have been relatively few attempts to obtain guarantees for inconsistent
surrogates. The most popular approach is to study consistency under so-called low noise conditions.
Such works show that under certain assumptions on the data generating distribution D (usually these
assumptions are on the conditional distribution of labels and are impossible to verify for real data)
the surrogate of interest becomes consistent, whereas being inconsistent for general D. Duchi et al.
[11] established such a result for the value-regularized linear surrogate for ranking (which resembles
the pairwise disagreement, PD, loss). Ramaswamy et al. [18] provided similar results for the mAP
and PD losses for ranking and their quadratic surrogate. Similarly to our conclusions, the mAP
surrogate of [18] is consistent with 1

2r(r + 1) parameters learned and only low-noise consistent
with r parameters learned. Long & Servedio [12] introduced a notion of realizable consistency
w.r.t. a function class (they considered linear predictors), which is consistency w.r.t. the function
class assuming the data distribution such that labels depend on features deterministically with this
dependency being in the correct function class. Ben-David et al. [3] worked in the agnostic setting for
binary classification (no assumptions on the underlying D) and provided guarantees on the error of
linear predictors when the margin was bounded by some constant (their work reduces to consistency
in the limit case, but is more general).

Conclusion. Differently from the previous approaches, we do not put constraints on the data
generating distribution, but instead study the connection between the surrogate and task losses by the
means of the calibration function (following [14]), which represents the worst-case scenario. For the
quadratic surrogate (11), we can bound the calibration function from below in such a way that the
bound is non-trivial in inconsistent settings (differently from [14]). Our bound quantifies the level
of inconsistency of a setting (defined by the used surrogate loss, task loss and parametrization of
the scores) and allows to analyze when learning with inconsistent surrogates can be beneficial. We
illustrate the behavior of our bound for two tasks (multi-class classification and ranking) and show
examples of conclusions that our approach can give.

Future work. It would be interesting to combine our quantitative analysis with the constraints on the
data distribution, which might give adaptive calibration functions (in analogy to adaptive convergence
rates in convex optimization: for example, SAGA [9] has a linear convergence rate for strongly convex
objectives and 1/t rate for non-strongly convex ones), and with the recent results of Pillaud-Vivien
et al. [16] showing that under some low-noise assumptions even slow convergence of the surrogate
objective can imply exponentially fast convergence of the task loss.
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Supplementary Material (Appendix)
Quantifying Learning Guarantees for Convex but

Inconsistent Surrogates

Outline
Section A: Proofs of the two technical lemmas used in Theorem 3.
Section B: Proof of Theorem 3, which is the main result of this paper.
Section C: Lower bound on the calibration function for the tree-structured loss.
Section D: Derivations for the mean average precision loss.

A Technical Lemmas

In this section, we prove two technical lemmas that are used in the proofs of the main theoretical
claims of the paper. These two lemmas are the generalizations of the two corresponding lemmas
of [14].

Lemma 7 computes the excess of the weighted surrogate risk δφ for the quadratic loss Φquad (11),
which is central to our analysis presented in Section 4. Lemma 7 generalizes Lemma 9 of [14] by
removing the assumption of span(L) ⊆ F . Analogously to Lemma 9 [14], the key property of this
result is that the excess δφ is jointly convex w.r.t. the parameters θ and conditional distribution q,
which allows further analysis.

Lemma 8 allows to cope with the combinatorial aspect of the calibration function computation.
In particular, when the excess of the weighted surrogate risk is convex, Lemma 8 reduces the
computation of the calibration function to a set of convex optimization problems, which often can be
solved analytically. Note that our Lemma 8 is slightly different from Lemma 10 of Osokin et al. [14]
to deal with the difference of the definition of the excess population risk (6).
Lemma 7. Consider the quadratic surrogate Φquad (11) defined for a task loss L. Let a subspace of
scores F ⊆ Rk be parametrized by θ ∈ Rr, i.e., f = Fθ ∈ F with F ∈ Rk×r. Then, the excess of
the weighted surrogate loss can be expressed as

δφquad(Fθ, q) := φquad(Fθ, q)− inf
θ′∈Rr

φquad(Fθ′, q) = 1
2k‖Fθ + PFLq‖22,

where PF := F (FTF )†FT is the orthogonal projection on the subspace F = span(F ).

Proof. The proof is almost identical to the proof of Lemma 9 of [14] generalizing it only in the last
equality. By the definition of the quadratic surrogate Φquad (11), we have

φ(f(θ), q) = 1
2k (θTFTFθ + 2θTFTLq) + r(q),

θ∗ := argminθ φ(f(θ), q) = −(FTF )†FTLq,

δφ(f(θ), q) = 1
2k (θTFTFθ + 2θTFTLq + qTLTF (FTF )†FTLq)

= 1
2k‖Fθ + PFLq‖22,

where r(q) denotes the quantity independent of the parameters θ. Note that if the assumption
span(L) ⊆ span(F ) holds we have PFL = L, which is the statement of Lemma 9 [14].

Lemma 8. For any task loss L, a surrogate loss Φ that is continuous and bounded from below, and a
set of scores F , the calibration function can be lower bounded as

HΦ,L,F (ε) ≥ min
i 6=j

Hij(ε), (16)

10



where Hij is defined via minimization of the same objective as (7), but w.r.t. a smaller domain:

Hij(ε) = inf
f ,q

δφ(f , q), (17)

s.t. `i(q) ≤ `j(q)− ε,
`i(q) ≤ `c(q), ∀c ∈ Ŷ,
fj ≥ fc, ∀c ∈ Ŷ,
f ∈ F ,
q ∈ ∆m.

Here `c(q) := (Lq)c is the expected loss if predicting label c. The index i represents a label with the
smallest expected loss while the index j represents a label with the largest score.

Proof. We use the notation Fj to define the set of score vectors f where the predictor pred(f) takes
the value j, i.e., Fj := {f ∈ F | pred(f) = j}. The union of the sets Fj , j ∈ Ŷ , equals the whole
set F . Sets Fj might not contain their boundaries because of the usage of a particular tie-breaking
strategy, thus we consider the sets F j := {f ∈ F | fj ≥ fc,∀c ∈ Ŷ}, which are the closures of Fj
if Fj are not empty. It also might happen that because of a particular tie-breaking strategy a set Fj is
empty, while the corresponding F j is not.

If f ∈ Fj , i.e. j = pred(f), then the feasible set of probability vectors q for which a label i is one of
the best possible predictions (i.e. δ`(f , q) = `j(q)− `i(q) ≥ ε) equals

∆m,i,j,ε := {q ∈ ∆m | `i(q) ≤ `c(q),∀c ∈ Ŷ; `j(q)− `i(q) ≥ ε},

because inff ′∈Rk `(f
′, q) = minc∈Ŷ `c(q).

The union of the sets {Fj ×∆m,i,j,ε}i,j∈Ŷ,i6=j exactly equals the feasibility set of the optimization
problem (7)-(8) (note that this is not true for the union of the sets {F j ×∆m,i,j,ε}i,j∈Ŷ,i6=j , which
can be strictly larger), thus we can rewrite the definition of the calibration function as follows:

HΦ,L,F (ε) = min
i,j∈Ŷ
i 6=j

inf
f∈Fj ,

q∈∆m,i,j,ε

δφ(f , q) ≥ min
i,j∈Ŷ
i6=j

inf
f∈Fj ,

q∈∆m,i,j,ε

δφ(f , q) = min
i 6=j

Hij(ε), (18)

which finishes the proof. Note that the inequality of (18) can be not tight only if some Fj is empty,
but the corresponding F j is not (due to continuity of the function δφ(f , q), which follows from
Lemma 27 of [23]).

B Proof of Theorem 3

Theorem 3 (Lower bound on the calibration function HΦquad,L,F (ε)). For any task loss L, its
quadratic surrogate Φquad, and a score subspace F , the calibration function is bounded from below:

HΦquad,L,F (ε) ≥ min
i 6=j

max
v≥0

(εv−ξij(v))2
+

2k‖PF∆ij‖22
, where ξij(v) :=

∥∥ LT(vIk − PF )∆ij

∥∥
∞, (19)

PF is the orthogonal projection on the subspace F , (x)2
+ := [x > 0]x2 is the truncation of the

parabola to its right branch and ∆ij := ei − ej ∈ Rk with ec ∈ Rk being the c-th column of the
identity matrix Ik. By convention, if both numerator and denominator of (19) equal zero the whole
bound equals zero. If only the denominator equals zero then the whole bound equals infinity (the
particular pair of i and j is effectively not considered).

Proof. First, let us assume that the score subspace F is defined as the column space of a matrix F ∈
Rk×r, i.e., f(θ) = Fθ. For technical convenience, we can also assume that F is of the full rank,
rank(F ) = r. Lemma 7 gives us the expression δφquad(Fθ, q) = 1

2k‖Fθ + PFLq‖22 for the excess
surrogate, which is jointly convex w.r.t. a conditional probability vector q and parameters θ.

The optimization problem (7)-(8) is non-convex because the constraint (8) on the excess risk depends
of the predictor function pred(f), see Eq. (1), containing the argmax operation. However, if we
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constrain the predictor to output label j, i.e., fj ≥ fc, ∀c, and the label delivering the smallest
possible expected loss to be i, i.e., (Lq)i ≤ (Lq)c, ∀c, the problem becomes convex because all
the constraints are linear and the objective is convex. Lemma 8 in Appendix A allows to bound the
calibration function with the minimal w.r.t. selected labels i and j optimal value of one of the convex
problems, i.e., HΦquad,L,F (ε) ≥ min

i6=j
Hij(ε), where Hij(ε) is defined as follows:

Hij(ε) = min
θ,q

1
2k‖Fθ + PFLq‖22, (20)

s.t. (Lq)i ≤ (Lq)j − ε,
(Lq)i ≤ (Lq)c, ∀c ∈ Ŷ,
(Fθ)j ≥ (Fθ)c, ∀c ∈ Ŷ,
q ∈ ∆m.

To obtain a lower bound, we relax (20) by removing some of the constraints and arrive at

kHij(ε) ≥ min
θ,q

1
2‖Fθ + PFLq‖22, (21)

s.t. ∆T
ijLq ≤ −ε, (22)

∆T
ijFθ ≤ 0, (23)

1T
mq = 1, (24)
qc ≥ 0, c = 1, . . . ,m. (25)

where ∆T
ijLq = (Lq)i − (Lq)j , ∆T

ijFθ = (Fθ)i − (Fθ)j , and ∆ij = ei − ej ∈ Rk with ec ∈ Rk
being a vector with 1 at position c and zeros elsewhere. Note that the relaxation defined by the
problem (21)-(25) is tighter than the one used in the proof of Theorem 7 [14, Eq. (25)-(27)], because
the latter omitted the simplex constraints (24)-(25).

We now explicitly build a dual problem to the QP (21)-(25). If we used the standard Lagrangian
approach we would have to invert the matrix defining the objective, which is difficult. Instead we
use the dual formulation of Dorn [10, Page 160], which allows to build a dual without inverting any
matrices.9 For the problem (21)-(25), this dual can be written as follows:

kHij(ε) ≥ max
θ,q,vF≥0,vL≥0,u

− 1
2‖Fθ + PFLq‖22 + vLε+ u, (26)

− vLLT∆ij + u1m − LTPFLq − LTFθ ≤ 0m, (27)

− vFFT∆ij − FTLq − FTFθ = 0r. (28)

From the equality (28), we can express FTLq = −vFFT∆ij − FTFθ and substitute it in the
objective (26) and inequality (27). Using the identities PF = F (FTF )−1FT and PFF = F , we
can exclude variables θ, q and get a simpler bound. Note that this step leads to a valid lower bound
because for any vF ≥ 0 there exist feasible values of variables q and θ (we can take simply q = 0,
θ = −vF (FTF )−1FT∆ij). The new bound depends on the three variables only:

kHij(ε) ≥ max
vF≥0,vL≥0,u

− 1
2v

2
F∆T

ijPF∆ij + vLε+ u, (29)

− vLLT∆ij + u1m + vFL
TPF∆ij ≤ 0m. (30)

9Here we show the dual of Dorn [10] for the exact combination of constraints we are using. In the dual
formulation, v and u are the extra variables corresponding to the inequality and equality constraints, respectively.

The primal problem

min
q≥0, θ

1
2

(
qT θT

)(Hqq Hqθ
HT
qθ Hθθ

)(
q
θ

)
,

s.t. Aqq +Aθθ ≥ b
Cqq + Cθθ = d

The dual problem

max
q θ, v≥0, u

− 1
2

(
qT θT

)(Hqq Hqθ
HT
qθ Hθθ

)(
q
θ

)
+ bTv + dTu,

s.t. AT
qv + CT

qu−Hqqq −Hqθθ ≤ 0

AT
θv + CT

θu−HT
qθq −Hθθθ = 0
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Figure 2: Left: An example of the tree-structured loss for the task of multi-class classification. Right:
Illustration of the proof of Lemma 9 (best viewed in color). The thin gray and brown lines show the
absolute values of the components of the vector LT

tree(vI − PFtree)∆ij as functions of v. The bold
blue and green lines correspond to the components at which the maximum value is achieved. The
bold red line shows the resulting norm ‖LT

tree(vI− PFtree)∆ij‖∞.

First, consider the case ∆T
ijPF∆ij = ‖PF∆ij‖22 6= 0. Given that vF ≥ 0 we can change the

variables by introducing v̂F := vF ‖PF∆ij‖22, v := vL/vF , û := u/vF after which we get

kHij(ε) ≥ 1
‖PF∆ij‖22

max
v̂F≥0,v̂L≥0,û

− 1
2 v̂

2
F + v̂F (vε+ û), (31)

− vLT∆ij + û1m + LTPF∆ij ≤ 0m. (32)

The global minimum of this function w.r.t. the variable v̂F can be found analytically: if vε+ û ≥ 0 it
equals 1

2‖PF∆ij‖22
(vε + û)2, and zero otherwise. The constraint (32) on û can be substituted with

û = −
∥∥ LT(vIk − PF )∆ij

∥∥
∞ =: −ξij(v), because we always consider both Hij(ε) and Hji(ε)

when bounding the calibration function.

Now, consider the boundary case of ∆T
ijPF∆ij = ‖PF∆ij‖22 = 0. The problem (29)-(30) be-

comes 1
2 maxv≥0 v(ε + minLT∆ij) implying that the objective equals 0 if ε + minLT∆ij ≤ 0.

Otherwise, the objective equals +∞, which corresponds to the in-feasibility of the constraint (22) of
the primal problem. Note that because we always consider both Hij(ε) and Hji(ε) when bounding
the calibration function we can substitute vmin(LT∆ij) with −ξij(v).

C Lower Bound on the Calibration Function for the Tree-Structured Loss

In this section, we compute the lower bound on the calibration function for the tree-structured loss
defined in Section 5.1.

Lemma 9. For a particular consistency depth s0 and for the corresponding subspace Ftree,s0 , the
projection operator PFtree,s0 at ∆ij is computed as

PFtree,s0∆ij =

{
0, i ∈ B(j),

1
|B(j)|

(∑
k∈B(i) ek −

∑
k∈B(j) ek

)
i /∈ B(j).

(33)

The vectors ξij(v) are computed as

ξij(v) =

{
vρ(i, j) i ∈ B(j),

max{|(v − 1)ρ(i, j)|, |v(ρ(i, j)− η)− (ρ(i, j)− ρ̄)|} i /∈ B(j),
(34)

for η := maxc∈B(i) ρ(i, c) and ρ̄ := 1
|B(j)|

∑
c∈B(i) ρ(i, c). Finally, the following lower bound of the

calibration function for the loss Ltree, its quadratic surrogate Φquad and the score subspace Ftree,s0
holds:

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > η] (ν−ρ̄)2

(ν−η2 )2

(ε−η2 )2
+

4b , (35)

where ν := minc/∈B(i) ρ(i, c) > η and b is the number of blocks when the tree is cut at the depth s0.
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Proof. For brevity, we shortcut the notation Ftree,s0 to F , Ftree,s0 to F and Ltree to L. First, we
compute the projection operator PFei and the lower-bound denominator 2k‖PF∆ij‖22. Recall, that
the subspace of allowed scores F defined as span {

∑
l∈B(j) el|j = 1, . . . , k} is of dimension b. The

vector ei is orthogonal to the b− 1 different vectors
∑
l∈B(j) el, j 6∈ B(i), thus the projection PFei

equals the projection of ei on the vector
∑
l∈B(i) el, which equals 1

s

∑
l∈B(i) el with s := B(i) = k

b .
The projection square norm ‖PF∆ij‖22 equals 2

s = 2b
k if i /∈ B(j) and 0 if i ∈ B(j).

Next, we compute ξij(v) defined as ‖LT(vI − PF )∆ij‖∞. By definition of the loss function, the
element of the loss matrix Lci = (Lei)c equals the tree distance from the leaf i to the leaf c. The
projection operator PFei equals the vector 1

s

∑
l∈B(i) el, therefore (LPFei)c is equal to the average

tree distance from the elements of the block B(i) to c: 1
s

∑
l∈B(i) Llc, which we denote by ρ̄(i, c).

Note that the average distance ρ̄(i, c) is equal for all the leaves c that belong to the same block B(c).
With this notation, we have the following equality:

‖LT(vI − PF )∆ij‖∞ = max
c∈Ŷ
|v(ρ(i, c)− ρ(j, c))− (ρ̄(i, c)− ρ̄(j, c))|. (36)

On the right-hand side, each component is the absolute value of a linear in v function, which equals
zero at v = ρ̄(i,c)−ρ̄(j,c)

ρ(i,c)−ρ(j,c) and the absolute value of the slope equals |ρ(i, c)− ρ(j, c)|. We consider
the cases when the labels i and j are in the same and different blocks separately.

If i and j are in the same block we have that ρ̄(i, c) = ρ̄(j, c) and, by the reverse triangle inequality,
|ρ(i, c) − ρ(j, c)| ≤ ρ(i, j) with the equality holding for c = i or c = j, which implies that
ξij(v) = ‖(LT(vI − PF )∆ij‖∞ = vρ(i, j) for i ∈ B(j).

Now, we study the second case where i and j are in different blocks. We first show that

|ρ̄(i, c1)− ρ̄(j, c1)| ≤ |ρ̄(i, c2)− ρ̄(j, c2)| if c1 /∈ B(i) ∪B(j) and c2 ∈ B(i) ∪B(j). (37)

This inequality is crucial for the proof and holds due to the restriction on tree weights and node
degrees.

In this paragraph, we will show that the left-hand side of the inequality (37) achieves its maximum
when c1 /∈ B(i) ∪B(j) is in the block closest to B(j) (or, due to the loss symmetries, in the block
closest to B(i)). If the lowest common ancestor of i and j is not an ancestor of c1 the difference
of the average distances equals zero due to equality of the paths from the lowest common ancestor
to i and j. Otherwise, there exists c1 /∈ B(i) ∪ B(j) such that the lowest common ancestor of i
and j is an ancestor of c1. Then, ρ̄(j, c1) is minimized and ρ̄(i, c1) is simultaneously maximized for
a component c1 closest to the block B(j). In this case, the left-hand side maximum value equals
ρ̄(i, j)−minc/∈B(j) ρ̄(j, c) because ρ̄(i, j) = ρ̄(i, c1).

The right-hand side of the inequality (37) is the same for any choice of c2 ∈ B(i) ∪ B(j) and is
equal to ρ̄(i, j)− ρ̄(j, c2) for some c2 ∈ B(j). Since the average distance within the block is smaller
than the average distance to any node outside of the block, i.e., minc/∈B(j) ρ̄(j, c) ≥ ρ̄(j, c2) for
c2 ∈ B(j), the inequality (37) holds. The same arguments also show that

|ρ(i, c1)− ρ(j, c1)| ≤ |ρ(i, c2)− ρ(j, c2)| if c1 /∈ B(i) ∪B(j) and c2 ∈ B(i) ∪B(j). (38)

Recall that in our case the infinity norm in (36) equals the component-wise maximum of the absolute
values of the linear functions of v. We will show below that for a small enough v the maximum is
achieved at the components that have the smallest slope |ρ(i, c)− ρ(j, c)| among the ones with the
largest offset |ρ̄(i, c)− ρ̄(j, c)| and from some point for larger values of v the maximum is achieved
at the components with the steepest slope (see Figure 2 right for the illustration).

Consider a leaf c2 ∈ B(i) farthest from the leaf i, i.e., c2 ∈ argmaxc∈B(i) ρ(i, c) (defines the green
line in Figure 2 right). The offset |ρ̄(i, c2)− ρ̄(j, c2)| is the same for all c2 ∈ B(i) and, by (37), is
larger than the offsets of the components c1 /∈ B(i) ∪ B(j). The slope |ρ(i, c2) − ρ(j, c2)| is the
smallest among the components in B(i) ∪B(j). The component c2 of LT(vI− PF )∆ij equals zero
for v∗c2 := ρ̄(j,c2)−ρ̄(i,c2)

ρ(j,c2)−ρ(i,c2) = ρ(i,j)−ρ̄(i,c2)
ρ(i,j)−ρ(i,c2) , where v∗c2 > 1 by definition of c2, i.e., because ρ(i, c2) is

the maximal distance, which is not smaller than the average distance ρ̄(i, c2). Finally, for v ≤ 1 this
component has higher values than the values of the components c /∈ B(i) ∪B(j). Indeed, the latter
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are equal to zero at v = 1 and have smaller offset at v = 0 (thin brown lines in Figure 2 right for
v < 1).

The component i of LT(vI−PF )∆ij has the steepest slope |ρ(i, j)− ρ(i, i)| = ρ(i, j) and the same
offset as in the previous paragraph |ρ̄(i, i)− ρ̄(i, j)| = |ρ̄(i, c2)− ρ̄(j, c2)| (defines the blue line in
Figure 2 right). The component equals zero for v∗i := ρ̄(j,i)−ρ̄(i,i)

ρ(j,i)−ρ(i,i) = ρ(j,i)−ρ̄(i,i)
ρ(j,i) , where v∗i ≤ 1. As

a result, the component i has higher values than the components c /∈ B(i) ∪B(j), since they have
smaller slope |ρ(i, c)− ρ(i, c)| (due to the inequality (38)) and equal zero for v = 1 (thin brown lines
in Figure 2 right for v > 1).

Since all the components c ∈ B(i) ∪ B(j) have the same offset, the maximum is achieved either
at c2 or at i:

‖LT(vI− PF )∆ij‖∞ = max{|vρ(i, j)− (ρ(i, j)− ρ̄)|, |v(ρ(i, j)− η)− (ρ(i, j)− ρ̄)|}, (39)

where η := ρ(i, c2) is the maximal distance within a block and ρ̄ := ρ̄(i, c2) is the average distance
within a block.

Next, we compute maxv≥0(εv−ξij(v))2
+. If i and j are in the same block we have (εv−ξij(v))2

+ =
(v(ε − ρ(i, j)))2

+, which equals zero for ε ≤ ρ(i, j) and +∞ otherwise. If i and j are in different
blocks we have the maximum value of (εv − ξij(v))2

+ equal to +∞ when ε > ρ(i, j). In the case
when ε ≤ ρ(i, j), the maximum is achieved at the intersection point vρ(i, j) − (ρ(i, j) − ρ̄) =

−v(ρ(i, j)− η) + (ρ(i, j)− ρ̄), v = 2(ρ(i,j)−ρ̄)
2ρ(i,j)−η . The maximum value is positive if and only if ε > η

2 ,
so for ε ≤ ρ(i, j) we obtain

max
v≥0

(εv − ξij(v))2
+ = (ρ(i,j)−ρ̄)2

(ρ(i,j)−η2 )2
(ε− η

2 )2
+ (40)

and +∞ otherwise.

Finally, to get the actual lower bound on the calibration function, we compute the minimum with
respect to all labels mini 6=j maxv≥0(εv− ξij(v))2

+. When i and j are in the same block, they deliver
minimum value 0 for ε ≤ ρ(i, j) and the maximum value of ρ(i, j) within a block equals η by
definition of η. For ε > η, the minimum is delivered by i and j in different blocks. For the average
distance within the block, we have ρ̄ ≥ η

2 for the trees with the number of children and the weights
of edges equal at the same depth level, therefore the outer minimum w.r.t. i and j is achieved at the
smallest distance between two blocks ν := mini/∈B(j) ρ(i, j) > η. As a result, we obtain the bound

HΦquad,Ltree,Ftree,s0
(ε) ≥ [ε > η] (ν−ρ̄)2

(ν−η2 )2

(ε−η2 )2
+

4b , (41)

which completes the proof.

In the next lemma, we compute the quantities η, ρ̄, ν using the tree weights { 1
2αs}

D−1
s=0 to finish the

computation of the bound (14) of the main paper.

Lemma 10. For a particular consistency depth s0 and the corresponding subspace Ftree,s0 , the
maximum distance within an arbitrary block ηs0 , the minimum distance between a leaf in a block and
a leaf outside the block νs0 and the average distance within a block ρ̄s0 can be computed as follows:

ηs0 = max
i∈B(j)

ρ(i, j) =

D−1∑
s=s0

αs (42)

νs0 = min
i/∈B(j)

ρ(i, j) =

D−1∑
s=s0−1

αs (43)

ρ̄s0 = 1
|B(j)|

∑
i∈B(j)

ρ(i, j) =

D−1∑
s=s0

αs
(
∏s
s′=s0

ds′ )−1∏s
s′=s0

ds′
. (44)

Proof. The expressions for ηs0 and νs0 immediately follow from the definition of the distance ρ(i, j).
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To obtain the expression for ρ̄s0 , we rewrite the distance ρ(i, j) between leaves i and j in the same
block B(j) as the weighted sum of indicators:

ρ(i, j) =

D−1∑
s=s0

αs[path from i to j contains an edge of depth s]. (45)

Then, we fix a leaf j and compute the number of paths from j to the leaves in B(j) that contain an
edge of depth s. Such paths go through the same node (the ancestor of j at the depth s) on the way
up from node j and go through one of

∏s
s′=s0

ds′ − 1 possible nodes at the depth s on the way down.
From each node of depth s, the path can further go to one of

∏D−1
s′=s+1 ds′ leaves on the way down.

Therefore, there are
(∏s

s′=s0
ds′ − 1

) (∏D−1
s′=s+1 ds′

)
paths that contain an edge of depth s.

Next, we rewrite
∑
i∈B(j) ρ(i, j) using the indicator notation and compute the sum:

∑
i∈B(j)

ρ(i, j) =

D−1∑
s=s0

∑
i∈B(j)

αs[path from j to i contains an edge of depth s] (46)

=

D−1∑
s=s0

αs

(
s∏

s′=s0

ds′ − 1

)(
D−1∏
s′=s+1

ds′

)
. (47)

Since the number of leaves in a block is
∏D−1
s′=s0

ds′ , we have

ρ̄s0 = 1
|B(j)|

∑
i∈B(j)

ρ(i, j) =

D−1∑
s=s0

αs
(
∏s
s′=s0

ds′ )−1∏s
s′=s0

ds′
, (48)

which finishes the proof.

Note that for tree-depth D = 2 the minimum ν1 equals α0 + α1 = 1. As a result, our calibration
function lower bound coincides with the exact calibration function from [14].

D Derivations for the Mean Average Precision Loss

In this section, we prove several statements about Fsort and LmAP, which are used in Section 5.2.
Lemma 11. The matrix FT

sortFsort has the following form:

(FT
sortFsort)pq =

{
(r − 1)!Hr,2, p = q,

(r − 2)!(H2
r,1 −Hr,2), p 6= q,

(49)

where Hn,m :=
∑n
k=1

1
km is the generalized harmonic number of order m of n. As a result, for

distinct permutations π and ω, the square norm of the projection is equal to

‖PFsort∆πω‖22 = 1
(r−2)!(rHr,2−H2

r,1)

r∑
p=1

(
1

π(p) −
1

ω(p)

)2

. (50)

The condition number κ(Fsort) equals
√
r−1Hr,1√
rHr,2−H2

r,1

.

Proof. By definition, (FT
sortFsort)pq =

∑
σ∈Sr

1
σ(p)σ(q) . We can rewrite the sum as the sum over the

permutations with fixed values σ(p) and σ(q) and then sum over the fixed values. Therefore, the sum
is equal to (r − 1)!Hr,2 when p = q and is equal to (r − 2)!(H2

r,1 −Hr,2) otherwise.

We now have FT
sortFsort = (r − 2)!(rHr,2 − H2

r,1)Ir + (r − 2)!(H2
r,1 − Hr,2)11T. The Sherman-

Woodbury formula for the matrix inversion gives us the sum of the scalar matrix 1
(r−2)!(rHr,2−Hr,1)Ir

and the constant matrix. Since 1TFT
sort∆πω =

∑r
p=1

(
1

π(p) −
1

ω(p)

)
= 0, the square norm of the

projection equals 1
(r−2)!(rHr,2−H2

r,1)
∆T
πωFsortF

T
sort∆πω = 1

(r−2)!(rHr,2−H2
r,1)

∑r
p=1

(
1

π(p) −
1

ω(p)

)2

.
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The condition number of Fsort equals the square root of the ratio between the maximal and minimal
eigenvalues of FT

sortFsort. Subtracting (r − 2)!(rHr,2 − H2
r,1)Ir from FT

sortFsort we get a matrix of
rank 1, which means that r− 1 eigenvalues of FT

sortFsort equal (r− 2)!(rHr,2−H2
r,1). The remaining

eigenvalue corresponds to the eigenvector 1 and equals (r − 1)!H2
r,1. With these eigenvalues we get

the condition number κ(Fsort) =
√
r−1Hr,1√
rHr,2−H2

r,1

.

Lemma 12. The matrix LT
mAPFsort has the following form:(

LT
mAPFsort

)
y,p

=

{
α(|y|), yp = 1,

β(|y|), yp = 0.
(51)

That is, for each ground-truth value y the matrix row components have only two values that depend
on the Hamming norm |y| :=

∑r
p=1 yp, specifically:

α(|y|) =Ar

(
1− |y|−1

r−2

(
1− r

|y|(r−1)

))
−Br

(
3
2
|y|−1
r−2

r−|y|
|y|

)
− Cr

(
r−|y|
|y|(r−1)

)
, (52)

β(|y|) =Ar

(
1− |y|−1

r−2

)
−Br

(
1− 3

2
|y|−1
r−2

)
. (53)

Here Ar = (r − 1)!Hr,1, Br = (r − 2)!(H2
r,1 − Hr,2), Cr = (r − 1)!Hr,2. As a result, for

permutations π and ω, we obtain(
LT

mAPPFsort∆πω

)
y

= γ(|y|) ((Fsorty)π − (Fsorty)ω) , (54)

where γ(p) = α(p)−β(p)

(r−2)!(rHr,2−H2
r,1)

.

Proof. For brevity, here we denote Fsort by F , Fsort by F and LmAP by L. Following the definitions
of L and F , we explicitly compute the components of LTF :

(
LTF

)
y,s

=
∑
σ∈Sr

(
1− 1

y

r∑
p=1

p∑
q=1

yσ−1(p)yσ−1(q)

p

)
1

σ(s) . (55)

There are exactly (r − 1)! permutations with one fixed element, so we have
∑
σ∈Sr

1
σ(s) = (r −

1)!
∑r
p=1

1
p = (r− 1)!Hr,1 =: Ar. To compute the remaining part of (55), we group the permutation

values σ(k) = t by each t = 1, . . . , r and move the sum over permutations inside the bracket:

− 1
y

∑
σ∈Sr

r∑
p=1

p∑
q=1

yσ−1(p)yσ−1(q)

pσ(s) = − 1
y

r∑
t=1

r∑
p=1

p∑
q=1

∑
σ∈Sr,σ(s)=t

yσ−1(p)yσ−1(q)

pt . (56)

Next, we compute the inner sum
∑
σ∈Sr,σ(s)=t yσ−1(p)yσ−1(q). We rewrite the sum as the sum over

inverse permutations: ∑
σ∈Sr,σ(s)=t

yσ−1(p)yσ−1(q) =
∑

π∈Sr,π(t)=s

yπ(p)yπ(q). (57)

The number of positive terms is different for the two cases of ys = 0 and ys = 1. For ys = 0, using
the Iverson brackets the sum can be rewritten as follows:∑

π∈Sr,π(t)=s

yπ(p)yπ(q) = [p 6= t] ([q < p & q 6= t]|y|(|y| − 1)(r − 3)! + [q = p]|y|(r − 2)!) .

(58)
We then sum the expression over q = 1, . . . , p:

p∑
q=1

[p 6= t] ([q < p, q 6= t]|y|(|y| − 1)(r − 3)! + [q = p]|y|(r − 2)!) = (59)

[p 6= t] ((p− 1− [t < p])|y|(|y| − 1)(r − 3)! + |y|(r − 2)!) . (60)
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Finally, we multiply the expression by −1
|y|pt and compute the sum over p and t:

− 1
|y|

r∑
t=1

r∑
p=1

1
tp [p 6= t] ((p− 1− [t < p])|y|(|y| − 1)(r − 3)! + |y|(r − 2)!) = (61)

−Ar |y|−1
r−2 + Br

(
1− 3

2
|y|−1
r−2

)
. (62)

Combining with
∑
σ∈Sr

1
σ(s) = Ar we obtain the desired expression for β(|y|).

Now, consider the case of ys = 1. Again, we rewrite the sum as∑
π∈Sr,π(t)=s

yπ(p)yπ(q) = [p = t] ([q < p](|y| − 1)(r − 2)! + [q = p](r − 1)!) (63)

+ [p 6= t] ([q < p & q = t](|y| − 1)(r − 2)!) (64)
+ [p 6= t] ([q < p & q 6= t](|y| − 1)(|y| − 2)(r − 3)!) (65)
+ [p 6= t] ([q = p](|y| − 1)(r − 2)!) , (66)

sum it over q,
p∑
q=1

∑
π∈Sr,π(t)=s

yπ(p)yπ(q) = [p = t] ((p− 1)(|y| − 1)(r − 2)! + (r − 1)!) (67)

+ [p 6= t] ([t < p](|y| − 1)(r − 2)!) (68)
+ [p 6= t] ((p− 1− [t < q])(|y| − 1)(|y| − 2)(r − 3)!) (69)
+ [p 6= t](|y| − 1)(r − 2)!, (70)

and obtain the desired expression by multiplying the latter by −1
|y|pt and summing over p and t. The

last step of the computation is completely analogous to the case yk = 0 and we omit it for brevity.

To compute
(
LTPF∆πω

)
y

, we note that for all permutations π and ω it holds that 1TFT∆πω = 0.
According to Lemma 11 and the Sherman-Woodbury formula, (FTF )−1 is the sum of the scalar
matrix Ir

(r−2)!(rHr,2−H2
r,1)

and the multiple of the rank one matrix 11T. After the multiplication

on FT∆πω , the second term vanishes, so we get (FTF )−1FT∆πω =

∑r
p=1

1
π(p)−

1
ω(p)

(r−2)!(rHr,2−H2
r,1)

. Finally, we

rewrite
(
LTF

)
y,:

as (α(|y|)− β(|y|))y + β(|y|)1. By the same argument, after the vector multipli-

cation, the second component vanishes and we get
(
LTF

(
FTF

)−1
F∆πω

)
y

= (Fy)π−(Fy)ω
(r−2)!(rHr,2−H2

r,1)
,

which finishes the proof.

Lemma 13. For the score set Fsort, we have 2(r−1)!‖PFsort∆πω‖22 = O(r). We also have that γ(|y|)
defined in Lemma 12 with |y| = λr, λ ∈ (0, 1) vanishes as r approaches infinity: γ(|y|) = O( log2 r

r ).
The condition number κ(Fsort) grows as Θ(log r).

Proof. To derive an asymptotic bound for ‖PFsort∆πω‖22, we elaborate on the sum of squares∑r
p=1

(
1

π(p) −
1

ω(p)

)2

= 2Hr,2 − 2
∑r
p=1

1
π(p)ω(p) ≤ 2Hr,2 and apply the asymptotic bounds

for the harmonic numbers H2
r,1 = Θ(log2 r), Hr,2 = Θ(1):

2(r − 1)!‖PFsort∆πω‖22 = O( (r)!
(r−2)!r ) = O(r) (71)

For the second part of the lemma, we rewrite α(|y|) and β(|y|):
α(|y|) = Ar

(
1− λ(1− 1

r )
)
−Br

3
2 (1− λ)− Cr

1−λ
r + o(1) (72)

β(|y|) = Ar (1− λ)−Br

(
1− 3

2λ
)

+ o(1) (73)

α(|y|)− β(|y|) = Ar
1
r −Br

1
2 − Cr

1−λ
r + o(1) (74)

By definition, we have Ar = Θ((r − 1)! log r), Br = Θ((r − 2)! log2 r), Cr = Θ((r − 1)!), which
gives us

γ(|y|) = α(|y|)−β(|y|)
(r−2)!(rHr,2−H2

r,1)
= O

(
(r−2)! log2 r

(r−1)!

)
= O( log2 r

r ), (75)

what was to be shown.

Finally, the asymptotic bound for the condition number of Fsort trivially follows from its exact
expression in Lemma 11 and the asymptotic bounds for the harmonic numbers.

18


	Introduction
	Notation and Preliminaries
	Calibration Functions and Consistency
	Bounds for the Quadratic Surrogate

	Calibration Function for Inconsistent Surrogates
	Bounds for Particular Losses
	Multi-Class Classification with the Tree-Structured Loss
	Mean Average Precision (mAP) Loss for Ranking

	Discussion
	Technical Lemmas
	Proof of Theorem 3
	Lower Bound on the Calibration Function for the Tree-Structured Loss
	Derivations for the Mean Average Precision Loss

