
Supplemental material for the paper:
Constrained Cross-Entropy Method for Safe

Reinforcement Learning

We repeat some notations and definitions here and restate Problem 1.

For ρ ∈ (0, 1), v ∈ V and any function X : Θ→ R, we denote the ρ-quantile of X for θ ∼ fv by
ξX(ρ,v). We also define δ : R× {≥,≤, >,<,=} × R→ {0, 1} as an indicator function such that
for ◦ ∈ {≥,≤, >,<,=}, δ(x ◦ y) = 1 if and only if x ◦ y holds. The surrogate objective function for
the unconstrained CE method is Eθ∼fv(·)[G(πθ)δ(G(πθ) ≥ ξG(1− ρ,v))]. In other words, a policy
πθ is considered as highly ranked if G(πθ) ≥ ξG(1− ρ,v). When there is a constraint H(π) ≤ d,
we define U : ΠΘ → R such that U(πθ) := G(πθ)δ(H(πθ) ≤ d) for any θ ∈ Θ and extend the
surrogate function as follows:

L(v; ρ) :=

{
Eθ∼fv(·)[G(πθ)δ(H(πθ) ≤ ξH(ρ,v))], if ξH(ρ,v) > d;

Eθ∼fv(·)[U(πθ)δ(U(πθ) ≥ ξU (1− ρ,v))], otherwise.
(1)

We can combine the two cases. Define S : ΠΘ × V × (0, 1)→ {0, 1} such that

S(πθ,v, ρ) :=δ(ξH(ρ,v) > d)δ(H(πθ) ≤ ξH(ρ,v))+

δ(ξH(ρ,v) ≤ d)δ(H(πθ) ≤ d)δ(U(πθ) ≥ ξU (1− ρ,v)),

then (1) can be rewritten as

L(v; ρ) = Eθ∼fv(·)[G(πθ)S(πθ,v, ρ)]. (2)

We first restate Problem 1 here.
Problem 1. Given a set Π = {πθ : θ ∈ Θ} of policies with parameter space Θ, an NEF FV =
{fv(·) ∈ D(Θ) : v ∈ V} of distributions over Θ, two functions G : Π → R+ and H : Π → R, a
constraint upper bound d and ρ ∈ (0, 1), compute v∗ ∈ V such that

v∗ = arg max
v∈V

L(v; ρ),

where L : V × (0, 1)→ R is defined in (2).
Remark 1. For technical reasons, we approximate the binary function δ with a Lipschitz continuous
piecewise linear function δ̃ε : R× {≥,≤, >,<,=} × R→ [0, 1] with ε > 0. For example, for any
(x, y) ∈ R2:

δ̃ε(x ≥ y) =


1, if x ≥ y
x−y
ε , if y > x ≥ y − ε

0, otherwise.

With slight abuse of notation, we use δ to represent δ̃ε for some small enough ε. Therefore δ(x ◦ y)
is Lipschitz continuous both in x and in y.

Proofs for Section 4.2

In this section we provide proofs for all theorems in our paper. The main idea behind the proof of
Theorem 4.1 is similar to that of Theorem 3.1 Hu et al. [2012], although the details are adapted to our
problem.
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The following lemma shows that Assumption 1 in Section 4.2 is sufficient to guarantee that m−1

exists and is continuously differentiable.
Lemma 1. Let FV be an NEF. Define m : Rdv → Rdv such that for each v ∈ V := {v ∈
Rdv : K(v) < ∞}, m(v) := Ev[Γ(θ)]. Then m−1 exists and is continuously differentiable over
{η : ∃ v ∈ int(V) s.t. η = m(v)}.

Proof.
∂

∂v
m(v) =

∂

∂v

∫
Θ

Γ(θ)fv(θ)dθ

=

∫
Θ

( ∂
∂v

fv(θ)
)
(Γ(θ))ᵀdθ

=

∫
Θ

(
fv(θ)(Γ(θ)−m(v))(Γ(θ))ᵀdθ

=

∫
Θ

fv(θ)Γ(θ)Γ(θ)ᵀdθ −m(v) ·
(∫

Θ

fv(θ)Γ(v)dv
)ᵀ

=Ev[(Γ(θ)−m(v))(Γ(θ)−m(v))ᵀ]

=Covv[Γ(θ)],

which is positive definite by Assumption 1. As both fv(·) and m(v) are continuous at v ∈ int(V),
m(v) is continuously differentiable with nonzero derivative at any v ∈ int(V). Therefore by inverse
mapping theorem, m−1 exists and is continuously differentiable over {η : ∃v ∈ int(V)s.t.η =
m(v)}.

The following lemma derives (5) in Section 4.2.
Lemma 2. Let FV be an NEF, v ∈ V and g ∈ D(Θ). Let v′ := arg minv∈V DKL(g̃v, fv). Assume
that v′ ∈ int(V), then

m(v′)−m(v) = −α
( ∂

∂v′′
DKL(g∗v, fv′′)

)∣∣∣
v′′=v

.

Proof. As FV is an NEF, log fv′′(θ) = (v′′)ᵀΓ(θ) − K(v′′) is concave in v′′ and thus
−
∫

Θ
g̃v(θ) log fv′′(θ)dθ is convex in v′′. Therefore v′ can be found by setting the gradient to

zero.

Let − ∂
∂v′′

∫
Θ
g̃v(θ) log fv′′(θ)dθ = 0. By Assumption (2d), Θ is bounded. By definition of NEF,

fv′′ is continuously differentiable. Then by dominated convergent theorem,

− ∂

∂v′′

∫
Θ

g̃v(θ) log fv′′(θ)dθ

=−
∫

Θ

g̃v(θ)
∂

∂v′′
log fv′′(θ)dθ

=−
∫

Θ

g̃v(θ)(Γ(θ)−m(v′′))dθ

=−
∫

Θ

(αg∗v(θ) + (1− α)fv(θ))Γ(θ)dθ +m(v′′)

=− α
(∫

Θ

g∗v(θ)Γ(θ)dθ −m(v)
)

+m(v′′)−m(v)

=− α
(
Eg∗v [Γ(θ)]−m(v)

)
+m(v′′)−m(v),

which equals to 0 when v′′ = v′.

Since G(πθ) ≥ 0 for all θ ∈ Θ, G(πθ) ≡ |G(πθ)|. Therefore

m(v′) =m(v) + α
(∫

Θ

g∗v(θ)Γ(θ)dθ −m(v)
)

=(1− α)m(v) + αEg∗v [Γ(θ)].
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On the other hand,

∂

∂v′
DKL(g∗v, fv′)

=
∂

∂v′
Eg∗v log

g∗v(θ)

fv′(θ)
|v′=v= − ∂

∂v′
Eg∗v log fv′(θ) |v′=v

=− ∂

∂v′
Eg∗v
(
v′

ᵀ
Γ(θ)−K(v′)

)
|v′=v

=− ∂

∂v′
(
v′

ᵀEg∗v [Γ(θ)]
)
|v′=v +

∂

∂v′
K(v′) |v′=v

=− Eg∗v [Γ(θ)] +m(v).

Therefore

m(v′)−m(v) = −α
( ∂

∂v′′
DKL(g∗v, fv′′)

)∣∣∣
v′′=v

.

Proof of Theorem 4.1

In practice we can only estimate expectations and quantiles using finite samples. Let Yl =
{θ1, . . . , θnl} be the set of samples in the lth iteration with sampling distribution fvl . We denote the
sample estimate of S(πθ,v, ρ) by Ŝ(πθ,v, ρ).

Consider the equation in the Step 11 of Algorithm 1:

η̂l+1 = αl

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
+ (1− αl)

(λl
nl

nl∑
i=1

Γ(θi) + (1− λl)η̂l
)
, (3)

where vl = m−1(η̂l).

We need to show the connection between (3) and the ODE (8) in Section 4.3. The first step is to
rewrite (3) to explicitly compare the sampling-based estimates to their true values. Or equivalently,

η̂l+1 − η̂l

=αl

(∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
− η̂l

)
+ (1− αl)λl

( 1

nl

nl∑
i=1

Γ(θi)− η̂l
)

=αl

(Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]

Evl [G(πθ)S(πθ,vl, ρ)]
− η̂l

)
+ αl

(∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]

Evl [G(πθ)S(πθ,vl, ρ)]

)
+ (1− αl)

(λl
nl

nl∑
i=1

Γ(θi)− λlη̂l
)
.

Define

Ll =
Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]

Evl [G(πθ)S(πθ,vl, ρ)]
− η̂l

bl =

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)∑nl

i=1G(πθi)Ŝ(πθi ,vl, ρ)
− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]

Evl [G(πθ)S(πθ,vl, ρ)]

wl =
1− αl
αl

(λl
nl

nl∑
i=1

Γ(θi)− λlη̂l
)
,

(4)

then (3) can be rewritten as

η̂l+1 − η̂l = αl

(
Ll + bl + wl

)
. (5)
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Note that the first term in Ll coincides with Ev∗l
[Γ(θ)] where g∗vl is defined in Equation (3) of

Section 4.2. It holds by (6) in Section 4.2 that

Ll = Ev∗l
[Γ(θ)]− η̂l

= Ev∗l
[Γ(θ)]−m(vl)

=
∂

∂v′
logEv′ [G(πθ)S(πθ,vl, ρ)]

∣∣∣
v′=vl

,

where the right hand side is the same as that of the ODE (7) in Section 4.2.

We aim to show the connection between {ηl}l≥0 (as defined in (3) or (5)) and the ODE (8) using the
following conclusion in stochastic approximation.

Theorem 1. (Theorem 1.2, Benaim [1996]) Let H : Rm → Rm be a continuous vectorfield with
unique integral curves. Let {wn}n≥0 be the solution to wn+1−wn = γn(H(wn) +un + bn), where
{γn}n≥0 is a decreasing gain sequence. Assume that

• {γn}n≥0 is bounded.

• limn→+∞ bn = 0.

• For each T > 0,

lim
n→∞

(
sup

k:0≤τk−τn≤T
||
k−1∑
i=n

γiui||
)

= 0.

Then the limit set of {wn}n≥0 is a connected set internally chain-recurrent for the flow induced by
H .

We first show that liml→∞ bl = 0 where bl is defined in (4).

Lemma 3. Given Assumption (2b), (2c), (2d), (2e), liml→∞ bl = 0, w.p.1.

In order to prove Lemma 3, we first show that the sample quantile is an unbiased estimate of the true
quantile, which is stated in Lemma 4. Although we show the result for H , similar results apply for U .

Lemma 4. Let ξ(ρ,vl) be the true (1 − ρ)-quantile of H(πθ) with θ ∼ fvl and ξ̂l be a sample
(1− ρ)-quantile acquired from nl i.i.d. samples. Given Assumption (2b), (2c), (2e), ξ̂l− ξ(ρ,vl)→ 0
as l→∞ w.p.1.

Proof. By Assumption (2e), H(π) ∈ H := [Hmin, Hmax] for all π ∈ Π. It can be verified that any
true (1− ρ)-quantile ξ(ρ,vl) with θ ∼ fvl(·) is an optimal solution of the following optimization
problem Homem-de Mello [2007]:

min
γ∈H

Jl(γ) := Evl [h(H(πθ), γ)]

s.t. h(H(πθ), γ) =

{
(1− ρ)(H(πθ)− γ), if H(πθ) ≥ γ,
ρ(γ −H(πθ)), if H(πθ) < γ.

Similarly the sample (1− ρ)-quantile ξ̂l can be computed by minimizing

Ĵl(γ) :=
1

nl

nl∑
i=1

h(H(πθi), γ),

where {θ1, . . . , θnl} are i.i.d. samples of distribution fvl .

We first show that Jl(γ) uniformly converges to Ĵl(γ) overH w.p.1, i.e. supγ∈H |Jl(γ)− Ĵl(γ)| → 0
as l→∞ w.p.1.

Let δ and r be two arbitrary scalars such that δ > 0 and r ≤ δ
3 max(ρ,1−ρ) . Let B(γ, r) := {γ′ ∈ H :

||γ − γ′|| ≤ r} be the r-neighborhood of γ ∈ H withinH. SinceH is compact, there exists a finite
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cover U = {h1, . . . , hk} ⊂ H ofH such thatH ⊆
⋃k
i=1B(hi, r). For each γ ∈ H, let h(γ) ∈ U be

the closest component inH. By definition, supγ∈H ||γ − h(γ)|| ≤ r. For any γ ∈ H,

|Jl(γ)− Jl(h(γ))|
= |Evl [h(H(πθ), γ)]− Evl [h(H(πθ), h(γ))] |

≤max(ρ, 1− ρ)||γ − h(γ)|| ≤ δ

3
.

|Ĵl(γ)− Ĵl(h(γ))|

=
1

nl
|
nl∑
i=1

(
h(H(πθi), γ)− h(H(πθi), h(γ))

)
|

≤max(ρ, 1− ρ)||γ − h(γ)|| ≤ δ

3
.

As H(·) ⊆ [Hmin, Hmax], we can bound the probability that |Jl(h(γ)) − Ĵl(h(γ))| > δ for any
δ ≥ 0 by Hoeffding’s inequality:

Pr
(
|Jl(h(γ))− Ĵl(h(γ))| ≥ δ

3

)
≤2 exp(− 2nlδ

2

9|Hmax −Hmin|2
).

As card(U) = k <∞, we can bound the probability that |Jl(hi)− Ĵl(hi)| < δ
3 holds for all hi ∈ U

with the union bound:

Pr
(
(max
hi∈U

|Jl(hi)− Ĵl(hi)|) ≥
δ

3

)
≤

k∑
i=1

Pr
(
|Jl(hi)− Ĵl(hi)| ≥

δ

3

)
≤2k exp(− 2nlδ

2

9|Hmax −Hmin|2
).

Therefore with probability at least (1− 2k exp(− 2nlδ
2

9|Hmax−Hmin|2 )),

|Jl(γ)− Ĵl(γ)| ≤ δ

3
+
δ

3
+
δ

3
= δ

holds uniformly for all γ ∈ H. In other words,

Pr(sup
γ∈H
|Jl(γ)− Ĵl(γ)| > δ)

≤2k exp(− 2nlδ
2

9|Hmax −Hmin|2
)).

Therefore
∞∑
l=1

Pr(sup
γ∈H
|Jl(γ)− Ĵl(γ)| > δ)

≤
∞∑
l=1

2k exp(− 2nlδ
2

9|Hmax −Hmin|2
)) <∞.

By Assumption (2b), the last inequality holds as nl = Θ(lβ) with β > 0. By Borel-Cantelli
Lemma, Pr(supγ∈H |Jl(γ) − Ĵl(γ)| > δ i.o.) = 0. As the above proof holds for any δ > 0,
supγ∈H |Jl(γ)− Ĵl(γ)| → 0 as l→∞ w.p.1. In other words, Ĵl(·) converges uniformly to Jl(·) as
l→∞ w.p.1. Note that this uniform convergence holds whenever Assumption (2b) and (2e) hold.

Then we prove that liml→+∞ |ξ̂l − ξ(ρ,vl)| = 0, w.p.1.
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Since supγ∈H |Jl(γ)− Ĵl(γ)| → 0 as l→∞ w.p.1, there exists some L(ε) > 0 for any ε > 0 such
that supγ∈H |Jl(γ) − Ĵl(γ)| < ε holds for any l > L(ε), w.p.1. Therefore with probability 1 and
l > L(ε),

Jl(ξ̂l)− ε < Ĵl(ξ̂l), Ĵl(ξ(ρ,vl)) < Jl(ξ(ρ,vl)) + ε.

By definition of ξ(ρ,vl) and ξ̂l, i.e., ξ(ρ,vl) minimizes Jl(·) and ξ̂l minimizes Ĵl(·), we get

Jl(ξ(ρ,vl)) ≤ Jl(ξ̂l), Ĵl(ξ̂l) ≤ Ĵl(ξ(ρ,vl)).

Combining the above two equalities, we get

Jl(ξ(ρ,vl))− ε ≤ Jl(ξ̂l)− ε < Ĵl(ξ̂l)

≤ Ĵl(ξ(ρ,vl)) < Jl(ξ(ρ,vl)) + ε.

Therefore with probability 1,

Jl(ξ(ρ,vl))− ε < Jl(ξ̂l) < Jl(ξ(ρ,vl)) + ε

for sufficiently large l. In other words, Jl(ξ̂l)− Jl(ξ(ρ,vl))→ 0 as l→ +∞ w.p.1.

By Assumption (2c), the (1 − ρ)-quantile of {H(πθ) : θ ∼ fv(·)} is unique for all v ∈ V .
Therefore Jl(γ) is minimized with a unique ξ(ρ,vl). As Jl(γ) is also continuous in γ, for εl > 0
that is small enough, there exists δl(εl) > 0 such that |Jl(γ) − Jl(ξ(ρ,vl))| < εl if and only if
||ξ(ρ,vl)− γ|| < δl(εl). Moreover, δl(εl)→ 0+ as εl → 0+ for each l.

Assume that ξ̂l− ξ(ρ,vl) does not converge to 0 w.p.1. Then ∃δ̄ > 0 such that Pr({|ξ̂l− ξ(ρ,vl)| >
δ̄ i.o.}) > 0. With positive probability, there exists a subsequence {lk}k≥0 ∈ N∞ such that
|η̂lk − ξ(ρ,vlk)| > δ̄ for each k ∈ N and limk→∞ Jlk(η̂lk) − Jlk(ξ(ρ,vlk)) = 0. We can further
select a subsequence {lkj}j≥0 ⊂ {lk}k≥0 such that |Jlkj (η̂lkj )− Jlkj (ξ(ρ,vlkj ))| < 1

2j and |η̂lkj −
ξ(ρ,vlkj )| > δ̄. Since each ξ(ρ,vlkj ) is unique, there exists j′ ∈ N such that δlk

j′
( 1

2j′
) < δ̄, which

contradicts our assumption that such a sequence {lk}k≥0 exists.

Therefore liml→+∞ |ξ̂l − ξ(ρ,vl)| → 0 w.p.1.

We can now give a proof to Lemma 3.

Proof. By Assumption (2e), infπ∈ΠG(π) > 0. By definition of (1 − ρ)-quantile, it holds for any
v ∈ V that

Ev[G(πθ)S(πθ,v, ρ)] ≥ inf
π∈Π

G(π)ρ > 0.

Similarly we can show
nl∑
i=1

G(πθi)S(πθi ,v, ρ) ≥ inf
π∈Π

G(π) > 0.

There are two types of approximation involved in bl: the first is to approximate ξH(ρ,vl) and ξU (ρ,vl)

by ξ̂H,l and ξ̂U,l. The second is to approximate the expectation (e.g. Evl [G(πθ)Ŝ(πθi ,vl, ρ)Γ(θ)])
with sample mean (e.g. 1

nl

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi)).

As we have shown that liml→∞ |ξH(ρ,vl) − ξ̂H,l| = 0 w.p.1 and liml→∞ |ξU (ρ,vl) − ξ̂U,l| = 0

w.p.1 by Lemma 4, we can also get liml→∞ |S(πθ,vl, ρ)− Ŝ(πθ,vl, ρ)| = 0 w.p.1. We only need to
consider the second part in this proof.

Γ(·) is bounded as it is a continuous function defined over a compact set (by Assumption (2d)).
By Assumption (2e), both G and H are bounded over Π. By Remark 1, δ(x ◦ y) is bounded
(by 1, to be specific) and Lipschitz continuous in both x and y. Let M > 0 be a constant
such that supθ∈Θ |G(πθ)Γ(θ)| ≤ M . Therefore liml→∞

∣∣∣ 1
nl

∑nl
i=1G(πθi)Ŝ(πθi ,vl, ρ)Γ(θi) −

1
nl

∑nl
i=1G(πθi)S(πθi ,vl, ρ)Γ(θi)

∣∣∣ = 0 w.p.1.
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As G(πθ), S(πθ,vl, ρ), Γ(θ) are all bounded for any θ and ρ, there exist finite a, b such that
a ≤ G(πθ)S(πθ,vl, ρ)Γ(θ) ≤ b for any θ ∈ Θ. By Hoeffding’s inequality, for any ε > 0

Pr(
∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣ ≥ ε)

≤2 exp
( −2nlε

2

(b− a)2

)
.

By Assumption (2b), nl = Θ(lβ) and β > 0. Therefore for any ε > 0,
∞∑
l=1

Pr(
∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣ ≥ ε)

≤
∞∑
l=1

2 exp
( −2nlε

2

(b− a)2

)
<∞.

Then by Borel-Cantelli Lemma,∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)

− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣→ 0, w.p.1.

Therefore

1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]→ 0

as l→∞ w.p.1.

We can show that 1
nl

∑nl
i=1G(πθi)S(πθi ,vl, ρ) − Evl [G(πθ)S(πθ,vl, ρ)] → 0 as l → ∞ w.p.1 in

exactly the same way as above; it is a special case when Γ(θ) = 1 for all θ ∈ Θ.

By continuous mapping theorem, the facts that with probability 1,

Evl [G(πθ)S(πθ,vl, ρ)] > 0, ∀v ∈ V,
nl∑
i=1

G(πθi)Ŝ(πθi ,vl, ρ) > 0,

lim
l→∞

∣∣∣ 1

nl

nl∑
i=1

G(πθi)S(πθi ,vl, ρ)Γ(θi)− Evl [G(πθ)S(πθ,vl, ρ)Γ(θ)]
∣∣∣ = 0,

lim
l→∞

1

nl

nl∑
i=1

G(πθi)Ŝ(πθi ,vl, ρ)− Evl [G(πθ)S(πθ,vl, ρ)] = 0,

guarantee that liml→∞ bl = 0, w.p.1.

Now we restate Theorem 4.1 and provide a proof.
Theorem 4.1. If Assumptions 1 - (2e) hold, the sequence {η̂l}l≥0 in Step 11 of Algorithm 1 converges
to a connected internally chain recurrent set of (8) as l→∞ with probability 1.

Proof. We connect the sequence {η̂l}l≥0 to the ODE (8) by applying Theorem 1. We need to verify

that all sufficient conditions in 1 hold properly. By (5), η̂l+1 − η̂l = αl

(
Ll + bl + wl

)
.

• By Assumption (2a), L̃(v; ρ) is continuous in v ∈ int(V). By Lemma 1, m−1(η) is
continuous in η. Therefore L̃(v; ρ)

∣∣∣
v=m−1(η)

is continuous in η. (8) has a unique integral

curve by Assumption (2a).
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• By Assumption (2b), {αl}l≥0 is bounded and decreasing.

• By Lemma 3, liml→∞ bl = 0 w.p.1 with Assumption (2b), (2c), (2d), (2e).

• Then we show that for any N ∈ N+, liml→∞

(
supk:n≤k≤n+N ||

∑k
i=n αiwi||

)
= 0.

Define Mn =
∑n
i=1 αiwi. Then Mn = Mn−1 + αnwn. As the set {θi}nli=1 is generated

i.i.d. with distribution fm−1(η̂l)(·) and η̂l = Em−1(η̂l)[Γ(θ)],

E[Mn|σ(M1, . . . ,Mn−1)]

=Mn−1 + En−1(η̂l)[
1

nl

nl∑
i=1

Γ(θi)|Ml−1]− η̂l = Mn−1

regardless of the value of η̂l. Therefore {Mn}n≥0 is a martingale. Note that wi is in-
dependent on wj if i 6= j, as all θ are independently generated. Therefore E[wᵀ

i wj ] =
E[wi]

ᵀE[wj ] = 0.

E[||Mn||2]

=E[Mᵀ
nMn] = E[

( n∑
i=1

αiwi
)ᵀ( n∑

i=1

αiwi
)
]

=

n∑
i=1

α2
iE[wᵀ

i wi] +

n∑
i=1

∑
j 6=i

αiαjE[wᵀ
i wj ]

=

n∑
i=1

α2
iE[wᵀ

i wi]

=

n∑
i=1

(1− αi)2λ2
i

ni
Covm−1(η̂i)[Γ(θ)].

As Γ(θ) is continuous and the domain Θ is compact, there exists 0 < C < ∞ such that
Covv[Γ(θ)] ≤ C for any v ∈ V . Therefore by Assumption (2b),

E[||Mn||2] ≤
n∑
i=1

C
(1− αi)2λ2

i

ni
= O(

n∑
l=1

1

lβ+2λ
).

By Assumption (2b), β + 2λ > 1 and thus limn→∞ E[||Mn||2] < ∞. As {||Mn||2}
increases monotonically, we know supn E[||Mn||2] = limn→∞ E[||Mn||2] < ∞. Then
by L2 martingale convergence theorem, there exists M∞ such that Mn →M∞ w.p.1 and
E[||M∞||2] <∞.

sup
{k:n≤k≤n+N}

||
k∑
i=n

αiwi||

= sup
{k:n≤k≤n+N}

||Mk −Mn−1|| ≤ 2 sup
k≥n
||Mk||.

Therefore

0 ≤ lim
n→∞

(
sup

{k:n≤k≤n+N}
||

k∑
i=n

αiwi||
)

≤ lim
n→∞

(
2 sup
k≥n−1

||Mk||
)

= 0

for any finite N > 0.

Since all conditions in Theorem 1 are satisfied, the limit set of sequence {η̂l}l≥0 is a internally chain

recurrent connected set for the flow induced by L̄(η) := Ev [G(πθ)S(πθ,v,ρ)Γ(θ)]
Ev [G(πθ)S(πθ,v,ρ)]

∣∣∣
v=m−1(η)

− η w.p.1.

By (6), L̄(η) =
(
∂
∂v logL(v; ρ)

)ᵀ∣∣∣
v=m−1(η)

, which coincides with the right hand side of (8).
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Proof of Theorem 4.2

Now we restate Theorem 4.2 and give a proof.

Theorem 4.2. Let ϕ : V → R be any function such that ∂
∂vϕ(v) = L̃(v; ρ). Any equilibrium

v̄∗ ∈ int(V) of (9) that is an isolated local maximum of ϕ(v) is locally asympototically stable.

Proof. The Lyapunov function we use is similar to that in [Joseph and Bhatnagar, 2016]:

V (v) :=ϕ(v̄∗)− ϕ(v),

where v̄∗ is an isolated local maximum of ϕ(v) and v is in some neighborhood of v̄∗ such that
ϕ(v̄∗) ≥ ϕ(v), i.e. V (v) ≥ 0. By previous analysis, logϕ(v) and V (v) are continuous in v. For
the derivative:

dV (v)

dt
= −∂v

∂t

∂ϕ(v)

∂v
= −

(
L̃(v; ρ)

)ᵀ
(Cov[Γ(θ)])−1L̃(v; ρ).

As Covv[Γ(θ)] is positive definite for v ∈ int(V),
(
Covv[Γ(θ)]

)−1
is also positive definite. There-

fore ∂V (v)
∂t ≤ 0 in a neighborhood of v∗ and ∂V (v)

∂t = 0 if and only if L̃(v; ρ) = 0, which guarantees
that v is a stationary point of (9). As v̄∗ is an isolated local maximum of ϕ(v), it is the only stationary
point in some neighborhood of v̄∗. Therefore ∂V (v)

∂v = 0 if and only if v = v̄∗ (if v is in the
neighborhood of v∗) and v̄∗ is locally asymptotically stable.

In order to state the result we need to first introduce some definitions. By Assumption (2a), Z :=(
L̃(v; ρ)

)ᵀ
(Covv[Γ(θ)])−1 is a continuous vector field defined on V ⊂ Rdv with unique integral

curves. The flow of Z is the family of mappings {Φt(·)}t∈R defined on V by ∂Φt(v)
∂t = Z(Φt(v))

such that Φ0(v) ≡ v and Φt(Φs(v)) ≡ Φt+s(v) for any v ∈ V , t, s ∈ R. v ∈ V is an equilibrium
if Φt(v) = v for all t. A set V ′ ⊂ V is positively invariant under the flow Φ if for all t ≥ 0,
Φt(V ′) = V ′.

Proof of Theorem 4.3

Theorem 4.3. If all equilibria of (9) are isolated, the sequence {vl}l≥0 derived by Algorithm 1
converges toward an equilibrium of (9) as l→∞ with probability 1.

Proof. Let ϕ be defined in the same way as in Theorem 4.2. We first show that ϕ is bounded over
V . By definition of L̃(v; ρ) in (6) of Section 4.2, L̃(v; ρ) = Ev [G(πθ)S(πθ,v,ρ)Γ(θ)]

L(v;ρ) −m(v). Since G
has a positive lower bound (by Assumption (2e)) and Ev[S(πθ,v

′, ρ)] ≥ ρ for any v ∈ V , L(v; ρ) ≥
infπ∈ΠG(π)ρ > 0. Since Γ is continuous over Θ, Θ and V are compact (by Assumption (2d)),
Γ(θ) and m(v) = Ev[Γ(θ)] are both bounded. Since G is also bounded (by Assumption (2e)),
Ev[G(πθ)S(πθ,v, ρ)Γ(θ)] is also bounded over V for any ρ ∈ (0, 1). Therefore ϕ is also bounded
over V .

Let Φ be a flow induced by (9) in Section 4.3 and Λ be the set of all equilibria of (9). By definition,
Λ is positively invariant under Φ. Define V : V → R≥0 as V (v) := supv′∈V ϕ(v′) − ϕ(v).
supv′∈V ϕ(v′) < ∞ as ϕ is shown to be bounded in V . By definition of Λ and the proof of
Theorem 4.2, the mapping t 7→ V (Φt(v)) is constant-valued for v ∈ Λ and strictly decreasing for
v ∈ int(V)\Λ. Since we also assume that (9) has only isolated equilibria and v is always in the
interior of V (Assumption (2f)), {vl}l≥0 converges to an equilibrium of (9) as l→∞ with probability
1 by Corollary 3.3 in [Benaim, 1996].

Experiment Details

Environment map and the local sensing model The robot’s state space is S = {(x, y, ζ)
∣∣xmin ≤

x ≤ xmax, ymin ≤ y ≤ ymax,−π ≤ ζ < π}, which contains the agent’s position and orientation
in the global coordinate; the input space is 2-dimensional: A = {(v, ω)

∣∣|v| ≤ vmax, |ω| ≤ ωmax},
which are linear and angular speed respectively. We assume that the robot can control v and ω directly.
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(a) (b)

Figure 1: (1a) Map of the car navigation example. There are one obstacle region (big grey rectangle),
one goal region (small blue rectangle) and 10 randomly selected initial states (red circles pointing
to the forward direction). Dotted lines are added to show x and y axes. (1b) Illustrations of local
features in the agent’s local coordinate at one of the initial states, with ns = 5. Obstacle nodes, goal
nodes and free nodes are labeled by black crosses, yellow plus signs and green triangles respectively.
The goal direction (shown as the black arrow) is also included in local features.

There is a goal region G and a non-overlapping bad region B such that G,B ⊂ [xmin, xmax] ×
[ymin, ymax]. The map is shown in Figure 1a.

Since the robot has only local sensors, we use the following local sensing model instead of assuming
the knowledge of the true state variables x, y and ζ. For a given positive integer parameter ns, we
design a radial grid as ns circles in the agent’s local coordinate. The difference between the diameters
of adjacent circles is vmax∆t, where ∆t is the sampling time. There are d2π/ωmaxe uniformly
distributed nodes on each circle and the robot can measure the label for each node. A node is labeled
1 if it belongs to G; -1 if it belongs to B and 0 otherwise. We also assume that the robot can sense
the direction of the center of G in its local coordinate without knowing the distance, so there are a
total of (2 + nsd2π/ωmaxe) local features in total. The local features are illustrated in Figure 1b.
In our experiment, ωmax = π

6 , ns = 5, so there are 62 local features as the inputs to the policy
network. Note that the local sensor outputs are all discrete and only 2 features are continuous (the goal
direction in the agent’s local coordinate), so the problem is much simpler than a general continuous
RL problem with the same number of continuous inputs.

Algorithm parameters In all experiments, we set FV as a class of multivariate Gaussian distri-
butions with diagonal covariance matrices. The parameter space Θ contains all the parameters of
the policy network. The policy space ΠΘ is a set of deterministic stationary policies. Therefore the
CCE trains a single neural network which takes states as inputs and output a single action. The two
baseline algorithms TRPO Schulman et al. [2015] and CPO Achiam et al. [2017] take Gaussian
policies, which takes states as inputs and outputs the mean and variance of the action distribution.

The policy networks for all experiments have two hidden layers of sizes (30, 30). The activation
function for hidden layers is ReLU and that for the output layer is tanh. The length of sample
trajectories are all 30. The same set of parameters are applied for all experiments. For CCE, we
sample 40 different policies in each iteration. Each sampled policy is evaluated using 10 sample
trajectories. The hyperparameter for selecting elite examples is ρ = 0.2. For both CPO and TRPO,
the batch size is 6000, discount factor is 0.999, and the step size for trust region is 0.01. All the other
parameters are used as default in the source code in rllab Duan et al. [2016].

The axes in the learning curve (Figure 1 in the paper) The x-axes in Figure 1 show the total
number of sample trajectories for CCE or the total number of equivalent sample trajectories for
TRPO and CPO. Assume that in each iteration of the CCE algorithm, we sample 40 policies (i.e.,
nl = 40) and simulate 10 sample trajectories for each policy (Step 5 of Algorithm 1), then the total
number of sample trajectories is 400 per iteration. If trajectory length is 30 and we sample 6000 new
transitions in each iteration for CPO and TRPO, the number of equivalent sample trajectories is 200
per iteration. As we set the same trajectory length for all methods, the numbers of sample trajectories
for all methods are comparable with each other.

The y-axes in Figure 1 show the average objective and constraint values of the learned policy. For
CCE, the average values are computed with all rollout trajectories that are simulated with all the
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policies sampled at the current iteration. Since we take the same number of rollout trajectories for
each sample policy, the average value can be interpreted as the average performance of all sample
policies at the current iteration. For CPO and TRPO, we simulate the current policy from exactly the
same set of initial states and compute the average objective and constraint values for all trajectories.
As a result, the comparison of different methods in Figure 1 is fair.
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