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Abstract

We provide convergence rates for Krylov subspace solutions to the trust-region
and cubic-regularized (nonconvex) quadratic problems. Such solutions may be
efficiently computed by the Lanczos method and have long been used in practice.
We prove error bounds of the form 1/ t2 and et/ ‘/E, where k is a condition
number for the problem, and ¢ is the Krylov subspace order (number of Lanczos
iterations). We also provide lower bounds showing that our analysis is sharp.

1 Introduction

Consider the potentially nonconvex quadratic function
fap(z) = %xTAx +bvz,
where A € R?*4 and b € RY. We wish to solve regularized minimization problems of the form
min&mize fap(z) subject to|z|| < R and Ininigﬂmize fap(z)+ g lz|? (D)

where R and p > 0 are regularization parameters. These problems arise primarily in the fam-
ily of trust-region and cubic-regularized Newton methods for general nonlinear optimization prob-
lems [11, 29, 18, 9], which optimize a smooth function g by sequentially minimizing local models
of the form

1
9(x; + A) = g(z;) + Vg(z:)" A+ §ATV29(%’)A = 9(:) + fo2g(a:),vg(a:) (D),

where x; is the current iterate and A € R? is the search direction. Such models tend to be unreliable
for large ||Al|, particularly when V2g(z;) % 0. Trust-region and cubic regularization methods
address this by constraining and regularizing the direction A, respectively.

Both classes of methods and their associated subproblems are the subject of substantial ongoing re-
search [19, 21, 5, 1, 25]. In the machine learning community, there is growing interest in using these
methods for minimizing (often nonconvex) training losses, handling the large finite-sum structure of
learning problems by means of sub-sampling [32, 23, 3, 38, 36].

The problems (1) are challenging to solve in high-dimensional settings, where direct decomposition
(or even storage) of the matrix A is infeasible. In some scenarios, however, computing matrix-vector
products v — Auw is feasible. Such is the case when A is the Hessian of a neural network, where d
may be in the millions and A is dense, and yet we can compute Hessian-vector products efficiently
on batches of training data [31, 33].

In this paper we consider a scalable approach for approximately solving (1), which consists of
minimizing the objective in the Krylov subspace of order t,

K¢ (A, b) == span{b, Ab, ..., A" 1b}. 2)
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This requires only ¢ matrix-vector products, and the Lanczos method allows one to efficiently find
the solution to problems (1) over K;(A,b) (see, e.g. [17, 9, Sec. 2]). Krylov subspace methods
are familiar in numerous large-scale numerical problems, including conjugate gradient methods,
eigenvector problems, or solving linear systems [20, 26, 35, 14].

It is well-known that, with exact arithmetic, the order d subspace K4(A,b) generically contains
the global solutions to (1). However, until recently the literature contained no guarantees on the
rate at which the suboptimality of the solution approaches zero as the subspace dimension ¢ grows.
This is in contrast to the two predominant Krylov subspace method use-cases—convex quadratic
optimization [14, 27, 28] and eigenvector finding [24]—where such rates of convergence have been
known for decades. Zhang et al. [39] make substantial progress on this gap, establishing bounds
implying a linear rate of convergence for the trust-region variant of problem (1).

In this work we complete the picture, proving that the optimality gap of the order ¢ Krylov subspace
solution to either of the problems (1) is bounded by both e=%/v* and t =2 log?(||b||/|uL;,b|). Here
K 1s a condition number for the problem that naturally generalizes the classical condition number
of the matrix A, and wu,;, is an eigenvector of A corresponding to its smallest eigenvalue. Using
randomization, we may replace |ul, b| with a term proportional to 1/ V/d, circumventing the well-
known “hard case” of the problem (1) (see Section 2.5). Our analysis both leverages and unifies the
known results for convex quadratic and eigenvector problems, which constitute special cases of (1).

Related work Zhang et al. [39] show that the error of certain polynomial approximation problems
bounds the suboptimality of Krylov subspace solutions to the trust region-variant of the problems (1),
implying convergence at a rate exponential in —t/+/k. Based on these bounds, the authors propose
novel stopping criteria for subproblem solutions in the trust-region optimization method, showing
good empirical results. However, the bounds of [39] become weak for large x and vacuous in the
hard case where k = oc.

Prior works develop algorithms for solving (1) with convergence guarantees that hold in the hard
case. Hazan and Koren [19], Ho-Nguyen and Kilin¢-Karzan [21], and Agarwal et al. [1] propose
algorithms that obtain error roughly ¢~2 after computing ¢ matrix-vector products. The different
algorithms these papers propose all essentially reduce the problems (1) to a sequence of eigenvector
and convex quadratic problems to which standard algorithms apply. In previous work [5], we analyze
gradient descent—a direct, local method—for the cubic-regularized problem. There, we show a rate
of convergence roughly ¢!, reflecting the well-known complexity gap between gradient descent
(respectively, the power method) and conjugate gradient (respectively, Lanczos) methods [35, 14].

Our development differs from this prior work in the following ways.

1. We analyze a practical approach, implemented in efficient optimization libraries [16, 25], with
essentially no tuning parameters. Previous algorithms [19, 21, 1] are convenient for theoretical
analysis but less conducive to efficient implementation; each has several parameters that require
tuning, and we are unaware of numerical experiments with any of the approaches.

2. We provide both linear (e~*/v#) and sublinear (t~2) convergence guarantees. In contrast, the
papers [19, 21, 1] provide only a sublinear rate; Zhang et al. [39] provide only the linear rate.

3. Our analysis applies to both the trust-region and cubic regularization variants in (1), while [19,
21, 39] consider only the trust-region problem, and [39, 5] consider only cubic regularization.

4. We provide lower bounds—for adversarially constructed problem instances—showing our con-
vergence guarantees are tight to within numerical constants. By a resisting oracle argument [27],
these bounds apply to any deterministic algorithm that accesses A via matrix-vector products.

5. Our arguments are simple and transparent, and we leverage established results on convex opti-
mization and the eigenvector problem to give short proofs of our main results.

Paper organization In Section 2 we state and prove our convergence rate guarantees for the trust-
region problem. Then, in Section 3 we quickly transfer those results to the cubic-regularized problem
by showing that it always has a smaller optimality gap. Section 4 gives our lower bounds, stated for
cubic regularization but immediately applicable to the trust-region problem by the same optimality
gap bound. Finally, in Section 5 we illustrate our analysis with some numerical experiments.



Notation For a symmetric matrix A € R%*? and vector b we let fa,(z) = 27 Az + b7z,
We let A\pin(A) and Apax(A) denote the minimum and maximum eigenvalues of A, and let
Umin (A), Umax (A) denote their corresponding (unit) eigenvectors, dropping the argument A when
clear from context. For integer ¢ > 1 we let Py == {co + c1z+ - + ;12" | ¢; € R} be the
polynomials of degree at most ¢ —1, so that the Krylov subspace (2) is K:(A,b) = {p(A)b | p € P:}.
We use ||-|| to denote Euclidean norm on R¢ and £y-operator norm on R%*?. Finally, we denote
(2)+ = max{z,0} and (z)_ = min{z, 0}.

2 The trust-region problem
Fixing a symmetric matrix A € R?*, vector b € R? and trust-region radius R > 0, we let
1
s € argmin  fau(r) = ol Az + 0T
a€R, [lo|| <R 2

denote a solution (global minimizer) of the trust region problem. Letting Apin, Amax denote the ex-
tremal eigenvalues of A, st admits the following characterization [11, Ch. 7]: st solves problem (1)
if and only if there exists )\ such that

(A+XNI)sY = =b, A > (—Amin)+, and A (R—||s¥]]) =0. 3)

The optimal Lagrange multiplier \, always exists and is unique, and if A, > — A, the solution s*
is unique and satisfies s = —(A + A\, 1)~ !b. Lettlng Uiy denote the eigenvector of A correspond-
ing to Amin, the characterization (3) shows that v b # 0 implies A, > —Amin.

Now, consider the Krylov subspace solutions, and for ¢ > 0, let

min

1
st e argmin fap(x) = 2T Az + b7z
2€Ki(AD), |2l <R 2

denote a minimizer of the trust-region problem in the Krylov subspace of order ¢ . Gould et al. [17]
show how to compute the Krylov subspace solution si' in time dominated by the cost of computing
t matrix-vector products using the Lanczos method (see also Section A of the supplement).

2.1 Main result

With the notation established above, our main result follows.
Theorem 1. For everyt > 0,

FAs(S) = La0(59) < 36 [£40(0) = Fa(st ﬂ<»q>{ 4 i“ﬂ”ﬁ%it}7 @

I A 4|jb|)?

{Amin <0} 2

4 1 5
T %<ﬂm ®

Theorem 1 characterizes two convergence regimes: linear (4) and sublinear (5). Linear convergence
occurs when t 2 Vk, where k = /\"‘L“'/’\\* > 1 is the condition number for the problem. There,

min

and

(Amax — Amin) |87

(=17

fap(si) — fap(sd) <

the error decays exponentially and falls beneath ¢ in roughly /x log * - Lanczos iteration. Sublinear

convergence occurs when ¢t < v/k, and there the error decays polynomially and falls beneath € in
roughly ﬁ iterations. For worst-case problem instances this characterization is tight to constant

factors, as we show in Section 4.

The guarantees of Theorem 1 closely resemble the well-known guarantees for the conjugate gradient
method [35], including them as the special case R = oo and A, > 0. For convex problems, the
radius constraint ||z|| < R always improves the conditioning of the problem, as /\"‘a" > %

the smaller R is, the better conditioned the problem becomes. For non-convex problems thems]1n1b1m-

ear rate features an additional logarithmic term that captures the role of the eigenvector uy,i,. The



first rate (4) is similar to those of Zhang et al. [39, Thm. 4.11], though with somewhat more explicit
dependence on .

In the “hard case,” which corresponds to ugﬁnb = 0 and A\pin + Ay = 0 (cf. [11, Ch. 7]), both the
bounds in Theorem 1 become vacuous, and indeed st may not converge to the global minimizer in
this case. However, as the bound (5) depends only logarithmically on ul; b, it remains valid even
extremely close to the hard case. In Section 2.5 we describe two simple randomization techniques
with convergence guarantees that are valid in the hard case as well.

2.2 Proof sketch

Our analysis reposes on two elementary observations. First, we note that Krylov subspaces are
invariant to shifts by scalar matrices, i.e. K;(A,b) = Ki(Ax,b) for any A, b,t where A € R, and

A)\ = A —+ )\I
Second, we observe that for every point z and A € R
A 2
Fap(@) = fap(si) = fayo(@) = fayo(sd) + S([|s¥]]" - [El) (6)

Our strategy then is to choose A such that Ay > 0, and then use known results to find y; €
K (Ax, b) = Ky (A, b) that rapidly reduces the “convex error” term fa, »(y:) — fa, s(s¥). We then

adjust y; to obtain a feasible point z; such that the “norm error” term %(HSHHQ — [|&e|)?) is small.

To establish linear convergence, we take A = ), and adjust the norm of y; by taking x; = (1 — )y,
for some small « that guarantees x; is feasible and that the “norm error” term is small. To establish
sublinear convergence we set A = — Ay, and take x; = y; + « - 2y, where z; is an approximation
for umin within (A, b), and « is chosen to make ||a¢|| = ||s¥||. This means the “norm error”
vanishes, while the “convex error” cannot increase too much, as A_»_. 2t ~ A_x_,, Umin = 0.

Our approach for proving the sublinear rate of convergence is inspired by Ho-Nguyen and Kiling-
Karzan [21], who also rely on Nesterov’s method in conjunction with Lanczos-based eigenvector
approximation. The analysis in [21] uses an algorithmic reduction, proposing to apply the Lanc-
zos method (with a random vector instead of b) to approximate i, and Ay, then run Nesterov’s
method on an approximate version of the “convex error” term, and then use the approximated eigen-
vector to adjust the norm of the result. We instead argue that all the ingredients for this reduction
already exist in the Krylov subspace K; (A, b), obviating the need for explicit eigenvector estimation
or actual application of accelerated gradient descent.

2.3 Building blocks

Our proof uses the following classical results.

Lemma 1 (Approximate matrix inverse). Let «, 8 satisfy 0 < « < 3, and let k = [/c. For
any t > 1 there exists a polynomial p of degree at most t — 1, such that for every M satisfying
al <M < pI,

1T = Mp(M)|| < 2¢72/VF,

Lemma 2 (Convex trust-region problem). Lett > 1, M > 0,v € R and r > 0, and let fM,U(m) =
1o Ma + v"x. There exists x, € Ky(M,v) such that

. Imax (M) - 12
< - FmaxA )T
[l < v and fro(2) min fro() < t+ 1)

Lemma 3 (Finding eigenvectors, [24, Theorem 4.2]). Let M > 0 be such that ul'Mu=0 for some
unit vector u € R?, and let v € R%. For every t > 1 there exists z; € Ky(M,v) such that

2
_ T [M] > [[o]
||Zt|| =1 and Zy MZt S wlog -2+ 4(UTU)2 .

While these lemmas are standard, their explicit forms are useful, and we prove them in Section C.1
in the supplement. Lemmas 1 and 3 are consequences of uniform polynomial approximation results
(cf. supplement, Sec. B). To prove Lemma 2 we invoke Tseng’s results on a variant of Nesterov’s
accelerated gradient method [37], arguing that its iterates lie in the Krylov subspace.



2.4 Proof of Theorem 1

Linear convergence Recalling the notation Ay, = A+, I, lety, = —p(Ax, )b =p(Ax,) AN, S5,
for the p € P, which Lemma 1 guarantees to satisfy ||[p(Ax,)Ax, — I|| < 2e72/VEAN) et

[lgell = 1Is¥1l

max{||s¥[l, [y}’
so that we are guaranteed ||z|| < ||st'|| for any value of ||y;||. Moreover
tl’H

] = el = sl Mlye = s¥ll_ I@(AND AN, = DT _ o o1y /mtan,)

max{[|s¥ lwell} = lls¥ll 1

¢ = (1 — a)yy, where a =

where the last transition used |[p(Ax, )Ax, — I|| < 2e™2/VH(Ax0),

Since b = — Ay, s, wehave fa, (x) = fa, »(s¥) + 2||Al/2( — 5'N)||2. The equality (6) with
A=A, and ||z¢|| < ||s]| therefore implies

2
Faptee) = Fap(sd) < 5 || A2 e = S|+ Al (]| = flel)- )
When |[|y;]| > ||st|| we have ||x;|| = ||s'|| and the second term vanishes. When ||y;|| < [|s¥||
sl = bl = s = sl = e - (sl = ol = st o < e VAT st

st
We also have,
HAi/*Q(l"t —5Y)

(p(Ax,)Ar, — I) AY 2

B H([l —alp(Ax,)Ax, — 1) A1/25tr

<1+ |al) e VAN L (9)

+ |af HA1/2 tr

<6 HA}\?SY

where in the final transition we used our upper bounds on « and ||p(Ay,)Ax, — I||, as well as

|a| < 1. Substituting the bounds (8) and (9) into inequality (7), we have

Fan(@) = Fao(st) < (18557 Ay s ax [|s¥][7) et/ VEC0D, (10)

and the final bound follows from recalling that fa,(0) — fa,(s¥) = s T Ay st A Hst'||2
and substituting £(Ayx,) = (Amax + Ax)/(Amin + A«). To conclude the proof we note that (1-
a)p(Ay,) = (1 — a)p(A + A1) = p(A) for some p € Py, so that x, € K, (A,b) and ||a¢|| < R,

and therefore fa p(s") < fap(x).

Sublinear convergence Let Ay := A — A\;,/ = 0 and apply Lemma 2 with M = Ay, v = b and
r = ||s¥|| to obtain y; € K¢(Ap,b) = Kt(A, ) such that

‘ . : 4| Aol [Is¥ >
lyell < ||s¥| and fag6(ye) = faos(s) < faos(ye) — Hxﬁgﬂz” fagp() < T2 11
If Amin > 0, equality (6) with A = —\,,;, along with (11) means we are done, recalling that

|[Aoll = Amax — Amin- For Amin < 0, apply Lemma 3 with M = Ay and v = b to obtain
zt € K¢(A,b) such that

(t—3)? mind

A b||”
llz¢]l =1 and 2] Agz; < 16H0|)log2 (4( o] B ) (12)

We form the vector
Ty =y + a2z € Ki(AD),
and choose « to satisfy
o]l = |[s¥] and - 2] (Aoys +b) = o+ 2] 'V fa,(1e) 0.

We may always choose such « because ||y:|| < ||st|| and therefore ||y: + az¢|| = ||sY|| has both
a non-positive and a non-negative solution in . Moreover because ||z;|| = 1 we have that |a| <



2||s¥||. The property a - 27V fa,.5(y:) < 0 of our construction of « along with V2f4, , = Ao,
gives us,

a? a?
Faop(@e) = Faop(ye) + o= 2V fagu () + =2 Aoz < fagn(ye) + 52 Ao,
Substituting this bound along with [|z¢|| = ||s*|| and o < 4||s%||? into (6) with A = — A, gives

r r r 2
Fap(@e) = Fap(s?) < fagp(ue) — Faon(sd) +2||s¥]|” 2] Aoz
Substituting in the bounds (11) and (12) concludes the proof for the case Apin < 0.

2.5 Randomizing away the hard case

Krylov subspace solutions may fail to converge to global solution when both A\, = —A;;;, and
uginb = 0, the so-called hard case [11, 30]. Yet as with eigenvector methods [24, 14], simple
randomization approaches allow us to handle the hard case with high probability, at the modest
cost of introducing to the error bounds a logarithmic dependence on d. Here we describe two such

approaches.

In the first approach, we draw a spherically symmetric random vector v, and consider the joint
Krylov subspace

Koi(A, {b,v}) := span{b, Ab, ..., A" b,v, Av,... A7 10},

The trust-region and cubic-regularized problems (1) can be solved efficiently in KCo: (A, {b, v}) using
the block Lanczos method [12, 15]; we survey this technique in Section A.1 in the supplement. The
analysis in the previous section immediately implies the following convergence guarantee.

Corollary 2. Let v be uniformly distributed on the unit sphere in R%, and

8 e argmin fap(@).
z€L 1/2) (A {b0}),[[zl|<R

Forany § > 0,

~tr r >\max - )\min R2 2\/a
fap(3)) = fap(sy) < ( i=1)2 M 1642 T Amyim <0} l0g <5>1 (13)

with probability at least 1 — § with respect to the random choice of v.

Proof. In the preceding proof of sublinear convergence, apply Lemma 2 on Kj;/2)(A,b)
and Lemma 3 on K|;/5)(A,v); the constructed solution is in K|4/) (4, {b,v}). To bound
lul ;. v[?/||v]|?, note that its distribution is Beta(3, 5%) and therefore |ul; v|?/||v]|? > 62/d with
probability greater than 1 — ¢ (cf. [5, Lemma 4.6]). O

Corollary 2 implies we can solve the trust-region problem to e accuracy in roughly e~/2logd
matrix-vector products, even in the hard case. The main drawback of this randomization approach
is that half the matrix-vector products are expended on the random vector; when the problem is
well-conditioned or when |uZl; b|/||b|| is not extremely small, using the standard subspace solution
is nearly twice as fast.

The second approach follows the proposal [5] to construct a perturbed version of the linear term b,
denoted b, and solve the problem instance (A, b, R) in the Krylov subspace KC;(A4, b).

Corollary 3. Let v be uniformly distributed on the unit sphere in RY, let o > 0 and let
b=b+o-v.
Let 8 € argming i, 4 5,z <R fap(@) = 12T Ax + bTx. Forany § > 0,

Ty 2||bl|v/d
4+ {Amin<0} 1Og2 || H\/>
2 od

()\max - )\min)RQ
-1

with probability at least 1 — § with respect to the random choice of v.

Sap(8Y) = fap(sd) < +20R (14




See section C.2 in the supplement for a short proof, which consists of arguing that f4 ; and f Ab

deviate by at most o R at any feasible point, and applying a probabilistic lower bound on \ummb\ For
any desired accuracy e, using Corollary 3 with o = €/(4R) shows we can achieve this accuracy, with
constant probability, in a number of Lanczos iterations that scales as ¢~ /2 log(d/e?). Compared to
the first approach, this rate of convergence is asymptotically slightly slower (by a factor of log %),
and moreover requires us to decide on a desired level of accuracy in advance. However, the second
approach avoids the 2x slowdown that the first approach exhibits on easier problem instances. In
Section 5 we compare the two approaches empirically.

We remark that the linear convergence guarantee (4) continues to hold for both randomization ap-
proaches. For the second approach, this is due to the fact that small perturbations to b do not
drastically change the condition number, as shown in [5]. However, this also means that we can-
not expect a good condition number when perturbing b in the hard case. Nevertheless, we believe
it is possible to show that, with randomization, Krylov subspace methods exhibit linear conver-
gence even in the hard case, where the condition number is replaced by the normalized eigen-gap
(Amax — Amin)/ (A2 — Amin ), With Ao the smallest eigenvalue of A larger than Ay .

3 The cubic-regularized problem
We now consider the cubic-regularized problem

minimize Favp (z) zfA7b(a:)—|—§||xH3 fxTAx—i—bTaH- el

Any global minimizer of f A,b,p» denoted s§', admits the characterization [9, Theorem 3.1]

Vfapp(s9) = (A+p|sSI 1) s +b=0 and p|s] > —Amin. (15)

Comparing this characterization to its counterpart (3) for the trust-region problem, we see that any
instance (A, b, p) of cubic regularization has an equivalent trust-region instance (A, b, R), with R =
|Is$"||- Theses instances are equivalent in that they have the same set of global minimizers. Evidently,
the equivalent trust-region instance has optimal Lagrange multiplier A, = p|Is$]|- Moreover, at
any trust-region feasible point x (satisfying Izl < R = |Is$Il = IIs¥1D, the cubic-regularization
optimality gap is smaller than its trust-region equivalent,

Faol®) = Faso(69) = Fas(@) = Fas(s) + B (2l = Is71°) < Fan(e) — fas(s).

Letting s;" denote the minimizer of f A,b,p i Kt (A, b) and letting s}" denote the Krylov subspace
solution of the equivalent trust-region problem, we conclude that

Fabp(55) = Fapp(5S) < Fapp(s) = Fap,p(s5) < Fap(sth) — fap(s™); (16)

cubic regularization Krylov subspace solutions always have a smaller optimality gap than their trust-

region equivalents. The guarantees of Theorem 1 therefore apply to f Ap,p(sE) — f Ab,p(55) as well,
and we arrive at the following

Corollary 4. For everyt > 0,

~ o >\min+pHSirH
fA,b,p(Sf,) fAbp( )<36 fAbp() fAbp( )}GXP{ —4t )\rnax"'pHSirH}’ )

LA 4|Jb|?

{Amin<0} 2

4 1 . (8
L T (( T nb)? {19

Proof. Use the slightly stronger bound (10) derived in the proof of Theorem 1 with the inequality
85 A, s AN [IsT1° < 36555 AT + o [1551%] = 36[Fa,0(0) — San,(s7)]. O

and

f Amax — Amin cr
Fanp(s5) = Fapp(ser) < & (t_l)gs I

2




Here too it is possible to randomly perturb b and obtain a guarantee for cubic regularization that
applies in the hard case. In [5] we carry out such analysis for gradient descent, and show that
perturbations to b with norm o can increase ||s$||? by at most 20/p [5, Lemma 4.6]. Thus the

cubic-regularization equivalent of Corollary 3 amounts to replacing R with ||s<"||* + 20/p in (14).

We note briefly—without giving a full analysis—that Corollary 4 shows that the practically success-
ful Adaptive Regularization using Cubics (ARC) method [9] can find e-stationary points in roughly
¢~ 7/* Hessian-vector product operations (with proper randomization and subproblem stopping cri-
teria). Researchers have given such guarantees for a number of algorithms that are mainly theoreti-
cal [1, 8], as well as variants of accelerated gradient descent [6, 22], which while more practical still
require careful parameter tuning. In contrast, ARC requires very little tuning and it is encouraging
that it may also exhibit the enhanced Hessian-vector product complexity e~7/4, which is at least
near-optimal [7].

4 Lower bounds

We now show that the guarantees in Theorem 1 and Corollary 4 are tight up to numerical constants
for adversarially constructed problems. We state the result for the cubic-regularization problem;
corresponding lower bounds for the trust-region problem are immediate from the optimality gap
relation (16).!

To state the result, we require a bit more notation. Let £ map cubic-regularization problem instances
of the form (A4, b, p) to the quadruple (Amin, Amax, Ax, &) = £(A, b, p) such that Apin, Amax are
the extremal eigenvalues of A and the solution s = argmin, fAyb,p(x) satisfies p [|sS|| = s
and fap,(0) — fap,(s¢) = A. Similarly let £ map an instance (A,b,p) to the quadruple
(Amin, Amax, 7, R) where now |[s$|| = R and ||b]| /|ul; b| = 7, with up;, an eigenvector of A
corresponding to eigenvalue Ay .

With this notation in hand, we state our lower bounds. (See supplemental section D for a proof.)
Theorem 5. Let d,t € N witht < d and Amin, Amax, M, A be such that Apin < Amax, Ax >

(=Amin)+, and A > 0. There exists (A, b, p) such that £(A,b, p) = (Amin, Amax; A, A) and for
all s € Ki(A,b),

. N ) 1 1. N . 4t
Fapp(s) = fapp(s) > &= [fA,b,p(O) — fapp(sS )} exp {_\/E — 1} ; (19)
where K =1 + W and k = W Alternatively, for any T > 1 and R > 0, there exists

(A, b, p) such that £ (A, b, p) = (Amin, Amax, 7, R) and for s € K¢(A,b),

fanp(s) = fap,p(s) > min (Amax),—Amimeé ol “‘93”2, (20)
b.p b\ 16(t — 1)2 (uT. b)2 32

min

and )
()‘max - )‘min) ||3ir||
16(t + 4)2

Fapp(s) = fapp(sS) > (21)

The lower bounds (19) matches the linear convergence guarantee (17) to within a numerical constant,
as we may choose Ay ax, Amin and A so that x is arbitrary and K < 2. Similarly, lower bounds (20)
and (21) match the sublinear convergence rate (18) for Ay, < 0 and A, > 0 respectively. Our
proof flows naturally from minimax characterizations of uniform polynomial approximations (Lem-
mas 4 and 5 in the supplement), which also play a crucial role in proving our upper bounds.

One consequence of the lower bound (19) is the existence of extremely badly conditioned instances,
say with £ = (100d)? and K = 3/2, such that in the first d — 1 iterations it is impossible to decrease
the initial error by more than a factor of 2 (the initial error may be chosen arbitrarily large as well).
However, since these instances have finite condition number we have s € KC4(A,b), and so the
error supposedly drops to O at the dth iteration. This seeming discontinuity stems from the fact that

'To obtain the correct prefactor in the trust-region equivalent of lower bound (19) we may use the fact that
Fa0.0(0) = fapo(s5) = 56T A0+ £ [|sT)1° > 2 (367 AI b+ A2 R?) = $(fa45(0) — fau(s))).
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Figure 1: Optimality gap of Krylov subspace solutions on random cubic-regularization problems,
versus subspace dimension ¢. (a) Columns show ensembles with different condition numbers x, and
rows differ by scaling of ¢. Thin lines indicate results for individual instances, and bold lines indicate
ensemble median and maximum suboptimality. (b) Each line represents median suboptimality, and
shaded regions represent inter-quartile range. Different lines correspond to different randomization
settings.

in this case s$" depends on the Lanczos basis of K (A, b) through a very badly conditioned linear
system and cannot be recovered with finite-precision arithmetic. Indeed, running Krylov subspace
methods for d iterations with inexact arithmetic often results in solutions that are very far from exact,
while guarantees of the form (17) are more robust to roundoff errors [4, 13, 35].

While we state the lower bounds in Theorem 5 for points in the Krylov subspace K;(A, b), a clas-
sical “resisting oracle” construction due to Nemirovski and Yudin [27, Chapter 7.2] (see also [26,
§10.2.3]) shows that (for d > 2t) these lower bounds hold also for any deterministic method that
accesses A only through matrix-vector products, and computes a single matrix-vector product per
iteration. The randomization we employ in Corollaries 2 and 3 breaks the lower bound (20) when
Amin < 0 and ||b]| /|uL; b| is very large, so there is some substantial power from randomization in
this case. However, Simchowitz [34] recently showed that randomization cannot break the lower
bounds for convex quadratics (Apin > 0 and p = 0).

S Numerical experiments

To see whether our analysis applies to non-worst case problem instances, we generate 5,000 ran-
dom cubic-regularization problems with d = 106 and controlled condition number xk = (Amax +
PSS/ (Amin + p1155]]) (see Section E in the supplement for more details). We repeat the ex-
periment three times with different values of x and summarize the results in Figure la. As seen
in the figure, about 20 Lanczos iterations suffice to solve even the worst-conditioned instances to
about 10% accuracy, and 100 iterations give accuracy better than 1%. Moreover, for t 2 /k, the
approximation error decays exponentially with precisely the rate 4/,/k predicted by our analysis,
for almost all the generated problems. For t < +/k, the error decays approximately as t~2. We
conclude that the rates characterized by Theorem 1 are relevant beyond the worst case.

We conduct an additional experiment to test the effect of randomization for “hard case” instances,
where Kk = co. We generate such problem instances (see details in Section E), and compare the joint
subspace randomization scheme (Corollary 2) to the perturbation scheme (Corollary 3) with different
perturbation magnitudes o; the results are shown in Figure 1b. For any fixed target accuracy, some
choices of o yield faster convergence than the joint subspace scheme. However, for any fixed o
optimization eventually hits a noise floor due to the perturbation, while the joint subspace scheme
continues to improve. Choosing o requires striking a balance: if too large the noise floor is high
and might even be worse than no perturbation at all; if too small, escaping the unperturbed error
level will take too long, and the method might falsely declare convergence. A practical heuristic for
safely choosing o is an interesting topic for future research.
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