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A Proof of Lemma 1

Proof. If there exists an Additive Noise Model (ANM) in the backward direction, i.e.,

X = g(Y ) + ε̃,

where ε̃ ⊥⊥ Y , then we have

p(X,Y ) = pε̃(X − g(Y ))pY (Y ),

and thus
π(X,Y ) = log p(X,Y ) = log(pε̃(X − g(Y ))) + log pY (Y ).

Denote by ṽ(·) = log pε̃(·) and ξ̃(·) = log pY (·). Taking partial derivative of π(X,Y ) with respect
to X , we get

∂π

∂X
= ṽ′(X − g(Y )).

Furthermore, we have
∂2π

∂X2
= ṽ′′(X − g(Y )),

and
∂π

∂X∂Y
= −ṽ′′(X − g(Y ))g′(Y ).

We find that
∂2π/∂X∂Y

∂π/∂2X
= −g′(Y ),

and thus
∂

∂X

(
∂2π/∂X∂Y

∂2π/∂X2

)
= 0.

Let us get back to the forward model where we have

p(X,Y ) = pX(X)

C∑
c=1

acpε(Y − fc(X)). (1)
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Taking log of both sides of (1), we get

π(X,Y ) = log p(X,Y ) = log

C∑
c=1

acpε(Y − fc(X)) + log pX(X).

For notation simplicity, we drop the argument of pε(Y − fc(X)) and denote by ξ(·) = log(pX(·)),
we get

∂π

∂X
=

−1∑
c acpε(Y − fc(X))

∑
c

acp
′
ε(Y − fc(X))f ′c(X) + ξ′(X)

and

∂2π

∂X∂Y
=

1

(
∑
c acpε(Y − fc(X)))

2

∑
c

acp
′
ε(Y − fc(X))

∑
c

acp
′
ε(Y − fc(X))f ′c(X)

+
−1∑

c acpε(Y − fc(X))

∑
c

acp
′′
ε (Y − fc(X))f ′c(X)

∂2π

∂X2
=

−1
(
∑
c acpε(Y − fc(X)))

2

(∑
c

acp
′
ε(Y − fc(X))f ′c(X)

)2

+
1∑

c acpε(Y − fc(X))

∑
c

acp
′′
c (Y − fc(X))(f ′c(X))2

+
−1∑

c acpε(Y − fc(X))

∑
c

acp
′
ε(Y − fc(X))f ′′c (X) + ξ′′(X)

Let

u =
∂2π

∂X∂Y

and denote by pε,c = pε(Y − fc(X)), p′ε,c = p′ε(Y − fc(X)),p′′ε,c = p′′ε (Y − fc(X)),p′′′ε,c =
p′′′ε (Y − fc(X)) and fc = fc(X), f ′c = f ′c(X), f ′′c = f ′′c (X) and f ′′′c = f ′′′c (X), ξ = ξ(X),
ξ′ = ξ′(X), ξ′′ = ξ′′(X) and ξ′′′ = ξ′′′(X). We have

∂u

∂X
=

2

(
∑
c acpε,c)

3

∑
c

acpε,cf
′
c

∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′
c

+
1

(
∑
c acpε,c)

2

(
−
∑
c

acp
′′
ε,cf
′
c

∑
c

acp
′
ε,cf
′
c −

∑
c

acp
′
ε,c

∑
c

acp
′′
ε,c(f

′
c)

2 +
∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′′
c

)

+
−1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,cf
′
c

∑
c

acp
′′
ε,cf
′
c +

1∑
c acpε,c

∑
c

acp
′′′
ε,c(f

′
c)

2 +
1∑

c acpε,c

∑
c

acp
′′
ε,cf
′′
c

=
2

(
∑
c acpε,c)

3

∑
c

acpε,cf
′
c

∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′
c

+
1

(
∑
c acpε,c)

2

(
−2
∑
c

acp
′′
ε,cf
′
c

∑
c

acp
′
ε,cf
′
c −

∑
c

acp
′
ε,c

∑
c

acp
′′
ε,c(f

′
c)

2 +
∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′′
c

)

+
1∑

c acpε,c

∑
c

acp
′′′
ε,c(f

′
c)

2 +
1∑

c acpε,c

∑
c

acp
′′
ε,cf
′′
c .

Denote by

v =
∂2π

∂X2
,

2



then we have

∂v

∂X
=

−2
(
∑
c acpε,c)

3

(∑
c

acp
′
ε,cf
′
c

)3

+
−2

(
∑
c acpε,c)

2
(
∑
c

acp
′
ε,cf
′
c)
∑
c

ac(p
′′
ε,c(−f ′c)fc + p′ε,cf

′′
c )

+
−1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,cf
′
c

∑
c

acp
′′
ε,c(f

′
c)

2 +
−1∑
c acpε,c

∑
c

acp
′′′
ε,c(fc)

3 +
2∑

c acpε,c

∑
c

acp
′′
ε,cf
′
cf
′′
c

+
−1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,cf
′
c

∑
c

acp
′
ε,cf
′′
c +

1∑
c acpε,c

∑
c

acp
′′
ε,cf
′
cf
′′
c +

−1∑
c acpε,c

∑
c

acp
′
ε,cf
′′′
c + ξ′′′

Further denote by

U(X,Y ) =
∂2π

∂X∂Y
=

1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′
c +

−1∑
c acpε,c

∑
c

acp
′′
ε,cf
′
c

and

V (X,Y ) =
∂2π

∂X2
=

−1
(
∑
c acpε,c)

2

(∑
c

acp
′
ε,cf
′
c

)2

+
1∑

c acpε,c

∑
c

acp
′′
ε,c(f

′
c)

2+
−1∑
c acpε,c

∑
c

acp
′
ε,cf
′′
c

G(X,Y ) =
2

(
∑
c acpε,c)

3

∑
c

acpε,cf
′
c

∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′
c

+
1

(
∑
c acpε,c)

2

(
−2
∑
c

acp
′′
ε,cf
′
c

∑
c

acp
′
ε,cf
′
c −

∑
c

acp
′
ε,c

∑
c

acp
′′
ε,c(f

′
c)

2 +
∑
c

acp
′
ε,c

∑
c

acp
′
ε,cf
′′
c

)

+
1∑

c acpε,c

∑
c

acp
′′′
ε,c(f

′
c)

2 +
1∑

c acpε,c

∑
c

acp
′′
ε,cf
′′
c

and

H(X,Y ) =
−2

(
∑
c acpε,c)

3

(∑
c

acp
′
ε,cf
′
c

)3

+
−2

(
∑
c acpε,c)

2
(
∑
c

acp
′
ε,cf
′
c)
∑
c

ac(p
′′
ε,c(−f ′c)fc + p′ε,cf

′′
c )

+
−1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,cf
′
c

∑
c

acp
′′
ε,c(f

′
c)

2 +
−1∑
c acpε,c

∑
c

acp
′′′
ε,c(fc)

3 +
2∑

c acpε,c

∑
c

acp
′′
ε,cf
′
cf
′′
c

+
−1

(
∑
c acpε,c)

2

∑
c

acp
′
ε,cf
′
c

∑
c

acp
′
ε,cf
′′
c +

1∑
c acpε,c

∑
c

acp
′′
ε,cf
′
cf
′′
c +

−1∑
c acpε,c

∑
c

acp
′
ε,cf
′′′
c

Since

∂2π/∂X∂Y

∂2π/∂X2
= 0

We have
u
∂v

∂X
− ∂u

∂X
v = 0

U(X,Y )(H(X,Y ) + ξ′′′)−G(X,Y )(V (X,Y ) + ξ′′) = 0

Thus, we have

ξ′′′ − G(X,Y )

H(X,Y )
ξ′′ =

G(X,Y )V (X,Y )

U(X,Y )
−H(X,Y ) (2)

B Derivation of (10)

The objective function J reads

J = −L(Θ|X,Y,Ω) + λ logHSICb(X,Θ). (3)
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Then the gradient of J with respect to (w.r.t.) latent points Θ can be computed as

∂J
∂ [Θ]ij

= tr

[(
∂J
∂KΘ

)T
∂KΘ

∂ [Θ]ij

]
, (4)

where KΘ is the kernel matrix of latent points in Θ. ∂J
∂KΘ

can be obtained by
∂J
∂KΘ

=
∂ − L
∂KΘ

+
∂

∂KΘ
λ logHSICb(X,Θ). (5)

The first term is computed as

− ∂L
∂KΘ

= − ∂L
∂ [KΘ]ij

= − tr

[(
∂L
∂K̃

)T
∂K̃

∂ [KΘ]ij

]

= − tr

[(
K̃−1YYT K̃−1 −DK̃−1

)T ( ∂

∂ [KΘ]ij
(KX ◦KΘ)

)]

= − tr

[(
K̃−1YYT K̃−1 −DK̃−1

)T ( ∂KX

∂ [KΘ]ij
◦KΘ + KX ◦

∂KΘ

∂ [KΘ]ij

)]

= − tr

[(
K̃−1YYT K̃−1 −DK̃−1

)T (
KX ◦

∂KΘ

∂ [KΘ]ij

)]

= − tr

[(
K̃−1YYT K̃−1 −DK̃−1

)T (
KX ◦ Jij

)]
, (6)

where ◦ denotes the Hadamard product and Jij is the single-entry matrix, 1 at (i, j) and 0 elsewhere.
The second term in Eq.(5) can be computed as

∂

∂KΘ
λ logHSICb(X,Θ) =

∂

∂KΘ
λ log tr (KXHKΘH) = λ

1

tr (KXHKΘH))
HKXH, (7)

where H = I− 1
m
~1~1T and ~1 is a m× 1 vector of ones. To this stage, we have found ∂J

∂KΘ
in Eq.(4).

C Adjusted Rand Index

This section contains the definition of adjusted rand index (ARI) 1 for reference.2

The ARI is the corrected-for-chance version of the Rand index 3. Though the Rand Index may only
yield a value between 0 and +1, the ARI can yield negative values if the index is less than the expected
index.

The contingency table

Given a set S of n elements, and two groupings or partitions (e.g. clusterings) of these elements,
namely X = {X1, X2, . . . , Xr} and Y = {Y1, Y2, . . . , Ys}, the overlap between X and Y can be
summarized in a contingency table [nij ] where each entry nij denotes the number of objects in
common between Xi and Yj : nij = |Xi ∩ Yj |.

Definition

The adjusted form of the Rand Index, the ARI is

ARI =

∑
ij

(
nij
2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/

(
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑
j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]
/

(
n
2

) (8)

where nij , ai, bj are values from the contingency table.
1Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.
2https://en.wikipedia.org/wiki/Rand_index
3Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American

Statistical association, 66(336), 846-850.
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Table 1: Contingency table
Y1 Y2 . . . Ys Sums

X1 n11 n12 . . . n1s a1

X2 n21 n22 . . . n2s a2

...
...

...
. . .

...
...

Xr nr1 nr2 . . . nrs ar

Sums b1 b2 . . . bs

D Clustering Results Visualization

In this section, clustering results with ARI of ANM-MM close to avgARI4 shown in Table 1 are
visualized. Results of comparing approaches on the same data are also given.

D.1 Experiments different generating mechanisms and sample size

The ground truth and clustering results of all approaches in one of the 100 independent experiments
are visualized in Fig. 1.

D.2 Experiments on different number of generating mechanisms

The ground truth and clustering results of all approaches in one of the 100 independent experiments
are visualized in Fig. 2.

D.3 Experiments on different noise standard deviation

The ground truth and clustering results of all approaches in one of the 100 independent experiments
are visualized in Fig. 3.

D.4 Experiments on different mixing proportions

The ground truth and clustering results of all approaches in one of the 100 independent experiments
are visualized in Fig. 4.

4in the sense that |ARI− avgARI| < 0.05
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(a) Ground truth f1 (b) f2 (c) f3 (d) f4

(e) ANM-MM f1 (f) f2 (g) f3 (h) f4

(i) k-means f1 (j) f2 (k) f3 (l) f4

(m) GMM f1 (n) f2 (o) f3 (p) f4

(q) Spectral clustering f1 (r) f2 (s) f3 (t) f4

(u) DBSCAN f1 (v) f2 (w) f3 (x) f4

Figure 1: Clustering results different type of mechanisms. The first row shows the ground truth
and remaining rows correspond to different clustering approaches. Each column corresponds to a
generating mechanism.
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(a) Ground truth 2 mecha-
nisms (b) 3 mechanisms (c) 4 mechanisms

(d) ANM-MM of 2 mecha-
nisms (e) 3 mechanisms (f) 4 mechanisms

(g) k-means of 2 mecha-
nisms (h) 3 mechanisms (i) 4 mechanisms

(j) GMM of 2 mechanisms (k) 3 mechanisms (l) 4 mechanisms

(m) SpeClu of 2 mecha-
nisms (n) 3 mechanisms (o) 4 mechanisms

(p) DBSCAN of 2 mecha-
nisms (q) 3 mechanisms (r) 4 mechanisms

Figure 2: Clustering results on different number of mechanisms. The first row shows the ground truth
and remaining rows correspond to different clustering approaches. Each column corresponds to a
number of generating mechanisms.
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(a) Ground truth σ = 0.01 (b) σ = 0.05 (c) σ = 0.1

(d) ANM-MM σ = 0.01 (e) σ = 0.05 (f) σ = 0.1

(g) k-means σ = 0.01 (h) σ = 0.05 (i) σ = 0.1

(j) GMM σ = 0.01 (k) σ = 0.05 (l) σ = 0.1

(m) SpeClu σ = 0.01 (n) σ = 0.05 (o) σ = 0.1

(p) DBSCAN σ = 0.01 (q) σ = 0.05 (r) σ = 0.1

Figure 3: Clustering results on different noise standard deviations. The first row shows the ground
truth and remaining rows correspond to different clustering approaches. Each column corresponds to
a value of σ.
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(a) Ground truth a1 = 0.25 (b) a1 = 0.50 (c) a1 = 0.75

(d) ANM-MM a1 = 0.25 (e) a1 = 0.50 (f) a1 = 0.75

(g) k-means a1 = 0.25 (h) a1 = 0.50 (i) a1 = 0.75

(j) GMM a1 = 0.25 (k) a1 = 0.50 (l) a1 = 0.75

(m) SpeClu a1 = 0.25 (n) a1 = 0.50 (o) a1 = 0.75

(p) DBSCAN a1 = 0.25 (q) a1 = 0.50 (r) a1 = 0.75

Figure 4: Clustering results different mixing proportions. The first row shows the ground truth and
remaining rows correspond to different clustering approaches. Each column corresponds to a value
of a1.
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