Supplementary for ANM-MM

Shoubo Hu*, Zhitang Chen[†], Vahid Partovi Nia[†], Laiwan Chan*, Yanhui Geng[‡] *The Chinese University of Hong Kong; [†]Huawei Noah's Ark Lab; [‡]Huawei Montréal Research Center *{sbhu, lwchan}@cse.cuhk.edu.hk ^{†‡}{chenzhitang2, vahid.partovinia, geng.yanhui}@huawei.com

Overview

- Proof of Lemma 1
- Derivation of (10)
- Adjusted Rand Index
- Clustering Results Visualization

A Proof of Lemma 1

Proof. If there exists an Additive Noise Model (ANM) in the backward direction, i.e.,

$$X = g(Y) + \tilde{\epsilon},$$

where $\tilde{\epsilon} \perp \!\!\!\perp Y$, then we have

$$p(X,Y) = p_{\tilde{\epsilon}}(X - g(Y))p_Y(Y),$$

and thus

$$\pi(X,Y) = \log p(X,Y) = \log(p_{\tilde{\epsilon}}(X-g(Y))) + \log p_Y(Y)$$

Denote by $\tilde{v}(\cdot) = \log p_{\tilde{\epsilon}}(\cdot)$ and $\tilde{\xi}(\cdot) = \log p_Y(\cdot)$. Taking partial derivative of $\pi(X, Y)$ with respect to X, we get

$$\frac{\partial \pi}{\partial X} = \tilde{v}'(X - g(Y))$$

Furthermore, we have

$$\frac{\partial^2 \pi}{\partial X^2} = \tilde{v}''(X - g(Y)),$$

and

$$\frac{\partial \pi}{\partial X \partial Y} = -\tilde{v}''(X - g(Y))g'(Y).$$

We find that

$$\frac{\partial^2 \pi / \partial X \partial Y}{\partial \pi / \partial^2 X} = -g'(Y),$$

and thus

$$\frac{\partial}{\partial X} \left(\frac{\partial^2 \pi / \partial X \partial Y}{\partial^2 \pi / \partial X^2} \right) = 0$$

Let us get back to the forward model where we have

$$p(X,Y) = p_X(X) \sum_{c=1}^{C} a_c p_{\epsilon}(Y - f_c(X)).$$
(1)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Taking \log of both sides of (1), we get

$$\pi(X, Y) = \log p(X, Y) = \log \sum_{c=1}^{C} a_c p_{\epsilon}(Y - f_c(X)) + \log p_X(X).$$

For notation simplicity, we drop the argument of $p_{\epsilon}(Y - f_c(X))$ and denote by $\xi(\cdot) = \log(p_X(\cdot))$, we get

$$\frac{\partial \pi}{\partial X} = \frac{-1}{\sum_c a_c p_\epsilon(Y - f_c(X))} \sum_c a_c p'_\epsilon(Y - f_c(X)) f'_c(X) + \xi'(X)$$

and

$$\frac{\partial^2 \pi}{\partial X \partial Y} = \frac{1}{\left(\sum_c a_c p_\epsilon (Y - f_c(X))\right)^2} \sum_c a_c p'_\epsilon(Y - f_c(X)) \sum_c a_c p'_\epsilon(Y - f_c(X)) f'_c(X) + \frac{-1}{\sum_c a_c p_\epsilon(Y - f_c(X))} \sum_c a_c p''_\epsilon(Y - f_c(X)) f'_c(X)$$

$$\frac{\partial^2 \pi}{\partial X^2} = \frac{-1}{\left(\sum_c a_c p_{\epsilon}(Y - f_c(X))\right)^2} \left(\sum_c a_c p'_{\epsilon}(Y - f_c(X)) f'_c(X)\right)^2 + \frac{1}{\sum_c a_c p_{\epsilon}(Y - f_c(X))} \sum_c a_c p''_c(Y - f_c(X)) (f'_c(X))^2 + \frac{-1}{\sum_c a_c p_{\epsilon}(Y - f_c(X))} \sum_c a_c p'_{\epsilon}(Y - f_c(X)) f''_c(X) + \xi''(X)$$

Let

$$u = \frac{\partial^2 \pi}{\partial X \partial Y}$$

and denote by $p_{\epsilon,c} = p_{\epsilon}(Y - f_c(X)), p'_{\epsilon,c} = p'_{\epsilon}(Y - f_c(X)), p''_{\epsilon,c} = p''_{\epsilon}(Y - f_c(X)), p''_{\epsilon,c} = p'''_{\epsilon}(Y - f_c(X))$ and $f_c = f_c(X), f'_c = f'_c(X), f''_c = f''_c(X)$ and $f'''_c = f'''_c(X), \xi = \xi(X), \xi' = \xi''(X), \xi'' = \xi''(X)$ and $\xi''' = \xi''(X)$. We have

$$\begin{split} \frac{\partial u}{\partial X} &= \frac{2}{(\sum_{c} a_{c} p_{\epsilon,c})^{3}} \sum_{c} a_{c} p_{\epsilon,c} f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \\ &+ \frac{1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \left(-\sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' - \sum_{c} a_{c} p_{\epsilon,c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \right) \\ &+ \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}'' f_{c}' \right) \\ &= \frac{2}{(\sum_{c} a_{c} p_{\epsilon,c})^{3}} \sum_{c} a_{c} p_{\epsilon,c} f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \\ &= \frac{1}{(\sum_{c} a_{c} p_{\epsilon,c})^{3}} \sum_{c} a_{c} p_{\epsilon,c} f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \\ &+ \frac{1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \left(-2 \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' - \sum_{c} a_{c} p_{\epsilon,c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \right) \\ &+ \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}'' f_{c}' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' \right) \end{split}$$

Denote by

$$v = \frac{\partial^2 \pi}{\partial X^2},$$

then we have

$$\begin{aligned} \frac{\partial v}{\partial X} &= \frac{-2}{(\sum_{c} a_{c} p_{\epsilon,c})^{3}} \left(\sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \right)^{3} + \frac{-2}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} (\sum_{c} a_{c} p_{\epsilon,c}' f_{c}') \sum_{c} a_{c} (p_{\epsilon,c}''(-f_{c}')f_{c} + p_{\epsilon,c}' f_{c}'') \right)^{3} \\ &+ \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}''(f_{c}')^{2} + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}''(f_{c})^{3} + \frac{2}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}'' f_{c}'' f_{c}'' \\ &+ \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}'' f_{c}'' f_{c}'' + \xi''' \end{aligned}$$

Further denote by

$$U(X,Y) = \frac{\partial^2 \pi}{\partial X \partial Y} = \frac{1}{\left(\sum_c a_c p_{\epsilon,c}\right)^2} \sum_c a_c p'_{\epsilon,c} \sum_c a_c p'_{\epsilon,c} f'_c + \frac{-1}{\sum_c a_c p_{\epsilon,c}} \sum_c a_c p'_{\epsilon,c} f'_c$$

and

$$\begin{split} V(X,Y) &= \frac{\partial^2 \pi}{\partial X^2} = \frac{-1}{\left(\sum_c a_c p_{\epsilon,c}\right)^2} \left(\sum_c a_c p_{\epsilon,c}' f_c'\right)^2 + \frac{1}{\sum_c a_c p_{\epsilon,c}} \sum_c a_c p_{\epsilon,c}''(f_c')^2 + \frac{-1}{\sum_c a_c p_{\epsilon,c}} \sum_c a_c p_{\epsilon,c}' f_c'' \right)^2 \\ G(X,Y) &= \frac{2}{\left(\sum_c a_c p_{\epsilon,c}\right)^3} \sum_c a_c p_{\epsilon,c} f_c' \sum_c a_c p_{\epsilon,c}' \sum_c a_c p_{\epsilon,c}' f_c' \right)^2 \\ &+ \frac{1}{\left(\sum_c a_c p_{\epsilon,c}\right)^2} \left(-2 \sum_c a_c p_{\epsilon,c}'' f_c' \sum_c a_c p_{\epsilon,c}' f_c' - \sum_c a_c p_{\epsilon,c}' \sum_c a_c p_{\epsilon,c}' (f_c')^2 + \sum_c a_c p_{\epsilon,c}' \sum_c a_c p_{\epsilon,c}' f_c'' \right)^2 \\ &+ \frac{1}{\sum_c a_c p_{\epsilon,c}} \sum_c a_c p_{\epsilon,c}'' (f_c')^2 + \frac{1}{\sum_c a_c p_{\epsilon,c}} \sum_c a_c p_{\epsilon,c}' f_c'' \right)^2 \end{split}$$

and

$$\begin{split} H(X,Y) = & \frac{-2}{(\sum_{c} a_{c} p_{\epsilon,c})^{3}} \left(\sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \right)^{3} + \frac{-2}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} (\sum_{c} a_{c} p_{\epsilon,c}' f_{c}') \sum_{c} a_{c} (p_{\epsilon,c}''(-f_{c}')f_{c} + p_{\epsilon,c}' f_{c}'') \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}''(f_{c}')^{2} + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}''(f_{c})^{3} + \frac{2}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}'' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' f_{c}'' + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}''' \\ & + \frac{-1}{(\sum_{c} a_{c} p_{\epsilon,c})^{2}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}' \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}''' \\ & + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}'' + \frac{1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}''' \\ & + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon,c}' f_{c}'' f_{c}'' \\ & + \frac{-1}{\sum_{c} a_{c} p_{\epsilon,c}} \sum_{c} a_{c} p_{\epsilon}' f_{c}'' f_{c}''' \\ & + \frac{-1}{\sum_{c} a_{c} p_{\epsilon}' f_{c}''} \sum_{c} a_{c} p_{\epsilon}' f_{c}'' f_{c}''' \\ & + \frac{-1}{\sum_{c} a_{c} p_{c}' f_{c}''' } \\ & + \frac{-1}{\sum_{c} a_{c} p_{c$$

Since

$$\frac{\partial^2 \pi / \partial X \partial Y}{\partial^2 \pi / \partial X^2} = 0$$

We have

$$u\frac{\partial v}{\partial X} - \frac{\partial u}{\partial X}v = 0$$
$$U(X,Y)(H(X,Y) + \xi'') - G(X,Y)(V(X,Y) + \xi'') = 0$$

Thus, we have

$$\xi''' - \frac{G(X,Y)}{H(X,Y)}\xi'' = \frac{G(X,Y)V(X,Y)}{U(X,Y)} - H(X,Y)$$
(2)

B Derivation of (10)

The objective function $\mathcal J$ reads

$$\mathcal{J} = -\mathcal{L}(\boldsymbol{\Theta}|\mathbf{X}, \mathbf{Y}, \boldsymbol{\Omega}) + \lambda \log \text{HSIC}_{b}(\mathbf{X}, \boldsymbol{\Theta}).$$
(3)

Then the gradient of $\mathcal J$ with respect to (w.r.t.) latent points Θ can be computed as

$$\frac{\partial \mathcal{J}}{\partial \left[\boldsymbol{\Theta}\right]_{ij}} = \operatorname{tr}\left[\left(\frac{\partial \mathcal{J}}{\partial \mathbf{K}_{\Theta}}\right)^{T} \frac{\partial \mathbf{K}_{\Theta}}{\partial \left[\boldsymbol{\Theta}\right]_{ij}}\right],\tag{4}$$

where \mathbf{K}_{Θ} is the kernel matrix of latent points in Θ . $\frac{\partial \mathcal{J}}{\partial \mathbf{K}_{\Theta}}$ can be obtained by

$$\frac{\partial \mathcal{J}}{\partial \mathbf{K}_{\Theta}} = \frac{\partial - \mathcal{L}}{\partial \mathbf{K}_{\Theta}} + \frac{\partial}{\partial \mathbf{K}_{\Theta}} \lambda \log \mathrm{HSIC}_{\mathrm{b}}(\mathbf{X}, \mathbf{\Theta}).$$
(5)

The first term is computed as

$$-\frac{\partial \mathcal{L}}{\partial \mathbf{K}_{\Theta}} = -\frac{\partial \mathcal{L}}{\partial [\mathbf{K}_{\Theta}]_{ij}} = -\operatorname{tr}\left[\left(\tilde{\mathbf{K}}^{-1}\mathbf{Y}\mathbf{Y}^{T}\tilde{\mathbf{K}}^{-1} - D\tilde{\mathbf{K}}^{-1}\right)^{T}\left(\frac{\partial}{\partial [\mathbf{K}_{\Theta}]_{ij}}(\mathbf{K}_{X} \circ \mathbf{K}_{\Theta})\right)\right]$$
$$= -\operatorname{tr}\left[\left(\tilde{\mathbf{K}}^{-1}\mathbf{Y}\mathbf{Y}^{T}\tilde{\mathbf{K}}^{-1} - D\tilde{\mathbf{K}}^{-1}\right)^{T}\left(\frac{\partial \mathbf{K}_{X}}{\partial [\mathbf{K}_{\Theta}]_{ij}} \circ \mathbf{K}_{\Theta} + \mathbf{K}_{X} \circ \frac{\partial \mathbf{K}_{\Theta}}{\partial [\mathbf{K}_{\Theta}]_{ij}}\right)$$
$$= -\operatorname{tr}\left[\left(\tilde{\mathbf{K}}^{-1}\mathbf{Y}\mathbf{Y}^{T}\tilde{\mathbf{K}}^{-1} - D\tilde{\mathbf{K}}^{-1}\right)^{T}\left(\mathbf{K}_{X} \circ \frac{\partial \mathbf{K}_{\Theta}}{\partial [\mathbf{K}_{\Theta}]_{ij}}\right)\right]$$
$$= -\operatorname{tr}\left[\left(\tilde{\mathbf{K}}^{-1}\mathbf{Y}\mathbf{Y}^{T}\tilde{\mathbf{K}}^{-1} - D\tilde{\mathbf{K}}^{-1}\right)^{T}\left(\mathbf{K}_{X} \circ \frac{\partial \mathbf{K}_{\Theta}}{\partial [\mathbf{K}_{\Theta}]_{ij}}\right)\right]$$
(6)

where \circ denotes the Hadamard product and \mathbf{J}^{ij} is the single-entry matrix, 1 at (i, j) and 0 elsewhere. The second term in Eq.(5) can be computed as

$$\frac{\partial}{\partial \mathbf{K}_{\Theta}} \lambda \log \mathrm{HSIC}_{\mathbf{b}}(\mathbf{X}, \mathbf{\Theta}) = \frac{\partial}{\partial \mathbf{K}_{\Theta}} \lambda \log \mathrm{tr} \left(\mathbf{K}_{X} \mathbf{H} \mathbf{K}_{\Theta} \mathbf{H} \right) = \lambda \frac{1}{\mathrm{tr} \left(\mathbf{K}_{X} \mathbf{H} \mathbf{K}_{\Theta} \mathbf{H} \right)} \mathbf{H} \mathbf{K}_{X} \mathbf{H}, \quad (7)$$

where $\mathbf{H} = \mathbf{I} - \frac{1}{m} \mathbf{\vec{1}} \mathbf{\vec{1}}^T$ and $\mathbf{\vec{1}}$ is a $m \times 1$ vector of ones. To this stage, we have found $\frac{\partial \mathcal{J}}{\partial \mathbf{K}_{\Theta}}$ in Eq.(4).

C Adjusted Rand Index

This section contains the definition of adjusted rand index (ARI)¹ for reference.²

The ARI is the corrected-for-chance version of the Rand index ³. Though the Rand Index may only yield a value between 0 and +1, the ARI can yield negative values if the index is less than the expected index.

The contingency table

Given a set S of n elements, and two groupings or partitions (e.g. clusterings) of these elements, namely $X = \{X_1, X_2, \ldots, X_r\}$ and $Y = \{Y_1, Y_2, \ldots, Y_s\}$, the overlap between X and Y can be summarized in a contingency table $[n_{ij}]$ where each entry n_{ij} denotes the number of objects in common between X_i and Y_j : $n_{ij} = |X_i \cap Y_j|$.

Definition

The adjusted form of the Rand Index, the ARI is

$$ARI = \frac{\sum_{ij} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{a_{i}}{2} + \sum_{j} \binom{b_{j}}{2}\right] - \left[\sum_{i} \binom{a_{i}}{2} \sum_{j} \binom{b_{j}}{2}\right] / \binom{n}{2}}$$
(8)

where n_{ij} , a_i , b_j are values from the contingency table.

¹Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1), 193-218.

²https://en.wikipedia.org/wiki/Rand_index

³Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336), 846-850.

Table 1: Contingency table					
	$ Y_1 $				Sums
X_1	$ n_{11}$	n_{12}		n_{1s}	a_1
X_2	n_{21}	n_{22}		n_{2s}	a_2
:	:	÷	·	÷	÷
X_r	n_{r1}	n_{r2}		n_{rs}	a_r
Sums $ b_1 b_2 \dots b_s $					

D Clustering Results Visualization

In this section, clustering results with ARI of ANM-MM close to avgARI⁴ shown in Table 1 are visualized. Results of comparing approaches on the same data are also given.

D.1 Experiments different generating mechanisms and sample size

The ground truth and clustering results of all approaches in one of the 100 independent experiments are visualized in Fig. 1.

D.2 Experiments on different number of generating mechanisms

The ground truth and clustering results of all approaches in one of the 100 independent experiments are visualized in Fig. 2.

D.3 Experiments on different noise standard deviation

The ground truth and clustering results of all approaches in one of the 100 independent experiments are visualized in Fig. 3.

D.4 Experiments on different mixing proportions

The ground truth and clustering results of all approaches in one of the 100 independent experiments are visualized in Fig. 4.

⁴in the sense that |ARI - avgARI| < 0.05

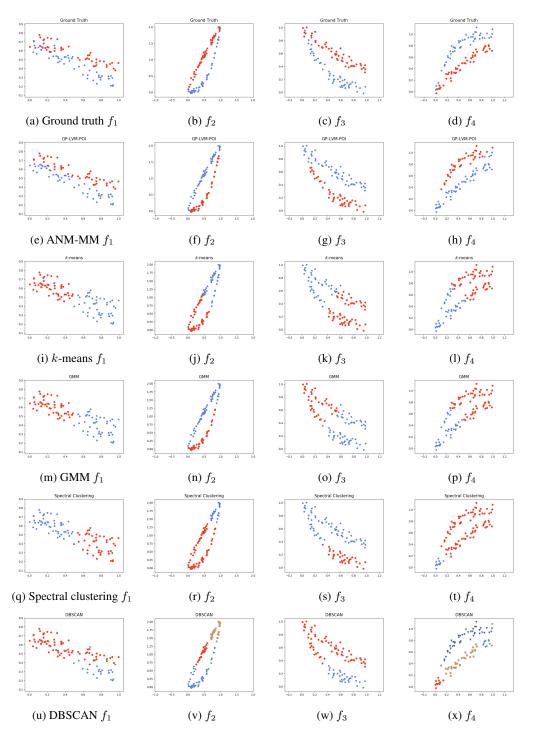


Figure 1: Clustering results different type of mechanisms. The first row shows the ground truth and remaining rows correspond to different clustering approaches. Each column corresponds to a generating mechanism.

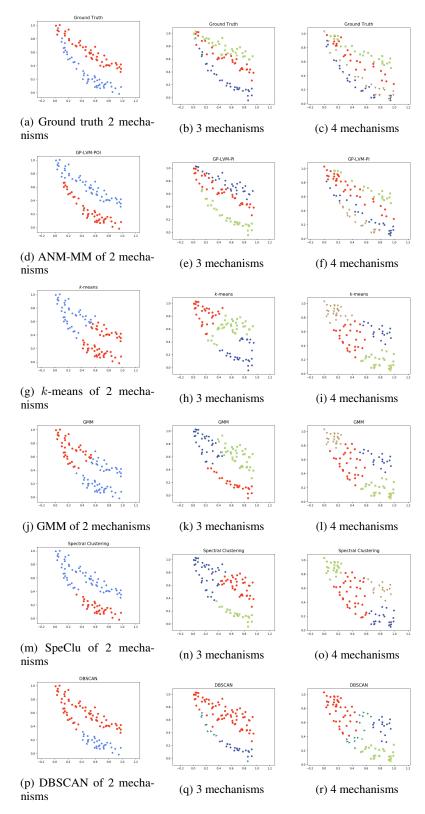


Figure 2: Clustering results on different number of mechanisms. The first row shows the ground truth and remaining rows correspond to different clustering approaches. Each column corresponds to a number of generating mechanisms.

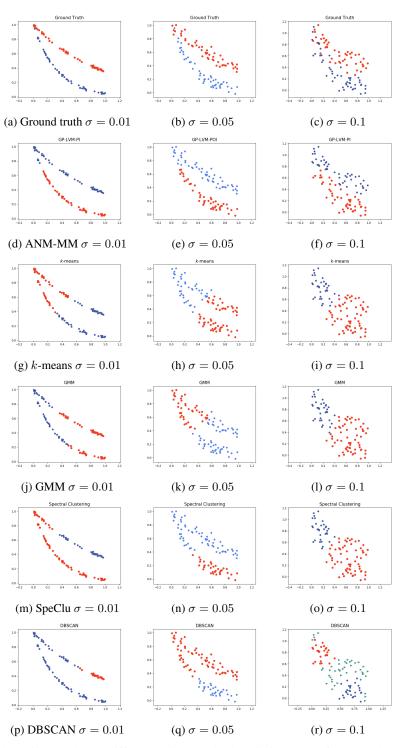


Figure 3: Clustering results on different noise standard deviations. The first row shows the ground truth and remaining rows correspond to different clustering approaches. Each column corresponds to a value of σ .

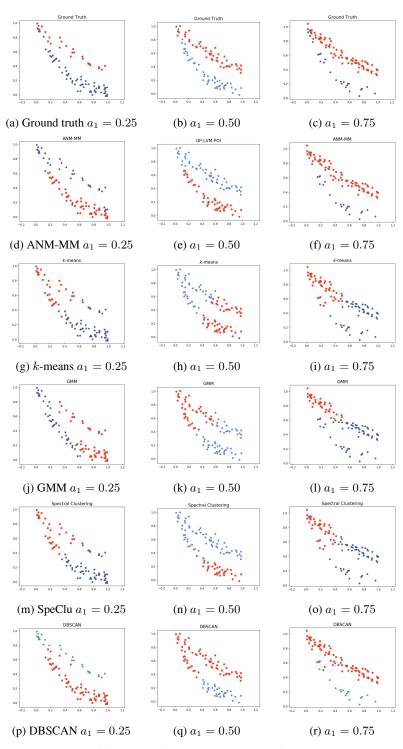


Figure 4: Clustering results different mixing proportions. The first row shows the ground truth and remaining rows correspond to different clustering approaches. Each column corresponds to a value of a_1 .