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Abstract

The design of codes for communicating reliably over a statistically well defined
channel is an important endeavor involving deep mathematical research and wide-
ranging practical applications. In this work, we present the first family of codes
obtained via deep learning, which significantly beats state-of-the-art codes designed
over several decades of research. The communication channel under consideration
is the Gaussian noise channel with feedback, whose study was initiated by Shannon;
feedback is known theoretically to improve reliability of communication, but no
practical codes that do so have ever been successfully constructed.
We break this logjam by integrating information theoretic insights harmoniously
with recurrent-neural-network based encoders and decoders to create novel codes
that outperform known codes by 3 orders of magnitude in reliability. We also
demonstrate several desirable properties in the codes: (a) generalization to larger
block lengths; (b) composability with known codes; (c) adaptation to practical con-
straints. This result also presents broader ramifications to coding theory: even when
the channel has a clear mathematical model, deep learning methodologies, when
combined with channel-specific information-theoretic insights, can potentially beat
state-of-the-art codes, constructed over decades of mathematical research.

1 Introduction

The ubiquitous digital communication enabled via wireless (e.g. WiFi, mobile, satellite) and wired
(e.g. ethernet, storage media, computer buses) media has been the plumbing underlying the current
information age. The advances of reliable and efficient digital communication have been primarily
driven by the design of codes which allow the receiver to recover messages reliably and efficiently
under noisy environments. The discipline of coding theory has made significant progresses in the past
seven decades since Shannon’s celebrated work in 1948 [1]. As a result, we now have near optimal
codes in a canonical setting, namely, Additive White Gaussian Noise (AWGN) channel. However,
several channel models of great practical interest lack efficient and practical coding schemes.

Channels with feedback (from the receiver to the transmitter) is an example of a long-standing
open problem and with significant practical importance. Modern wireless communication includes
feedback, in one form or the other; for example, the feedback can be the received value itself or
quantization of the received value or an automatic repeat request (ARQ) [2]. Accordingly, there
are different models for channels with feedback, and among them, the AWGN channel with output

feedback is a model that captures the essence of channels with feedback; this model is also classical,
introduced by Shannon in 1956 [3]. In this channel model, the received value is fed back (with
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unit time delay) to the transmitter without any processing (we refer to Figure 1 for an illustration of
channel). Designing codes for this channel via deep learning approaches is the central focus of this
paper.

While the output feedback does not improve the Shannon capacity of the AWGN channel [3], it is
known to provide better reliability at finite block lengths [4]. On the other hand, practical coding
schemes have not been successful in harnessing the feedback gain thereby significantly limiting
the use of feedback in practice. This state of the art is at odds with the theoretical predictions of
the gains in reliability via using feedback: the seminal work of Schalkwijk-Kailath [4] proposed
S-K scheme, a (theoretically) achievable scheme with superior reliability guarantees, but which
suffers from extreme sensitivity to both the precision of the numerical computation and noise in the
feedback [5, 6]. Another competing scheme of [7] is designed for channels with noisy feedback, but
not only is the reliability poor, it is almost independent of the feedback quality, suggesting that the
feedback data is not being fully exploited. More generally, it has been proven that no linear code
incorporating the noisy output feedback can perform well [8]. This is especially troubling since all
practical codes are linear and linear codes are known to achieve capacity (without feedback) [9].

In this paper, we demonstrate new neural network-driven encoders (with matching decoders) that
operate significantly better (100–1000 times) than state of the art, on the AWGN channel with
(noisy) output feedback. We show that architectural insights from simple communication channels
with feedback when coupled with recurrent neural network architectures can discover novel codes.
We consider Recurrent Neural Network (RNN) parameterized encoders (and decoders), which are
inherently nonlinear and map information bits directly to real-valued transmissions in a sequential
manner.

Designing codes driven by deep learning has been of significant interest recently [10–25], starting
from [10] which proposes an autoencoder framework for communications. In [10], it is demonstrated
that for classical AWGN channels, feedforward neural codes can mimic the performance of a well-
known code for a short block length (4 information bits). Extending this idea to orthogonal frequency
division multiplex (OFDM), [11, 12] show that neural codes can mimic the performance of state-
of-the-art codes for short block lengths (8 information bits). Several results extend the autoencoder
idea to other settings of AWGN channels [13] and modulation [26]). Beyond AWGN channels, [14]
considers the problem of communicating a complicated source (text) over erasure channels and shows
that RNN-based neural codes that map raw texts directly to a codeword can beat the state-of-the art
codes, when the reliability is evaluated by human (as opposed to bit error rate). Deep learning has
been applied also in the problem of designing decoders for existing encoders [15–19], demonstrating
the efficiency, robustness, and adaptivity of neural decoders over the existing decoders. In a different
context, for distributed computation, where encoder adds redundant computations so that the decoder
can reliably approximate the desired computations under unavailabilities, [20] showed that neural
network based codes can beat the state of the art codes.

While several works in the past years apply deep learning for channel coding, very few of them
consider the design of novel codes using deep learning (rather than decoders). Furthermore, none of
them are able to beat state-of-the-art codes on a standard (well studied) channel. We demonstrate
first family of codes obtained via deep learning which beats state-of-the-art codes, signaling a
potential shift in code design, which historically has been driven by individual human ingenuity with
sporadic progress over the decades. Henceforth, we call this new family of codes Deepcode. We also
demonstrate the superior performance of variants of Deepcode under a variety of practical constraints.
Furthermore, Deepcode has complexity comparable to traditional codes, even without any effort
at optimizing the storage and run-time complexity of the neural network architectures. Our main
contributions are as follows:

1. We demonstrate Deepcode – a new family of RNN-driven neural codes that have three

orders of magnitude better reliability than state of the art with both noiseless and noisy
feedback. Our results are significantly driven by the intuition obtained from information
and coding theory, in designing a series of progressive improvements in the neural network
architectures (Section 3 and 4).

2. We show that variants of Deepcode significantly outperform state-of-the art codes under
a variety of practical constraints (example: delayed feedback, very noisy feedback link)
(Section 4).
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3. We show composability: Deepcode naturally concatenates with a traditional inner code and
demonstrates continued improvements in reliability as the block length increases (Section 4).

4. Our interpretation and analysis of Deepcode provide guidance on the fundamantal under-
standing of how the feedback can be used and some information theoretic insights into
designing codes for channels with feedback (Section 5).

2 Problem formulation

The most canonical channel studied in the literature (example: textbook material [27]) and also
used in modeling practical scenarios (example: 5G LTE standards) is the Additive White Gaussian
Noise (AWGN) channel without feedback. Concretely, the encoder takes in K information bits
jointly, b = (b1, · · · , bK) 2 {0, 1}K , and outputs n real valued signals to be transmitted over a
noisy channel (sequentially). At the i-th transmission for each i 2 {1, . . . , n}, a transmitted symbol
xi 2 R is corrupted by an independent Gaussian noise ni ⇠ N (0,�2), and the decoder receives
yi = xi + ni 2 R. After receiving the n received symbols, the decoder makes a decision on which
information bit b was sent, out of 2K possible choices. The goal is to maximize the probability of
correctly decoding the received symbols and recover b.

Both the encoder and the decoder are functions, mapping b 2 {0, 1}K to x 2 Rn and y 2 Rn to
b̂ 2 {0, 1}K , respectively. The design of a good code (an encoder and a corresponding decoder)
addresses both (i) the statistical challenge of achieving a small error rate; and (ii) the computational
challenge of achieving the desired error rate with efficient encoder and decoder. Almost a century
of progress in this domain of coding theory has produced several innovative codes that efficiently
achieve small error rate, including convolutional codes, Turbo codes, LDPC codes, and polar codes.
These codes are known to perform close to the fundamental limits on reliable communication [28].

BLER

SNR = �10 log10 �
2

Figure 1: AWGN channel with noisy feedback (left). Deepcode significantly outperforms the baseline
of S-K and the state-of-the art codes, on block-length 50 and noiseless feedback (right).

In a canonical AWGN channel with noisy feedback, the received symbol yi is transmitted back to the
encoder after one unit time of delay and via another additive white Gaussian noise feedback channel

(Figure 1). The encoder can use this feedback symbol to sequentially and adaptively decide what
symbol to transmit next. At time i the encoder receives a noisy view of what was received at the
receiver (in the past by one unit time), ỹi�1 = yi�1 + wi�1 2 R, where the noise is independent
and distributed as wi�1 ⇠ N (0,�2

F ). Formally, an encoder is now a function that sequentially maps
the information bit vector b and the feedback symbols ỹi�1

1 = (ỹ1, · · · , ỹi�1) received thus far to a
transmit symbol xi: fi : (b, ỹi�1

1 ) 7! xi, i 2 {1, · · · , n} and a decoder is a function that maps
the received sequence yn1 = (y1, · · · , yn) into estimated information bits: g : yn1 7! b̂ 2 {0, 1}K .

The standard measures of performance are the average bit error rate (BER) defined as BER ⌘
(1/K)

PK
i=1 P(bi 6= b̂i) and the block error rate (BLER) defined as BLER ⌘ P(b 6= b̂), where the

randomness comes from the forward and feedback channels and any other sources of randomness
that might be used in the encoding and decoding processes. It is standard (both theoretically and
practically) to have an average power constraint, i.e., (1/n)E[kxk2]  1, where x = (x1, · · · , xn)
and the expectation is over the randomness in choosing the information bits b uniformly at random,
the randomness in the noisy feedback symbols ỹi’s, and any other randomness used in the encoder.
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While the capacity of the channel remains the same in the presence of feedback [3], the reliability
can increase significantly as demonstrated by the celebrated result of Schalkwijk and Kailath (S-K),
[4], which is described in detail in Appendix D. Although the optimal theoretical performance is
met by the S-K code, critical drawbacks make it fragile. Theoretically, the scheme critically relies
on exactly noiseless feedback (i.e. �2

F = 0), and does not extend to channels with even arbitrarily
small amount of noise in the feedback (i.e. �2

F > 0). Practically, the scheme is extremely sensitive
to numerical precisions; we see this in Figure 1, the numerical errors dominate the performance of
the S-K scheme, with a practical choice of MATLAB implementation with a precision of 16 bits to
represent floating-point numbers.

Even with a noiseless feedback channel with �2
F = 0, which the S-K scheme is designed for, it is

outperformed significantly by our proposed Deepcode (described in detail in Section 3). At moderate
SNR of 2 dB, Deepcode can outperform S-K scheme by three orders of magnitude in BLER. The
resulting BLER is shown as a function of the Signal-to-Noise Ratio (SNR) defined as �10 log10 �

2.
Also shown as baselines are the state-of-the art polar, LDPC, and tail-bitting convolutional codes
(TBCC) in a 3GPP document for the 5G meeting [29] (we refer to Appendix A for the details of
these codes used in the simulation). Deepcode significantly improves over all state-of-the-art codes
of similar block-length and the same rate. Also plotted as a baseline are the theoretically estimated
performance of the best code with no efficient decoding schemes. This impractical baseline lies
between approximate achievable BLER (labelled Normapx in the figure) and a converse to the
BLER (labelled Converse in the figure) from [28, 30]. More recently proposed schemes address
S-K scheme’s sensitivity to noise in the feedback, but either still suffer from similar sensitivity to
numerical precisions at the decoder [31], or is incapable of exploiting the feedback information [7] as
we illustrate in Figure 4.

3 Neural encoder and decoder

A natural strategy to create a feedback code is to utilize a recurrent neural network (RNN) as an
encoder since (i) communication with feedback is naturally a sequential process and (ii) to exploit
the sequential structure for efficient decoding. We propose representing the encoder and the decoder
as RNNs, training them jointly under AWGN channels with noisy feedback, and minimizing the error
in decoding the information bits. However, in our experiments, we find that this strategy by itself is
insufficient to achieve any performance improvement with feedback.

We exploit information theoretic insights to enable improved performance, by considering the erasure
channel with feedback: here transmitted bits are either received perfectly or erased and whether the
previous bit was erased or received perfectly is fed back to the transmitter. In such a channel, the
following two-phase scheme can be used: transmit a block of symbols, and then transmit whichever
symbols were erased in the first block (and ad infinitum). This motivates a two-phase scheme, where
uncoded bits are sent in the first phase, and then based on the feedback in the first phase, coded bits
are sent in the second phase; thus the code only needs to be designed for the second phase. Even
inside this two-phase paradigm, several architectural choices need to be made. We show in this
section that these intuitions can be critically employed to innovate neural network architectures.

Our experiments focus on the setting of rate 1/3 and information block length of 50 for concreteness1.
That is, the encoder maps K = 50 message bits to a codeword of length n = 150. We discuss
generalizations to longer block lengths in Section 4.

A. RNN feedback encoder/decoder (RNN (linear) and RNN (tanh)). We propose an encoding
scheme that progresses in two phases. In the first phase, the K information bits are sent raw (uncoded)
over the AWGN channel. In the second phase, 2K coded bits are generated based on the information
bits b and (delayed) output feedback and sequentially transmitted. We propose a decoding scheme
using two layers of bidirectional Gated Recurrent Units (GRU). When jointly trained, a linear RNN
encoder achieves performance close to Turbo code that does not use the feedback information at all
as shown in Figure 2. With a non-linear activation function of tanh(·), the performance improves,
achieving BER close to the existing S-K scheme. Such a gain of non-linear codes over linear ones is
in-line with theory [31].

1Source codes are available under https://github.com/hyejikim1/feedback_code (Keras) and
https://github.com/yihanjiang/feedback_code (PyTorch).
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Encoder A: RNN feedback encoder

BER

SNR =�10 log10 �
2

Figure 2: Building upon a simple linear RNN encoder (left), we progressively improve the archi-
tecture. Eventually with RNN(tanh)+ZP+W+A architecture formally described in Section 3, we
significantly outperform the baseline of S-K scheme and Turbo code, by several orders of magnitude
in the bit error rate, on block-length 50 and noiseless feedback (�2

F = 0).

Encoding. The architecture of the encoder is shown in Figure 2. The encoding process has two
phases. In the first phase, the encoder simply transmits the K raw message bits. That is, the encoder
maps bk to ck = 2bk � 1 for k 2 {1, · · · ,K}, and stores the feedback ỹ1, · · · , ỹK for later use. In
the second phase, the encoder generates a coded sequence of length 2K (length (1/r � 1)K for
general rate r code) through a single directional RNN. In particular, each k-th RNN cell generates
two coded bits ck,1, ck,2 for k 2 {1, . . . ,K}, which uses both the information bits and (delayed)
output feedback from the earlier raw information bit transmissions. The input to the k-th RNN cell
is of size four: bk, ỹk � ck (the estimated noise added to the k-th message bit in phase 1) and the
most recent two noisy feedbacks from phase 2: ỹk�1,1 � ck�1,1 and ỹk�1,2 � ck�1,2. Note that we
use ỹk,j = ck,j + nk,j + wk,j to denote the feedback received from the transmission of ck,j for
k 2 {1, · · · ,K} and j 2 {1, 2}, and nk,j and wk,j are corresponding forward and feedback channel
noises, respectively.

To generate codewords that satisfy power constraint, we put a normalization layer to the RNN outputs
so that each coded bit has a mean 0 and a variance 1. During training, the normalization layer
subtracts the batch mean from the output of RNN and divide by the standard deviation of the batch.
After training, we compute the mean and the variance of the RNN outputs over 106 examples. In
testing, we use the precomputed means and variances. Further implementation details are in Appendix
B.

Decoding. Based on the received sequence y = (y1, · · · , yk, y1,1, y1,2, y2,1, y2,2, · · · , yK,1, yK,2)
of length 3K, the decoder estimates K information bits. For the decoder, we use a two-layered
bidirectional Gated Recurrent Unit (GRU), where the input to the k-th GRU cell is a tuple of three
received symbols, (yk, yk,1, yk,2). We refer to Appendix B for more implementation details.

Training. Both the encoder and decoder are trained jointly using binary cross-entropy as the loss
function over 4 ⇥ 106 examples, with batch size 200, via an Adam optimizer (�1=0.9, �2=0.999,
✏=1e-8). The input to the neural network is K information bits and the output is K estimated bits (as
in the autoencoder setting). During the training, we let K = 100. AWGN channels are simulated
for the channels from the encoder to the decoder and from decoder to the encoder. In training, we
let the forward SNR equal to be test SNR and feedback SNR to be the test feedback SNR. We
randomly initialize weights of the encoder and the decoder. We observed that training with random
initialization of encoder-decoder gives a better encoder-decoder compared to initializing with a
pre-trained encoder/decoder by sequential channel codes for non-feedback AWGN channels (e.g.
convolutional codes). We also use a decaying learning rate and gradient clipping; we reduce the
learning rate by 10 times after training with 106 examples, starting from 0.02. Gradients are clipped
to 1 if L2 norm of the gradient exceeds 1 so that we prevent the gradients from getting too large.

Typical error analysis. Due to the recurrent structure in generating coded bits (ck,1, ck,2), the coded
bit stream carries more information on the first few bits than last few bits (e.g. b1 than bK). This
results in more errors in the last information bits, as shown in Figure 3, where we plot the average
BER of bk for k = {1, · · · ,K}.
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BER of bk

Position (k)
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Position (k)

Figure 3: (Left) A naive RNN(tanh) code gives a high BER in the last few information bits. With
the idea of zero padding and power allocation, the RNN(tanh)+ZP+W+A architecture gives a BER
that varies less across the bit position, and overall BER is significantly improved over the naive
RNN(tanh) code. (Middle) Noise variances across bit position which results in a block error: High
noise variance on the second parity bit stream (c1,2, · · · , cK,2) causes a block error. (Right) Noise
covariance: Noise sequence which results in a block error does not have a significant correlation
across position.

B. RNN feedback code with zero padding (RNN (tanh) + ZP). In order to reduce high errors in
the last information bits, as shown in Figure 3, we apply the zero padding (ZP) technique; we pad a
zero in the end of information bits, and transmit a codeword for the padded information bits (The
encoder and decoder with zero padding are illustrated in Appendix B). By bringing zero padding,
the BER of the last information bits, as well as other bits, drops significantly, as shown in Figure 3.
Zero padding requires a few extra channel usages (e.g. with 3 symbol zero padding, we map 50
information bits to a codeword of length 153). However, due to the significant improvement in BER,
it is widely used in sequential codes (e.g. convolutional codes and turbo codes).

Typical error analysis. To see if there is a pattern in the noise sequence which makes the decoder fail,
we study the first and second order noise statistics which result in the error in decoding. In Figure 3
(Middle), we plot the average variance of noise added to bk in first phase and ck,1 and ck,2 in the
second phase, as a function of k. From the figure, we make two observations; (i) large noise in the
last bits cause an error, and (ii) large noise in ck,2 is likely to cause an error, which implies that the
raw bit stream and the coded bit streams are not equally robust to the noise – an observation that will
be exploited next. In Figure 3 (Right), we plot noise covariances that result in a decoding error. From
Figure 3 (Right), we see that there is no particular correlation within the noise sequence that makes
the decoder fail. This suggests that there is no particular error pattern to be exploited, and the BER
performance further improved.

C. RNN feedback code with power allocation (RNN(tanh) + ZP + W). Based on the observation
that the raw bit ck and coded bit ck,1, ck,2 are not equally robust, as shown in Figure 3 (Middle), we
introduce trainable weights which allow allocating different amount of power to the raw bit and coded
bits. Appendix B provides all implementation details. By introducing and training these weights, we
achieve the improvement in BER as shown in Figures 2 and 3.

Typical error analysis. While the average BER is improved by about an order of magnitude for most
bit positions as shown in Figure 3 (Left), the BER of the last bit remains about the same. On the
other hand, the BER of first few bits are now smaller, suggesting the following bit-specific power
allocation method.

D. Deepcode: RNN feedback code with bit power allocation (RNN(tanh) + ZP + W + A). We
introduce a weight vector allowing the power of bits in different position to be different, as illustrated
in Figure 10. Ideally, we would like to reduce the power for the first information bits and increase the
power for the last information bits. The resulting BER curve is shown in Figure 2(-o-). We can see
that the BER is noticeably decreased. In Figure 3(-o-), we can see that the BER in the last bits are
reduced, and we can also see that the BER in the first bits are increased. Our use of unequal power
allocation across information bits is in-line with other approaches from information theory [32], [33].
We call this neural code Deepcode.

Typical error analysis. As shown in Figure 3, the BER at each position remains about the same
except for the last few bits. This suggests a symmetry in our code and nearest-neighbor-like decoder.
For an AWGN channel without feedback, it is known that the optimal decoder (nearest neighbor
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decoder) under a symmetric code (in particular, each coded bit follows a Gaussian distribution) is
robust to the distribution of noise [34]; the BER does not increase if we keep the power of noise
and only change the distribution. As an experiment demonstrating the robustness of Deepcode, in
Appendix E, we show that BER of Deepcode does not increase if we keep the power of noise and
change the distribution from i.i.d. Gaussian to bursty Gaussian noise.

Complexity. Complexity and latency, as well as reliability, are important metrics in practice, as
the encoder and decoder need to run in real time on mobile devices. Deepcode has computational
complexity and latency comparable to currently used codes (without feedback) that are already in
communication standards. Turbo decoder, for example, is a belief-propagation decoder with many
(e.g., 10 – 20) iterations, and each iteration is followed by a permutation. Turbo encoder also includes
a permutation of information bits (of length K). On the other hand, the proposed neural encoder in
Deepcode is a single layered RNN encoder with 50 hidden units, and the neural decoder in Deepcode
is a 2-layered GRU decoder, also with 50 hidden units, all of which are matrix multiplications that
can be parallelized. Ideas such as knowledge distillation [35] and network binarization [36] can be
used to potentially further reduce the complexity of the network.

4 Practical considerations: noise, delay, coding in feedback, and blocklength

We considered so far the AWGN channel with noiseless output feedback with a unit time-step delay.
In this section, we demonstrate the robustness of Deepcode (and its variants) under two variations on
the feedback channel, noise and delay, and present generalization to longer block lengths. We show
that (a) Deepcode and its variant that allows a K-step delayed feedback are more reliable than the
state-of-the-art schemes in channels with noisy feedback; (b) by allowing the receiver to feed back an
RNN encoded output instead of its raw output, and learning this RNN encoder, we achieve a further
improvement in reliability, demonstrating the power of encoding in the feedback link; (c) Deepcode
concatenated with turbo code achieves superior error rate decay as block length increases with noisy
feedback.

Noisy feedback. We show that Deepcode trained under AWGN channels with noisy output feedback,
achieves a significantly smaller BER than both S-K and C-L schemes under AWGN channels with
noisy output feedback. In Figure 4 (Left), we plot the BER as a function of the feedback SNR for
S-K scheme, C-L scheme, and Deepcode for a rate 1/3, 50 information bits, where we fix the forward
channel SNR to be 0dB. As feedback SNR increases, we expect the BER to decrease. However, as
shown in Figure 4 (Left), the C-L scheme, which is designed for noisy feedback, and S-K scheme
are very sensitive to noise in the feedback, and reliability is almost independent of feedback quality.
Deepcode outperforms these two baseline (linear) codes by a large margin, with decaying error as
feedback SNR increases, showing that Deepcode harnesses noisy feedback information to make
communication more reliable. This is highly promising as the performance under noisy feedback is
directly related to the practical communication channels.

Noise feedback with delay. We model the practical constraint of delay in the feedback, by introduc-
ing a variant of Deepcode that works with a K time-step delayed feedback (discussed in detail in
Appendix B.5); recall K is the number of information bits and this code tolerates a large delay in
the feedback. Perhaps unexpectedly, we see from Figure 4 (Left) that this neural code for delayed
feedback achieves a similar BER to no delay in the feedback; this is true especially at small feedback
SNRs, till around 12dB.

Noisy feedback with delay and coding. It is natural to allow the receiver send back a general
function of its past received values, i.e., receiver encodes its output and sends the coded (real valued)
bit. Designing the code for this setting is challenging as it involves designing two encoders and one
decoder jointly in a sequential manner. We propose using RNN as an encoder that maps noisy output
to the transmitted feedback, with implementation details in Appendix B.5. Figure 4 demonstrates the
powerful encoding of the received output, as learnt by the neural architecture; the BER is improved
two-three times.

Generalization to longer block lengths. In wireless communications, a wide range of blocklengths
are of interest (e.g., 40 to 6144 information bits in LTE standards). In previous sections, we considered
block length of 50 information bits. Here we show how to generalize Deepcode to longer block
lengths and achieve an improved reliability as we increase the block length.
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Figure 4: (Left) Deepcode (introduced in section 3) and a variant of neural code which allows K time-
step delay significantly outperform the two baseline schemes under noisy feedback. Another variant
of Deepcode which allows the receiver to feed back an RNN encoded output (with K-step delay)
performs even better than the neural code with raw output feedback (with unit-delay), demonstrating
the power of coding in the feedback. (Middle) By unrolling the RNN cells of Deepcode, the BER
of Deepcode remains the same for block lengths 50 to 500. (Right) Concatenated Deepcode and
turbo code (with and without noise in the feedback) achieves BER that decays exponentially as block
length increases, faster than turbo codes (without feedback) at same rate.

A natural generalization of the RNN-based neural code is to unroll the RNN cells. In Figure 4 (Middle),
we plot the BER as a function of the SNR, for 50 information bits and length 500 information bits
(under noiseless feedback) when we unroll the RNN cells. We can see that the BER remains the same
as we increase block lengths. This is not an entirely satisfying generalization because, typically, it is
possible to design a code for which error rate decays faster as block length increases. For example,
turbo codes have error rate decaying exponentially (log BER decades linearly) in the block length
as shown in Figure 4 (Right). This critically relies on the interleaver, which creates long range
dependencies between information bits that are far apart in the block. Given that the neural encoder
is a sequential code, there is no strong long range dependence. Each transmitted bit depends on only
a few past information bits and their feedback (we refer to Section 5 for a detailed discussion).

To resolve this problem, we propose a new concatenated code which concatenates Deepcode (as inner
code) and turbo code as an outer code. The outer code is not restricted to a turbo code, and we refer
to Appendix C for a detailed discussion.

In Figure 4 (Right), we plot the BERs of the concatenated code, under both noiseless and noisy
feedback (of feedback SNR 10dB), and turbo code, both at rate 1/9 at (forward) SNR �6.5dB. From
the figure, we see that even with noisy feedback, BER drops almost exponentially (log BER drops
linearly) as block length increases, and the slope is sharper than the one for turbo codes. We also note
that in this setting, C-L scheme suggests not using the feedback.

5 Interpretation

Thus far we have used information theoretic insights in driving our deep learning designs. Here, we
ask if the deep learning architectures we have learnt can provide an insight to the information theory
of communication with feedback. We aim to understand the behavior of Deepcode (i.e., the coded
bits generated via RNN in Phase II). We show that in the second phase, (a) the encoder focuses on
refining information bits that were corrupted by large noise in the first phase; and (b) the coded bit
depends on past as well as current information bits, i.e., coupling in the coding process.

Correcting highly corrupted noise in Phase I. The major motivation of the two-phase encoding
scheme is that after Phase I, the encoder knows which out of K information bits were corrupted by a
large noise, and in Phase II, encoder can focus on refining those bits. In Figure 5, we plot samples of
(nk, ck,1) (left) and (nk, ck,2) (right) for bk = 1 and bk = 0 where nk denotes the noise added to the
the transmission of bk in the first phase. Consider bk = 1. This figure shows that if the noise added to
bit bk in phase 1 is large, encoder generates coded bits close to zero (i.e., does not further refine bk).
Otherwise, encoder generates coded bits of large magnitude (i.e., use more power to refine bk).

Coupling. A natural question is whether our feedback code is exploiting the memory of RNN
and coding information bits jointly. To answer this question, we look at the correlation between
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ck,1 ck,2

nk nk

Figure 5: Noise in first phase vs. first parity bit (left) and second parity bit (right). Blue(x) points are
when bk = 1 and Red (o) points are for bk = 0.

information bits and the coded bits. If the memory of RNN were not used, we would expect the
coded bits (ck,1, ck,2) to depend only on bk. We find that E[ck,1bk] = �0.42,E[ck,1bk�1] =
�0.24,E[ck,1bk�2] = �0.1,E[ck,1bk�3] = �0.05, and E[ck,2bk] = 0.57,E[ck,2bk�1] =
�0.11,E[ck,2bk�2] = �0.05,E[ck,2bk�3] = �0.02 (for the encoder for forward SNR 0dB and
noiseless feedback). This result implies that the RNN encoder does make use of the memory, of
length two to three.

Overall, our analysis suggests that Deepcode exploits memory and selectively enhances bits that were
subject to larger noise - properties reminiscent of any good code. We also observe that the relationship
between the transmitted bit and previous feedback demonstrates a non-linear relationship as expected.
Thus our code has features requisite of a strong feedback code. Furthermore, improvements can
be obtained if instead of transmitting two coded symbols per bit during Phase II, an attention-type
mechanism can be used to zoom in on bits that were prone to high noise in Phase I. These insights
suggest the following generic feedback code: it is a sequential code with long cumulative memory
but the importance of a given bit in the memory is dynamically weighted based on the feedback.

6 Conclusion

In this paper we have shown that appropriately designed and trained RNN codes (encoder and
decoder), which we call Deepcode, outperform the state-of-the-art codes by a significant margin
on the challenging problem of communicating over AWGN channels with noisy output feedback,
both on the theoretical model and with practical considerations taken into account. By concatenating
Deepcode with a traditional outer code, the BER curve drops significantly with increasing block
lengths, allowing generalizations of the learned neural network architectures. The encoding and
decoding capabilities of the RNN architectures suggest that new codes could be found in other open
problems in information theory (e.g., network settings), where practical codes are sorely missing.
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