
The Convergence of Sparsified Gradient Methods

Dan Alistarh
⇤

IST Austria
dan.alistarh@ist.ac.at

Torsten Hoefler

ETH Zurich
htor@inf.ethz.ch

Mikael Johansson

KTH
mikaelj@kth.se

Sarit Khirirat

KTH
sarit@kth.se

Nikola Konstantinov

IST Austria
nikola.konstantinov@ist.ac.at

Cédric Renggli

ETH Zurich
cedric.renggli@inf.ethz.ch

Abstract

Stochastic Gradient Descent (SGD) has become the standard tool for distributed
training of massive machine learning models, in particular deep neural networks.
Several families of communication-reduction methods, such as quantization, large-
batch methods, and gradient sparsification, have been proposed to reduce the
overheads of distribution. To date, gradient sparsification methods–where each
node sorts gradients by magnitude, and only communicates a subset of the compo-
nents, accumulating the rest locally–are known to yield some of the largest practical
gains. Such methods can reduce the amount of communication per step by up to
three orders of magnitude, while preserving model accuracy. Yet, this family of
methods currently has no theoretical justification.
This is the question we address in this paper. We prove that, under analytic
assumptions, sparsifying gradients by magnitude with local error correction pro-
vides convergence guarantees, for both convex and non-convex smooth objectives,
for data-parallel SGD. The main insight is that sparsification methods implicitly
maintain bounds on the maximum impact of stale updates, thanks to selection
by magnitude. Our analysis also reveals that these methods do require analytical
conditions to converge well, justifying and complementing existing heuristics.

1 Introduction

The proliferation of massive datasets has led to renewed focus on distributed machine learning
computation. In this context, tremendous effort has been dedicated to scaling the classic stochastic
gradient descent (SGD) algorithm, the tool of choice for training a wide variety of machine learning
models. In a nutshell, SGD works as follows. Given a function f : Rn

! R to minimize and given
access to stochastic gradients G̃ of this function, we apply the iteration

xt+1 = xt � ↵G̃(xt), (1)

where xt is our current set of parameters, and ↵ is the step size.

The standard way to scale SGD to multiple nodes is via data-parallelism: given a set of P nodes,
we split the dataset into P partitions. Nodes process samples in parallel, but each node maintains
a globally consistent copy of the parameter vector xt. In each iteration, each node computes a
new stochastic gradient with respect to this parameter vector, based on its local data. Nodes then
aggregate all of these gradients locally, and update their iterate to xt+1. Ideally, this procedure
would enable us to process P times more samples per unit of time, equating to linear scalability.

⇤Authors ordered alphabetically. The full version can be found at https://arxiv.org/abs/1809.10505.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

https://arxiv.org/abs/1809.10505

However, in practice scaling is limited by the fact that nodes have to exchange full gradients upon
every iteration. To illustrate, when training a deep neural network such as AlexNet, each iteration
takes a few milliseconds, upon which nodes need to communicate gradients in the order of 200 MB
each, in an all-to-all fashion. This communication step can easily become the system bottleneck [4].

A tremendous amount of work has been dedicated to addressing this scalability problem, largely
focusing on the data-parallel training of neural networks. One can classify proposed solutions into
a) lossless, either based on factorization [31, 7] or on executing SGD with extremely large batches,
e.g., [11], b) quantization-based, which reduce the precision of the gradients before communication,
e.g., [22, 8, 4, 29], and c) sparsification-based, which reduce communication by only selecting an
“important” sparse subset of the gradient components to broadcast at each step, and accumulating the
rest locally, e.g., [24, 9, 2, 26, 17, 25].

While methods from the first two categories are efficient and provide theoretical guarantees, e.g., [31,
4], some of the largest benefits in practical settings are provided by sparsification methods. Recent
work [2, 17] shows empirically that the amount of communication per node can be reduced by up to
600⇥ through sparsification without loss of accuracy in the context of large-scale neural networks.
(We note however that these methods do require significant additional hyperparameter optimization.)
Contribution. We prove that, under analytic assumptions, gradient sparsification methods in fact
provide convergence guarantees for SGD. We formally show this claim for both convex and non-
convex smooth objectives, and derive non-trivial upper bounds on the convergence rate of these
techniques in both settings. From the technical perspective, our analysis highlights connections
between gradient sparsification methods and asynchronous gradient descent, and suggests that some
of the heuristics developed to ensure good practical performance for these methods, such as learning
rate tuning and gradient clipping, might in fact be necessary for convergence.

Sparsification methods generally work as follows. Given standard data-parallel SGD, in each iteration
t, each node computes a local gradient G̃, based on its current view of the model. The node then
truncates this gradient to its top K components, sorted in decreasing order of magnitude, and
accumulates the error resulting from this truncation locally in a vector ✏. This error is added to the
current gradient before truncation. The top K components selected by each node in this iteration are
then exchanged among all nodes, and applied to generate the next version of the model.

Sparsification methods are reminiscent of asynchronous SGD algorithms, e.g., [20, 10, 8], as updates
are not discarded, but delayed. A critical difference is that sparsification does not ensure that every
update is eventually applied: a “small” update may in theory be delayed forever, since it is never
selected due to its magnitude. Critically, this precludes the direct application of existing techniques
for the analysis of asynchronous SGD, as they require bounds on the maximum delay, which may
now be infinite. At the same time, sparsification could intuitively make better progress than an
arbitrarily-delayed asynchronous method, since it applies K “large” updates in every iteration, as
opposed to an arbitrary subset in the case of asynchronous methods.

We resolve these conflicting intuitions, and show that in fact sparsification methods converge relatively
fast. Our analysis yields new insight into this popular communication-reduction method, giving it a
solid theoretical foundation, and suggests that prioritizing updates by magnitude might be a useful
tactic in other forms of delayed SGD as well.

Our key finding is that this algorithm, which we call TopK SGD, behaves similarly to a variant of
asynchronous SGD with “implicit” bounds on staleness, maintained seamlessly by the magnitude
selection process: a gradient update is either salient, in which case it will be applied quickly, or
is eventually rendered insignificant by the error accumulation process, in which case it need not
have been applied in the first place. This intuition holds for both convex and non-convex objectives,
although the technical details are different.
Related Work. There has been a recent surge of interest in distributed machine learning, e.g., [1, 33,
6]; due to space limits, we focus on communication-reduction techniques that are closely related.
Lossless Methods. One way of doing lossless communication-reduction is through factorization [7,
31], which is effective in deep neural networks with large fully-connected layers, whose gradients
can be decomposed as outer vector products. This method is not generally applicable, and in
particular may not be efficient in networks with large convolutional layers, e.g., [13, 27]. A second
lossless method is executing extremely large batches, hiding communication cost behind increased
computation [11, 32]. Although promising, these methods currently require careful per-instance

2

parameter tuning, and do not eliminate communication costs. Asynchronous methods, e.g., [20] can
also be seen as a way of performing communication-reduction, by overlapping communication and
computation, but are also known to require careful parameter tuning [34].
Quantization. Seide et al. [23] and Strom [25] were among the first to propose quantization to
reduce the bandwidth costs of training deep networks. Their techniques employ a variant of error-
accumulation. Alistarh et al. [4, 12] introduced a theoretically-justified stochastic quantization
technique called Quantized SGD (QSGD), which trades off compression and convergence rate. This
technique was significantly refined for the case of two-bit precision by [30]. Recent work [28] studies
the problem of selecting a sparse, low-variance unbiased gradient estimator as a linear planning
problem. This approach differs from the algorithms we analyze, as it ensures unbiasedness of the
estimators in every iteration. By contrast, error accumulation inherently biases the applied updates.
Sparsification. Strom [25], Dryden et al. [9] and Aji and Heafield [2] considered sparsifying the
gradient updates by only applying the top K components, taken at at every node, in every iteration,
for K corresponding to < 1% of the dimension, and accumulating the error. Shokri [24] and Sun
et al. [26] independently considered similar algorithms, but for privacy and regularization purposes,
respectively. Lin et al. [17] performed an in-depth empirical exploration of this space in the context
of training neural networks, showing that extremely high gradient sparsity can be supported by
convolutional and recurrent networks, without loss of accuracy, under careful hyperparameter tuning.
Analytic Techniques. The first reference to approach the analysis of quantization techniques is
Buckwild! [8], in the context of asynchronous training of generalized linear models. Our analysis
in the case of convex SGD uses similar notions of convergence, and a similar general approach.
The distinctions are: 1) the algorithm we analyze is different; 2) we do not assume the existence
of a bound ⌧ on the delay with which a component may be applied; 3) we do not make sparsity
assumptions on the original stochastic gradients. In the non-convex case, we use a different approach.

2 Preliminaries

Background and Assumptions. Please recall our modeling of the basic SGD process in Equation (1).
Fix n to be the dimension of the problems we consider; unless otherwise stated k·k will denote
the 2-norm. We begin by considering a general setting where SGD is used to minimize a function
f : Rn

! R, which can be either convex or non-convex, using unbiased stochastic gradient samples
G̃(·), i.e., E[G̃(xt)] = rf(xt).

We assume throughout the paper that the second moment of the average of P stochastic gradients
with respect to any choice of parameter values is bounded, i.e.:

E[k
1

P

PX

p=1

G̃
p(x)k2] M

2
, 8x 2 Rn (2)

where G̃
1(x), . . . , G̃P (x) are P independent stochastic gradients (at each node). We also give the

following definitions:
Definition 1. For any differentiable function f :Rd

! R,

• f is c-strongly convex if 8x, y 2 Rd, it satisfies f(y) � f(x) + hrf(x), y � xi+ c
2kx� yk

2.
• f is L-Lipschitz smooth (or L-smooth for short) if 8x, y 2 Rd, krf(x)�rf(y)k Lkx� yk.

We consider both c-strongly convex and L-Lipschitz smooth (non-convex) objectives. Let x⇤ be the
optimum parameter set minimizing Equation (1). For ✏ > 0, the “success region” to which we want
to converge is the set of parameters S = {x | kx� x

⇤
k
2
 ✏}.

Rate Supermartingales. In the convex case, we phrase convergence of SGD in terms of rate
supermartingales; we will follow the presentation of De et al. [8] for background. A supermartingale
is a stochastic process Wt with the property that that E[Wt+1|Wt] Wt. A martingale-based proof
of convergence will construct a supermartingale Wt(xt, xt�1, . . . , x0) that is a function of time and
the current and previous iterates; it intuitively represents how far the algorithm is from convergence.
Definition 2. Given a stochastic algorithm such as the iteration in Equation (1), a non-negative
process Wt : Rn⇥t

! R is a rate supermartingale with horizon B if the following conditions are
true. First, it must be a supermartingale: for any sequence xt, . . . , x0 and any t  B,

E[Wt+1(xt � ↵G̃t(xt), xt, . . . , x0)] Wt(xt, xt�1, . . . , x0). (3)

3

Algorithm 1 Parallel TopK SGD at a node p.
Input: Stochastic Gradient Oracle G̃

p(·) at node p

Input: value K, learning rate ↵

Initialize v0 = ✏
p
0 = ~0

for each step t � 1 do

acc
p
t ✏

p
t�1 + ↵G̃

p
t (vt�1) {accumulate error into a locally generated gradient}

✏
p
t acc

p
t � TopK(accpt) {update the error}

Broadcast(TopK(accpt), SUM) { broadcast to all nodes and receive from all nodes }
gt

1
P

PP
q=1 TopK(acc

q
t) { average the received (sparse) gradients }

vt vt�1 � gt { apply the update }
end for

Second, for all times T  B and for any sequence xT , . . . , x0, if the algorithm has not succeeded in
entering the success region S by time T , it must hold that

WT (xT , xT�1, . . . , x0) � T. (4)

Convergence. Assuming the existence of a rate supermartingale, one can bound the convergence
rate of the corresponding stochastic process.
Statement 1. Assume that we run a stochastic algorithm, for which W is a rate supermartingale. For
T  B, the probability that the algorithm does not complete by time T is

Pr(FT) 
E[W0(x0)]

T
.

The proof of this general fact is given by De Sa et al. [8], among others. A rate supermartingale for
sequential SGD is:
Statement 2 ([8]). There exists a Wt where, if the algorithm has not succeeded by timestep t,

Wt(xt, . . . , x0) =
✏

2↵c✏� ↵2M̃2
log
⇣
e kxt � x

⇤
k
2
✏
�1
⌘
+ t,

where M̃ is a bound on the second moment of the stochastic gradients for the sequential SGD process.
Further, Wt is a rate submartingale for sequential SGD with horizon B =1. It is also H-Lipschitz
in the first coordinate, with H = 2

p
✏
�
2↵c✏� ↵

2
M

2
��1, that is for any t, u, v and any sequence

xt�1, . . . , x0 : kWt (u, xt�1, . . . , x0)�Wt (v, xt�1, . . . , x0) k Hku� vk.

3 The TopK SGD Algorithm

Algorithm Description. In the following, we will consider a variant of distributed SGD where, in
each iteration t, each node computes a local gradient based on its current view of the model, which
we denote by vt, which is consistent across nodes (see Algorithm 1 for pseudocode). The node adds
its local error vector from the previous iteration (defined below) into the gradient, and then truncates
this sum to its top K components, sorted in decreasing order of (absolute) magnitude. Each node
accumulates the components which were not selected locally into the error vector ✏t, which is added
to the current gradient before the truncation procedure. The selected top K components are then
broadcast to all other nodes. (We assume that broadcast happens point-to-point, but in practice it
could be intermediated by a parameter server, or via a more complex reduction procedure.) Each
node collects all messages from its peers, and applies their average to the local model. This update is
the same across all nodes, and therefore vt is consistent across nodes at every iteration.

Variants of this pattern are implemented in [2, 9, 17, 25, 26]. When training networks, this pattern is
used in conjunction with heuristics such as momentum tuning and gradient clipping [17].
Analysis Preliminaries. Define G̃t(vt) =

1
P

PP
p=1 G̃

p
t (vt). In the following, it will be useful to

track the following auxiliary random variable at each global step t:

xt+1 = xt �
1

P

PX

p=1

↵G̃
p
t (vt) = xt � ↵G̃t(vt), (5)

4

where x0 = 0n. Intuitively, xt tracks all the gradients generated so far, without truncation. One of
our first objectives will be to bound the difference between xt and vt at each time step t. Define:

✏t =
1

P

PX

p=1

✏
p
t . (6)

The variable xt is set up such that, by induction on t, one can prove that, for any time t � 0,

vt � xt = ✏t. (7)

Convergence. A reasonable question is whether we wish to show convergence with respect to the
auxiliary variable xt, which aggregates gradients, or with respect to the variable vt, which measures
convergence in the view which only accumulates truncated gradients. Our analysis will in fact show
that the TopK algorithm converges in both these measures, albeit at slightly different rates. So, in
particular, nodes will be able to observe convergence by directly observing the “shared” parameter vt.

3.1 An Analytic Assumption

The update to the parameter vt+1 at each step is

1

P

PX

p=1

TopK
⇣
↵G̃

p
t (vt) + ✏

p
t

⌘
.

The intention is to apply the top K components of the sum of updates across all nodes, that is,

1

P
TopK

PX

p=1

⇣
↵G̃

p
t (vt) + ✏

p
t

⌘!
.

However, it may well happen that these two terms are different: one could have a fixed component j
of ↵G̃p

t + ✏
p
t with the large absolute values, but opposite signs, at two distinct nodes, and value 0 at all

other nodes. This component would be selected at these two nodes (since it has high absolute value
locally), whereas it would not be part of the top K taken over the total sum, since its contribution
to the sum would be close to 0. Obviously, if this were to happen on all components, the algorithm
would make very little progress in such a step.

In the following, we will assume that such overlaps can only cause the algorithm to lose a small
amount of information at each step, with respect to the norm of “true” gradient G̃t. Specifically:
Assumption 1. There exists a (small) constant ⇠ such that, for every iteration t � 0, we have:

�����TopK

1

P

PX

p=1

⇣
↵G̃

p
t (vt) + ✏

p
t

⌘!
�

PX

p=1

1

P
TopK

⇣
↵G̃

p
t (vt) + ✏

p
t

⌘�����  ⇠k↵G̃t(vt)k. (8)

Discussion. We validate Assumption 1 experimentally on a number of different learning tasks in
Section 6 (see also Figure 1). In addition, we emphasize the following points:

• As per our later analysis, in both the convex and non-convex cases, the influence of ⇠ on
convergence is dampened linearly by the number of nodes P . Unless ⇠ grows linearly with P ,
which appears unlikely, its value will become irrelevant as parallelism is increased.

• Assumption 1 is necessary for a general, worst-case analysis. Its role is to bound the gap between
the top-K of the gradient sum (which would be applied at each step in a “sequential” version of
the process), and the sum of top-Ks (which is applied in the distributed version). If the number of
nodes P is 1, the assumption trivially holds.
To illustrate necessity, consider a dummy instance with two nodes, dimension 2, and K = 1.
Assume that at a step node 1 has gradient vector (�1001, 500), and node 2 has gradient vector
(1001, 500). Selecting the top-1 (max abs) of the sum of the two gradients would result in the
gradient (0, 1000). Applying the sum of top-1’s taken locally results in the gradient (0, 0), since
we select (1001, 0) and (�1001, 0), respectively. This is clearly not desirable, but in theory
possible. The assumption states that this worst-case scenario is unlikely, by bounding the norm
difference between the two terms.

5

• The intuitive cause for the example above is the high variability of the local gradients at the nodes.
One can therefore view Assumption 1 as a bound on the variance of the local gradients (at the
nodes) with respect to the global variance (aggregated over all nodes). We further expand on this
observation in Section 6.

4 Analysis in the Convex Case

We now focus on the convergence of Algorithm 1 with respect to the parameter vt. We assume
that the function f is c-strongly convex and that the bound (2) holds. Due to space constraints, the
complete proofs are deferred to the full version of our paper [3].
Technical Preliminaries. We begin by noting that for any vector x 2 Rn, it holds that

kx� TopK (x) k1
n�K

n
kxk1, and kx� TopK (x) k2

n�K

n
kxk

2
.

Thus, if � =
q

n�K
n , we have that kx� TopK (x) k �kxk. In practice, the last inequality may be

satisfied by a much smaller value of �, since the gradient values are very unlikely to be uniform.
We now bound the difference between vt and xt using Assumption 1. We have the following:
Lemma 1. With the processes xt and vt defined as above:

kvt � xtk =

�����
1

P

PX

p=1

⇣
↵G̃

p
t�1(vt�1) + ✏

p
t�1

⌘
�

1

P

PX

p=1

TopK
⇣
↵G̃

p
t�1(vt�1) + ✏

p
t�1

⌘�����



✓
� +

⇠

P

◆ tX

k=1

�
k�1
kxt�k+1 � xt�kk.

(9)

We now use the previous result to bound a quantity that represents the difference between the updates
based on the TopK procedure and those based on full gradients.
Lemma 2. Under the assumptions above, taking expectation with respect to gradients at time t:

E

"�����
1

P

PX

p=1

⇣
↵G̃

p
t (vt)

⌘
�

1

P

PX

p=1

TopK
⇣
↵G̃

p
t (vt) + ✏

p
t

⌘�����

#

 (� + 1)

✓
� +

⇠

P

◆ tX

k=1

�
k�1
kxt�k+1 � xt�kk+

✓
� +

⇠

P

◆
↵M.

(10)

Before we move on, we must introduce some notation. Set constants

C = (� + 1)

✓
� +

⇠

P

◆ 1X

k=1

�
k�1 =

1 + �

1� �

✓
� +

⇠

P

◆
,

and
C

0 = C +

✓
� +

⇠

P

◆
=

✓
� +

⇠

P

◆
2

1� �
.

The Convergence Bound. Our main result in this section is the following:
Theorem 1. Assume that W is a rate supermartingale with horizon B for the sequential SGD
algorithm and that W is H-Lipschitz in the first coordinate. Assume further that ↵HMC

0
< 1. Then

for any T  B, the probability that vs 62 S for all s  T is:

Pr [FT] 
E [W0 (v0)]

(1� ↵HMC 0)T
. (11)

The proof proceeds by defining a carefully-designed random process with respect to the iterate vt,
and proving that it is a rate supermartingale assuming the existence of W . We now apply this result
with the martingale Wt for the sequential SGD process that uses the average of P stochastic gradients
as an update (so that M̃ = M in Statement 2). We obtain:

6

Corollary 1. Assume that we run Algorithm 1 for minimizing a convex function f satisfying the listed
assumptions. Suppose that the learning rate is set to ↵, with:

↵ < min

⇢
2c✏

M2
,
2 (c✏�

p
✏MC

0)

M2

�
.

Then for any T > 0 the probability that vi 62 S for all i  T is:

Pr (FT) 
✏

(2↵c✏� ↵2M2 � ↵2
p
✏MC 0)T

log

✓
ekv0 � x

⇤
k
2

✏

◆
. (12)

Note that the learning rate is chosen so that the denominator on the right-hand side is positive.
This is discussed in further detail in Section 6. Compared to the sequential case (Statement 2), the
convergence rate for the TopK algorithm features a slowdown of ↵2

p
✏MC

0. Assuming that P is
constant with respect to n/K,

C
0 =

 r
n�K

n
+

⇠

P

!
2

1�
q

n�K
n

= 2
n

K

 r
n�K

n
+

⇠

P

!
1 +

r
n�K

n

!
= O

⇣
n

K

⌘
.

Hence, the slowdown is linear in n/K and ⇠/P . In particular, the effect of ⇠ is dampened by the
number of nodes.

5 Analysis for the Non-Convex Case

We now consider the more general case when SGD is minimizing a (not necessarily convex) function
f , using SGD with (decreasing) step sizes ↵t. Again, we assume that the bound (2) holds. We also
assume that f is L-Lipschitz smooth.

As is standard in non-convex settings [18], we settle for a weaker notion of convergence, namely:

min
t2{1,...,T}

E
⇥
krf (vt) k

2
⇤ T!1
�! 0,

that is, the algorithm converges ergodically to a point where gradients are 0. Our strategy will be
to leverage the bound on the difference between the “real” model xt and the view vt observed at
iteration t to bound the expected value of f(vt), which in turn will allow us to bound

1
PT

t=1 ↵t

TX

t=1

↵tE
⇥
krf (vt) k

2
⇤
,

where the parameters ↵t are appropriately chosen decreasing learning rate parameters. We start from:

Lemma 3. For any time t � 1: kvt � xtk
2


⇣
1 + ⇠

P�

⌘2Pt
k=1

�
2�2
�k
kxt�k+1 � xt�kk

2
.

We will leverage this bound on the gap to prove the following general bound:
Theorem 2. Consider the TopK algorithm for minimising a function f that satisfies the assumptions
in this section. Suppose that the learning rate sequence and K are chosen so that for any time t > 0:

tX

k=1

�
2�2
�k ↵

2
t�k

↵t
 D (13)

for some constant D > 0. Then, after running Algorithm 1 for T steps:

1
PT

t=1 ↵t

TX

t=1

↵tE
⇥
krf (vt) k

2
⇤


4 (f (x0)� f (x⇤))
PT

t=1 ↵t

+

✓
2LM2 + 4L2

M
2
⇣
1 + ⇠

P�

⌘2
D

◆PT
t=1 ↵

2
t

PT
t=1 ↵t

.

(14)

Notice again that the effect of ⇠ in the bound is dampened by P . One can show that inequality (13)
holds whenever K = cn for some constant c > 1

2 and the step sizes are chosen so that ↵t = t
�✓ for

a constant ✓ > 0. When K = cn with c >
1
2 , a constant learning rate depending on the number of

iterations T can also be used to ensure ergodic convergence. We refer the reader to the full version of
our paper for a complete derivation [3].

7

0 10 20 30 40
Epoch

0.2

0.4

0.6

0.8

1.0

1.2

Em
pr
iri
ca
l ξ

TopK [K=1.0%]
TopK [K=10.0%]

(a) Empirical ⇠ logistic/RCV1.

0 10 20 30 40
Epoch

2

4

6

8

10

12

Em
pr
iri
ca
l ξ

TopK [K=1.0%]
TopK [K=10.0%]

(b) Empirical ⇠ synthetic.

0 20 40 60 80 100
Epoch

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Em
pr
iri
ca
l ξ

TopK [K=1.0%]
TopK [K=10.0%]

(c) Empirical ⇠ ResNet110.

Figure 1: Validating Assumption 1 on various models and datasets.

6 Discussion and Experimental Validation

The Analytic Assumption. We start by empirically validating Assumption 1 in Figure 1 on two
regression tasks (a synthetic linear regression task of dimension 1,024, and logistic regression for text
categorization on RCV1 [15]), as well as ResNet110 [13] on CIFAR-10 [14]. Exact descriptions of
the experimental setup are given in the full version of the paper [5]. Specifically, we sample gradients
at different epochs during the training process, and bound the constant ⇠ by comparing the left and
right-hand sides of Equation (8). The assumption appears to hold with relatively low, stable values of
the constant ⇠. We note that RCV1 is relatively sparse (average density ' 10%), while gradients in
the other two settings are fully dense.

Additionally, we present an intuitive justification why Assumption 1 can be seen as a bound on the
variance of the local gradients with respect to the global variance. Through a series of elementary
operations, one can obtain:

k✏tk
1

P

PX

p=1

k✏
p
t k

1

P

tX

k=1

�
k

PX

p=1

k↵G̃
p
t�k+1k, (15)

which in turn implies that:

kTopK

1

P

PX

p=1

⇣
↵G̃

p
t (vt) + ✏

p
t

⌘!
�

PX

p=1

1

P
TopK

⇣
↵G̃

p
t (vt) + ✏

p
t

⌘
k

 �↵kG̃tk+
�

P
k✏tk+

�

P

PX

p=1

k✏
p
t k+

�↵

P

PX

p=1

k↵G̃
p
t (vt) k

(16)

The left-hand side of (16) is the quantity we wanted to control via Assumption 1. The first term
on the right-hand side is the global (averaged) gradient at time t, while the remaining terms are all
bounded by a dampened sum of local gradients, as per equation (15). Therefore, assuming a bound
on the variance of the local gradients with respect to the global variance is equivalent to saying that
the left-hand side of (16) is bounded by the the norm of the global gradient, at least in expectation.
This is exactly the intention behind Assumption 1.

Note also that equation (15) provides a bound on the norm of the error term at time t, which is similar
to the one in Lemma 1, but expressed in terms of the norms of the local gradients. One can build on
this argument and our techniques in Section 4 to show convergence of the TopK algorithm directly.
However, such analysis will rely on a bound on the variance of the local gradients (as apposed to the
bound in equation (2)), which is a strong assumption that ignores the effect of averaging over the P

nodes. In contrast, Assumption 1 allows for a more elegant analysis that provides better convergence
rates, which are due to the averaging of the local gradients at every step of the TopK algorithm. We
refer to the full version of our paper for further details.
Learning Rate and Variance. In the convex case, the choice of learning rate must ensure both

2↵c✏� ↵
2
M

2
> 0 and ↵HMC

0
< 1, implying ↵ < min

⇢
2c✏

M2
,
2 (c✏�

p
✏MC

0)

M2

�
. (17)

Note that this requires the second term to be positive, that is ✏ >
⇣

MC0

c

⌘2
. Hence, if we aim for

convergence within a small region around the optimum, we may need to ensure that gradient variance
is bounded, either by minibatching or, empirically, by gradient clipping [17].

8

The Impact of the Parameter K and Gradient “Shape.” In the convex case, the dependence on
the convergence with respect to K and n is encapsulated by the parameter C 0 = O(n/K) assuming
P is constant. Throughout the analysis, we only used worst-case bounds on the norm gap between the
gradient and its top K components. These bounds are tight in the (unlikely) case where the gradient
values are uniformly distributed; however, there is empirical evidence showing that this is not the
case in practice [19], suggesting that this gap should be smaller. The algorithm may implicitly exploit
this narrower gap for improved convergence. Please see Figure 2 for empirical validation of this
claim, confirming that the gradient norm is concentrated towards the top elements.

0 20 40 60 80 100
K in percentage

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
 D

iff
er

en
ce

 F
ul

l -
 T

op
K

(a) TopK norm RCV1.

0 20 40 60 80 100
K in percentage

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
 D

iff
er

en
ce

 F
ul

l -
 T

op
K

(b) TopK norm synthetic.

0 20 40 60 80 100
K in percentage

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
 D

iff
er

en
ce

 F
ul

l -
 T

op
K

(c) TopK norm ResNet110.

Figure 2: Examining the value of kG̃� TopK(G̃)k/kG̃k versus K on various datasets/tasks. Every
line represents a randomly chosen gradient per epoch during training with standard hyper parameters.

In the non-convex case, the condition K = cn with c > 1/2 is quite restrictive. Again, the condition
is required since we are assuming the worst-case configuration (uniform values) for the gradients,
in which case the bound in Lemma 4 is tight. However, we argue that in practice gradients are
unlikely to be uniformly distributed; in fact, empirical studies [19] have noticed that usually gradient
components are normally distributed, which should enable us to improve this lower bound on c.
Comparison with SGD Variants. In the convex case, we note that, when K is a constant fraction
of n, the convergence of the TopK algorithm is essentially dictated by the Lipschitz constant of the
supermartingale W , and by the second-moment bound M , and will be similar to sequential SGD.
Please see Figure 3 for an empirical validation of this fact.

0 10 20 30 40 50
Epoch

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Er
ro

r

TopK [K=0.1%]
TopK [K=1.0%]
TopK [K=10.0%]
Baseline

(a) RCV1 convergence.

0 10 20 30 40 50
Epoch

50

100

150

200

Er
ro

r

TopK [K=0.1%]
TopK [K=1.0%]
TopK [K=10.0%]
Baseline

(b) Linear regression.

0 25 50 75 100 125 150
Epoch

0.0

0.5

1.0

1.5

2.0

Er
ro

r

TopK [K=0.025%]
TopK [K=0.1%]
TopK [K=0.2%]
Baseline

(c) ResNet110 on CIFAR10.

Figure 3: Examining convergence versus value of K on various datasets and tasks.

Compared to asynchronous SGD, the convergence rate of the TopK algorithm is basically that of an
asynchronous algorithm with maximum delay ⌧ = O(

p
n/K). That is because an asynchronous

algorithm with dense updates and max delay ⌧ has a convergence slowdown of ⇥(⌧
p
n) [8, 16, 3].

We note that, for large sparsity (0.1%—1%), there is a noticeable convergence slowdown, as predicted.
The worst-case convergence of TopK is similar to SGD with stochastic quantization, e.g., [4, 28]:
for instance, for K =

p
n, the worst-case convergence slowdown is O(

p
n), the same as QSGD [4].

The TopK procedure is arguably simpler to implement than the parametrized quantization and
encoding techniques required to make stochastic quantization behave well [4]. Here, TopK had
superior convergence rate compared to stochastic quantization/sparsification [4, 28] given the same
communication budget per node.

7 Conclusions

We provided the first theoretical analysis of the “TopK” sparsification communication-reduction
technique. Our approach should extend to methods combining sparsification with quantization by
reduced precision [2, 25] and methods using approximate quantiles [2, 17]. We provide a theoretical
foundation for empirical results shown with large-scale experiments on recurrent neural networks on
production-scale speech, neural machine translation, as well as image classification tasks [9, 17, 25, 2].

9

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie Grant Agreement No. 665385.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for
large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

[3] Dan Alistarh, Christopher De Sa, and Nikola Konstantinov. The convergence of stochastic
gradient descent in asynchronous shared memory. arXiv preprint arXiv:1803.08841, 2018.

[4] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Random-
ized quantization for communication-efficient stochastic gradient descent. In Proceedings of
NIPS 2017, 2017.

[5] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cé-
dric Renggli. The convergence of sparsified gradient methods. arXiv preprint arXiv:1809.10505,
2018.

[6] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[7] Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman. Project
adam: Building an efficient and scalable deep learning training system. In OSDI, volume 14,
pages 571–582, 2014.

[8] Christopher De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Taming the wild: A unified
analysis of Hogwild. Style Algorithms. In NIPS, 2015.

[9] Nikoli Dryden, Sam Ade Jacobs, Tim Moon, and Brian Van Essen. Communication quantization
for data-parallel training of deep neural networks. In Proceedings of the Workshop on Machine
Learning in High Performance Computing Environments, pages 1–8. IEEE Press, 2016.

[10] John C Duchi, Sorathan Chaturapruek, and Christopher Ré. Asynchronous stochastic convex
optimization. arXiv preprint arXiv:1508.00882, 2015.

[11] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[12] Demjan Grubic, Leo Tam, Dan Alistarh, and Ce Zhang. Synchronous multi-gpu training
for deep learning with low-precision communications: An empirical study. In EDBT, pages
145–156, 2018.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[14] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

[15] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li. Rcv1: A new benchmark collection
for text categorization research. Journal of machine learning research, 5(Apr):361–397, 2004.

[16] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel stochastic gradient
for nonconvex optimization. In Advances in Neural Information Processing Systems, pages
2737–2745, 2015.

[17] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient com-
pression: Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

10

[18] Ji Liu and Stephen J Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[19] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet classification using
binary convolutional neural networks. In European Conference on Computer Vision, 2016.

[20] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In Advances in neural information
processing systems, pages 693–701, 2011.

[21] Cèdric Renggli, Dan Alistarh, and Torsten Hoefler. Sparcml: High-performance sparse commu-
nication for machine learning. arXiv preprint arXiv:1802.08021, 2018.

[22] F. Seide, H. Fu, L. G. Jasha, and D. Yu. 1-bit stochastic gradient descent and application to
data-parallel distributed training of speech dnns. Interspeech, 2014.

[23] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit Stochastic Gradient Descent
and its Application to Data-parallel Distributed Training of Speech DNNs. In Fifteenth Annual
Conference of the International Speech Communication Association, 2014.

[24] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the
22nd ACM SIGSAC conference on computer and communications security, pages 1310–1321.
ACM, 2015.

[25] Nikko Strom. Scalable distributed dnn training using commodity gpu cloud computing. In
Sixteenth Annual Conference of the International Speech Communication Association, 2015.

[26] Xu Sun, Xuancheng Ren, Shuming Ma, and Houfeng Wang. meprop: Sparsified back propaga-
tion for accelerated deep learning with reduced overfitting. arXiv preprint arXiv:1706.06197,
2017.

[27] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, pages 4278–4284,
2017.

[28] Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for
communication-efficient distributed optimization. arXiv preprint arXiv:1710.09854, 2017.

[29] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pages 1508–1518, 2017.

[30] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in Neural
Information Processing Systems, pages 1508–1518, 2017.

[31] Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

[32] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 2017.

[33] Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Zhiheng Huang, Brian Guenter, Oleksii
Kuchaiev, Yu Zhang, Frank Seide, Huaming Wang, et al. An introduction to computational
networks and the computational network toolkit. Microsoft Technical Report MSR-TR-2014–112,
2014.

[34] Jian Zhang, Ioannis Mitliagkas, and Christopher Ré. Yellowfin and the art of momentum tuning.
arXiv preprint arXiv:1706.03471, 2017.

11

