
Efficient Formal Safety Analysis of Neural Networks
Supplementary Material

This supplementary material contains the details left out of the original submission for brevity.

1 Proofs

1.1 Properties of Overestimated Nodes

Below we describe and prove some useful properties that overestimated nodes satisfy. Throughout
this section, X denotes an input interval range, z = Relu(Eq) denotes an overestimated node, and
W denotes a set of overestimated nodes. Furthermore, [l, u] and [Eqlow, Equp] represent the concrete
and symbolic intervals for each node before ReLU function, respectively. Lastly, we let Eq∗ be its
ground-true equation.

property 1.1. Given input range X , an overestimated node’s (z = Relu(Eq)) concrete upper and
lower bounds satisfy u = maxx∈XEq(x) > 0 and l = minx∈XEq(x) < 0.

proof: It suffices to show that ∃x1, x2 ∈ X such that Eq(x1) > 0 and Eq(x2) < 0. If Eq are
strictly non-negative on X , then, for any x1∈ X , we have Relu(Eq(x1)) = Eq(x1) and we do not
perform any relaxations. Likewise, if Eq are strictly non-positive, then for any x2∈ X , we have
Relu(Eq(x2)) = 0, so we also do not need to apply any relaxations. But, we assumed that the node
was overestimated, so that there must be ∃x1∈ X such that Eq(x1) > 0, and ∃x2∈ X such that
Eq(x2) < 0. Therefore, since u = maxx∈XEq(x) ≥ Eq(x1), and l = minx∈XEq(x) ≤ Eq(x2),
we have l < 0 and u > 0, which is the desired result.

property 1.2. The symbolic input interval [Eqlow, Equp] to a node of the i-th layer satisfies Eqlow =
Equp = Eq∗ if there are no overestimated node in the earlier layers.

proof: We prove this inductively over the number of layers in a network. For the base case, we
consider the first layer, which is the input layer. The assumption that there is no overestimated
node in all previous layers, in this case, is always true, as we define overestimated nodes to occur
only when we apply the activation function ReLU. Thus, we have Eqlow = Eq∗ = Equp in this
case. Now, suppose that the property holds for inputs up to the i-th layer. We show it consequently
holds for inputs to the (i+ 1)-th layer. We know, for the j-th node in the i-th layer, that its input is
[Eq∗j , Eq∗j]. Since we now assume that no nodes in the i-th layer are overestimated nodes, we know
that Relu(Eq∗j) = Eq∗j or 0. Let yj denote its output and let y denote the vector of outputs in this
layer. Then, the output of the j-th node is [yj , yj]. Considering the weights W , one can see that the
input for the k-th node of the (i+ 1)-th layer is [Eqlow, Equp] = [(Wy)k, (Wy)k]. Thus, we have
Eqlow = Equp = Eq∗ which is exactly the same as the claim.

corollary 1.1. In a neural network that contains no overestimated node, there is no error in the
output layer.

proof: This follows from Property 1.2, as it tells us that, for each node, say node j, in the output
layer, Eqlow = Eq∗ = Equp. Since this holds for all nodes, there is zero error.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

1.2 Symbolic Linear Relaxation

lemma 1.1. The maximum distances between the approximation given in symbolic linear relaxation
as Equation 1 are −uuplup

uup−lup
for upper bound and −ulowllow

ulow−llow
for lower bound.

Relu(Eqlow) %→
ulow

ulow − llow
(Eqlow) Relu(Equp) %→

uup

uup − lup
(Equp − lup) (1)

proof: The distance for upper bound in Equation 1 is:

dup =
uup

uup − lup
(Equp − lup) − Relu(Equp)

=

{
uup

uup−lup
(Equp − lup) − Equp (if 0 ≤ Equp ≤ uup)

uup

uup−lup
(Equp − lup) (if lup ≤ Equp < 0)

≤ − uuplup
uup − lup

(when Equp = 0)

(2)

The distance for lower bound in Equation 1 is:

dlow = Relu(Eqlow) −
ulow

ulow − llow
(Eqlow)

=

{
Eqlow − ulow

ulow−llow
(Eqlow) (if 0 ≤ Eqlow ≤ ulow)

− ulow
ulow−llow

(Eqlow) (if llow ≤ Eqlow < 0)

≤ − ulowllow
ulow − llow

(when Eqlow = llow/Eqlow = ulow)

(3)

property 1.3. The approximation produced by symbolic linear relaxation Equp and Eqlow as
Equation 1 has the least maximum distance from the actual output Eq∗.

proof: We give the proof for upper and lower symbolic linear relaxation respectively.

(1) Upper symbolic linear relaxation: The maximum distance for upper bound in Equation 1 is
m = −ul

u−l when Eq(x) = 0 shown in Lemma 1.1. If another symbolic linear relaxation that has
maximum distance m′ < m, then it can be written as Relu(Equp) %→ k(Equp(x)) +m′ due to its
linearity. To overestimate two points Relu(u) %→ k · u + m′ ≥ u and Relu(l) %→ k · l ≥ 0, we
arrive at the inequality u−m′

u ≤ k ≤ −m′

l . Consequently, we get m′ ≥ −ul
u−l , which conflicts with

assumption m′ < m.

(2) Lower symbolic linear relaxation: Also shown in Lemma 1.1, the maximum distance m = −ul
u−l

for lower bound equation can be achieved when Eq = l or Eq = u. Assume there is another
lower symbolic linear relaxation has the maximum distance m′ < m, it can be similarly written as
Relu(Eq(x)) %→ u+m′

1−m′
2

u−l x − ul+um′
1−lm′

2
u−l , where Relu(l) %→ m′

1< m and Relu(u) %→ m′
2< m.

To ensure Relu(0) %→ − ul+um′
1−lm′

2
u−l ≤ 0, we see ul+um′

1− lm′
2≥ 0, which conflicts with m′

1< m
and m′

2< m.

Thus, we have shown the claim.

1.3 Directed Constraint Refinement

lemma 1.2. If there are n overestimated nodes in a neural network, then after applying directed
constraint refinement to each of the n nodes, that is, considering 2n cases after splitting, we achieve
a function F ′ satisfying F ′ = F ∗, where F ∗ is the actual function.

proof: After splitting all the n overestimated nodes, for each split cases, all the nodes are constrained
to be linear and thus there is no overestimated node. According to Corollary 1.1, we can see there is
no error in the output layer for each case. The output union F ′ of these 2n cases is an approximation
of the network without any overestimation error, which is exactly the same as the actual function F ∗.

2

2 Detailed Study of Symbolic Linear Relaxation

As we have shown before in Section 3 of the paper, the insight of symbolic linear relaxation is
in finding the tightest possible linear bounds of the ReLU function and therefore minimizing the
overestimation error while approximating network outputs. Note that overestimated nodes in different
layers will have different approximation errors depending on the symbolic intervals that they were
given as input. For layers before n0-th layer, the one in which the first overestimated nodes occur,
symbolic lower and upper bounds will be the same for all nodes. This is shown in Property 1.2, and
makes the approximations in earlier layers a straightforward computation. However, the expressions
of lower and upper symbolic bounds can be much more complicated in deeper layers where the
presence of overestimated nodes becomes more frequent. To address this problem, we discuss and
illustrate how symbolic linear relaxation works in detail below.

We consider an arbitrary overestimated node A, with equation given by z = Relu(Eq), where its
input Eq is kept as a symbolic interval [Eqlow, Equp]. Furthermore, we let n0denote the first layer
in which overestimated nodes occur, let nA denote the layer overestimated node A appears in, and
let (llow, ulow) and (lup, uup) denote the concrete lower and upper bound of A’s symbolic bounds
Eqlow and Equp. We consider several cases for the symbolic linear relaxations on A, depending on
where it appears in relation to n0.

a. nA = n0 : If A is an overestimated node in n0, then, according to Property 1.2, we see
that A’s input equation Eq satisfies Eqlow = Equp = Eq. Furthermore, due to Property 1.1,
u = maxx∈XEq(x) > 0 and l = minx∈XEq(x) < 0, A′s output can be easily approximated by:

Relu([Eq,Eq]) %→ [
u

u − l
Eq,

u

u − l
(Eq − l)] (4)

b. nA > n0 : If A is an overestimated node after n0-th layer, possibly its symbolic lower bound
equation Eqlow is no longer the same as its upper bound equation Equp before relaxation. Though we
can still approximate the it as Relu([Eqlow, Equp]) %→ [uup

uup−llow
Eqlow,

uup

uup−llow
(Equp − llow)], this

is not the tightest possible bound. Therefore, we consider bounds on Eqlow and Equp independently
to achieve tighter approximations. In details, this process can be divided into following four scenarios
shown in Equation 5, each dependent on different value taken by Eqlow and Equp.

Relu([Eqlow, Equp]) %→⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[0, uup

uup−lup
(Equp − lup)] (llow ≤ 0, ulow ≤ 0, lup ≤ 0, uup > 0)

[0, Equp] (llow ≤ 0, ulow ≤ 0, lup > 0, uup > 0)
[ulow
ulow−llow

Eqlow,
uup

uup−lup
(Equp − lup)] (llow ≤ 0, ulow > 0, lup ≤ 0, uup > 0)

[ulow
ulow−llow

Eqlow, Equp] (llow ≤ 0, ulow > 0, lup > 0, uup > 0)
(5)

For instance, consider an overestimated node satisfying the third case that both of Eqlow and Equp can
take concrete value spanning 0. The maximum error introduced by relaxation according to Equation 4
is −uupllow

uup−llow
, while the relaxation by Equation 5 has smaller maximum error max(−uuplup

uup−lup
, −ulowllow
ulow−llow

).
Thus, we can see such case work allows us to have tighter the approximations.

3 Different Optimization and Implementation Details

In our initial experiments, we found out that the performance of matrix multiplications is a major
determining factor for the overall performance of the symbolic relaxation and interval propagation
process. We use the highly optimized OpenBLAS1 library for matrix multiplications. For solving
the linear constraints generated during the directed constraint refinement process, we use lp_solve
5.52. For formally checking non-existence of adversarial images that can be generated by an L-2
norm bounded attacker, it requires us to solve an optimization problem where the constraints are

1https://www.openblas.net/
2http://lpsolve.sourceforge.net/5.5/

3

linear but the objective is quadratic. Since lp_solve does not support quadratic objectives yet, Gurobi
8.0.03 solver can be further used to handle these attacks..

Parallelization. Our directed constraint refinement process is highly parallelizable as it creates an
independent set of linear programs that can be solved in parallel. For facilitating this process, Neurify
creates a thread pool where each thread solves one set of linear constraints with its own lp_solve
instances. However, as the refinement process might be highly uneven for different overestimated
nodes, we periodically rebalance the queues of different threads to minimize idle CPU time.

Outward Rounding. One of the side effects of floating point computations is that even minor
precision drops on one hidden node can be amplified significantly during propagations. To avoid such
issues, we perform outward rounding after every floating point computation, i.e., we always round
[x, x] to [⌊x⌋, ⌈x⌉]. Our current prototype uses 32-bit float arithmetic that can support all of our
current safety properties with outward rounding. If needed, the analysis can be easily switched to
64-bit double.

[-5x,-2x] [0,3x]

[-5x,-2x] [0,3x]

1 0

0 1

0 1

0 1

[-x,x] [-2x,-x] [x,2x]

[-x,x]

[0,x] [x,2x]

[-4x,0] [-3x,0]

[-x,2x] [-2x,x]

[x,3x] [-3x,-x]

[-2x,-x]

Figure 1: Element-wise matrix multiplications
to allow symbolic intervals to propagate through
convolutional kernels.

Supporting Convolutional Layers. Models with
convolutional layers are often used in computer
vision applications. They usually perform ma-
trix multiplications with a convolution kernel as
shown in the dash boxes of Figure 1. To allow
a symbolic interval to propagate through various
convolutional layers, we simply multiply the sym-
bolic interval inputs with the concrete kernels as
shown in Figure 1.

4 Experimental Setup

To evaluate the performance of Neurify, we tested it with 9 different models, including fully connected
ACAS Xu models, three fully connected Drebin models, three fully connected MNIST models, one
convolutional MNIST model and one convolutional self-driving car model. The detailed structures of
all these models are summarized in Manuscript Table 1 and here we provide the detailed descriptions
of each type of model.

ACAS Xu. ACAS is crucial aircraft alert systems used for alerting and preventing aircraft collisions.
Its unmanned system ACAS Xu [8] are networks advising decisions for aircraft based on the
conditions of intruders and ownships. Due to its powerful abilities, it is on schedule to be installed
in over 30,000 passenger and cargo aircraft worldwide [10] and US Navy’s fleets [1]. ACAS Xu is
made up of 45 different models, each has five inputs, five outputs, six fully connected layers, fifty
ReLU nodes in each layer. All the ACAS Xu models and self-defined safety properties we tested are
given in [7, 6, 12].

MNIST_FC. MNIST [9] is a handwritten digit dataset containing 28x28 pixel images with class
labels from 0 to 9. The dataset includes 60,000 training samples and 10,000 testing samples. Here
we use three different architectures of fully connected MNIST models with accuracies of 96.59%,
97.43%, and 98.27%. The more ReLU nodes the model has, the higher its accuracy is.

Drebin_FC. Drebin [4] is a dataset with 129,013 Android applications among which 123,453 are
benign and 5,560 are malicious. Currently, there is a total of 784,544 binary features extracted
from each application according to 8 predefined categories [11]. The accuracy for Drebin_FC1,
Drebin_FC2 and Drebin_FC3 are 97.61%, 98.53% and 99.01%. We show that compared to input
bisection and refinement, directed constraint refinement can be applied on more generalized networks,
such as Drebin model with such large amount of input features.

ConvNet. ConvNet is a comparably large convolutional MNIST models with about 5000 ReLU
nodes used in [13] trained on 60,000 MNIST dataset. Due to its large amounts of ReLU nodes, its
safety property can never be supported by the traditional solver-based formal analysis systems such
as ReluPlex [7].

Self-driving Car. Finally, we use a large-scale (with over 10,000 ReLU nodes) convolutional
autonomous vehicle model, on which no formal proof has been given before. The self-driving car

3http://www.gurobi.com/

4

dataset comes from Udacity self-driving car challenge containing 101,396 training and 5,614 testing
samples [3]. And we use similar DAVE-2 self-driving car architecture from NVIDIA [5, 2] with
3 × 100 × 100 inputs and 1 regression output for advisory direction. The detailed structure is shown
in Manuscript Table 1. On such model, we have already shown that Neurify can formally prove four
different types of safety properties: L∞, L1, Brightness and contrast on DAVE in Table 2.

5 Additional Results

Neurify has either formally verified or provided counterexamples for thousands of safety properties,
and we summarize the additional primary properties Neurify can provide on different models in the
first subsection in details. Note that the results of DAVE can be found in Manuscript Section 4.

5.1 Cases verified by Neurify for Each Model

ConvNet. We evaluate Neurify on ConvNet, a large convolutional MNIST model. To the best of our
knowledge, none of traditional solver-based formal analysis systems can give formal guarantee for
such large convolutional MNIST network. However, Neurify is able to verify most of the properties
within L∞ ≤ 5. We define the safety property as whether the model will misclassify MNIST images
within allowable input ranges bounded by L∞ ≤ ϵ(ϵ = 1, ..., 25). The results are shown in Table 1.
The timeout setting here is 3600 seconds.

Table 1: Showing the percentage of images formally verified (safe and violated out of 100 randomly
selected images) by Neurify with different safety properties (L∞ ≤ ϵ(ϵ = 1, ..., 25)) on MNIST
ConvNet.

ϵ Safe(%) Violated(%) Total(%)
1 100 0 100
2 98 1 99
3 98 2 100
4 93 2 95
5 86 2 88

10 1 9 10
15 0 20 20
25 0 55 55

MNIST_FC. We also evaluate Neurify on three different fully connected MNIST models. The
property is defined as whether the image will be misclassified with allowable perturbed input ranges
bounded by L∞ ≤ ϵ(ϵ = 1, ..., 15). In Table 2, we show the cases that Neurify can formally verify to
be safe or find concrete counterexamples on out of 100 random images from MNIST dataset within
3600 seconds.

Table 2: Total cases that can be verified by Neurify on three fully connected MNIST models out of
100 hand-written digits. The timeout setting here is 3600 seconds.

Models Cases
(%) 1 2 5 10 15

MNIST_FC1
Violated 15 27 29 66 96

Safe 85 73 71 34 4
Total 100 100 100 100 100

MNIST_FC2
Violated 0 11 26 74 83

Safe 100 89 68 9 5
Total 100 100 94 83 88

MNIST_FC3
Violated 0 4 8 6 23

Safe 96 87 79 33 27
Total 96 91 87 39 50

5

[5] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel,
M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. IEEE
Intelligent Vehicles Symposium, 2017.

[6] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer. Policy compression
for aircraft collision avoidance systems. In 35th Digital Avionics Systems Conference, pages
1–10. IEEE, 2016.

[7] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An efficient smt solver
for verifying deep neural networks. International Conference on Computer Aided Verification,
2017.

[8] M. J. Kochenderfer, J. E. Holland, and J. P. Chryssanthacopoulos. Next-generation airborne
collision avoidance system. Technical report, Massachusetts Institute of Technology-Lincoln
Laboratory Lexington United States, 2012.

[9] Y. LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

[10] M. T. Notes. Airborne collision avoidance system x. MIT Lincoln Laboratory, 2015.

[11] M. Spreitzenbarth, F. Freiling, F. Echtler, T. Schreck, and J. Hoffmann. Mobile-sandbox: having
a deeper look into android applications. In 28th Annual ACM Symposium on Applied Computing,
pages 1808–1815. ACM, 2013.

[12] S. Wang, K. Pei, W. Justin, J. Yang, and S. Jana. Formal security analysis of neural networks
using symbolic intervals. 27th USENIX Security Symposium, 2018.

[13] E. Wong and J. Z. Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. International Conference on Machine Learning, 2018.

7

