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Abstract

Bandit learning is characterized by the tension between long-term exploration and
short-term exploitation. However, as has recently been noted, in settings in which
the choices of the learning algorithm correspond to important decisions about
individual people (such as criminal recidivism prediction, lending, and sequential
drug trials), exploration corresponds to explicitly sacrificing the well-being of one
individual for the potential future benefit of others. In such settings, one might like
to run a “greedy” algorithm, which always makes the optimal decision for the indi-
viduals at hand — but doing this can result in a catastrophic failure to learn. In this
paper, we consider the linear contextual bandit problem and revisit the performance
of the greedy algorithm. We give a smoothed analysis, showing that even when
contexts may be chosen by an adversary, small perturbations of the adversary’s
choices suffice for the algorithm to achieve “no regret”, perhaps (depending on
the specifics of the setting) with a constant amount of initial training data. This
suggests that in slightly perturbed environments, exploration and exploitation need
not be in conflict in the linear setting

1 Introduction

Learning algorithms often need to operate in partial feedback settings (also known as bandit settings),
in which the decisions of the algorithm determine the data that it observes. Many real-world
application domains of machine learning have this flavor. Predictive policing algorithms [[Rudin,
2013]] deploy police officers and receive feedback about crimes committed and observed in areas the
algorithm chose to deploy officers. Lending algorithms [Byrnes| 2016|] observe whether individuals
who were granted loans pay them back, but do not get to observe counterfactuals: would an individual
not granted a loan have repaid such a loan? Algorithms which inform bail and parole decisions
[Barry-Jester et al., | 2015]] observe whether individuals who are released go on to recidivate, but do
not get to observe whether individuals who remain incarcerated would have committed crimes had
they been released. Algorithms assigning drugs to patients in clinical trials do not get to observe the
effects of the drugs that were not assigned to particular patients.

Learning in partial feedback settings faces the well-understood tension between exploration and
exploitation. In order to perform well, the algorithms need at some point to exploit the information
they have gathered and make the best decisions they can. But they also need to explore: to make
decisions which do not seem optimal according to the algorithm’s current point-predictions, in order
to gather more information about less explored portions of the decision space.

"The full version of this paper is available at https:/arxiv.org/abs/1801.03423|
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However, in practice, decision systems often do not explicitly explore, for a number of reasons.
Exploration is important for maximizing long-run performance, but decision makers might be myopic
— more interested in their short-term reward. In other situations, the decisions made at each round
affect the lives of individuals, and explicit exploration might be objectionable on its face: it can be
considered immoral to harm an individual today (explicitly sacrificing present utility) for a potential
benefit to future individuals (long-term learning rates) [Bird et al.l 2016, Bastani et al.,2017]. For
example, in a medical trial, it may be repugnant to knowingly assign a patient a drug that is thought to
be sub-optimal (or even dangerous) given the current state of knowledge, simply to increase statistical
certainty. In a parole scenario, we may not want to release a criminal that we estimate is at high risk
for committing violent crime.

On the other hand, a lack of exploration can lead to a catastrophic failure to learn, which is highly
undesirable — and which can also lead to unfairness. A lack of exploration (and a corresponding
failure to correctly learn about crime statistics) has been blamed as a source of “unfairness” in
predictive policing algorithms [Ensign et al.,[2017]]. In this paper, we seek to quantify how costly
we should expect a lack of exploration to be when the instances are not entirely worst-case. In other
words: is myopia a friction that we should generically expect to quickly be overcome, or is it really a
long-term obstacle to learning? Empirical evaluation shows that greedy algorithms often do well —
even outperforming algorithms with explicit exploration [Bietti et al.,|2018|]. Our work provides a
theoretical explanation for this phenomenon.

1.1 Our Results

We study the linear contextual bandits problem, which informally, represents the following learning
scenario which takes place over a sequence of rounds ¢ (formal definitions appear in Section[2). At
each round ¢, the learner must make a decision amongst k choices, which are represented by contexts
x! € R%. If the learner chooses action i; at round ¢, he observes a reward 7§ — but does not observe
the rewards corresponding to choices not taken. The rewards are stochastic, and their expectations are
governed by unknown linear functions of the contexts. For an unknown set of parameters 3; € R9,
E[r] = B; - #t. We consider two variants of the problem: in one (the single parameter setting), all of
the rewards are governed by the same linear function: 81 = ... = [ = 3. In the other (the multiple
parameter setting), the parameter vectors [3; for each choice can be distinct. Normally, these two
settings are equivalent to one another (up to a factor of k in the problem dimension) — but as we
show, in our case, they have distinct propertieﬂ The single-parameter setting can model, for example,
the choice of which of some subset of individuals should participate in a particular clinical trial. The
multi-parameter setting can model, for example, the risk of criminal recidivism amongst different
individuals who come from different backgrounds, when observable features correlate differently to
crime risk amongst different groups of individuals.

We study the greedy algorithm, which trains least-squares estimates Bf on the current set of observa-
tions, and at each round, picks the arm with the highest predicted reward: i; = arg max; (3! - z¢. In
the single parameter setting, greedy simply maintains a single estimate 3.

It is well known that the greedy algorithm does not obtain any non-trivial worst-case regret bound.
We give a smoothed analysis which shows that the worst case is brittle, however. Specifically, we
consider a model in which the contexts x! are chosen at each round by an adaptive adversary, but are
then perturbed by independent Gaussian perturbations in each coordinate, with standard deviation o.
We show that under smoothed analysis, there is a qualitative distinction between the single parameter
and multiple parameter settings:

1. In the single parameter setting (Section [)), the greedy algorithm with high probability
obtains regret bounded by O (i@) over T  rounds.

2. In the multiple parameter setting (Section [3)), the greedy algorithm requires a “warm start” —
that is, to start with a small number of observations for each action — to obtain non-trivial
regret bounds, even when facing a perturbed adversary. We show that if the warm start
provides for each arm a small number of examples (depending polynomially on fixed
parameters of the instance, like 1/0, d, k, and 1/(min; ||5;]|)), that may themselves be

2To convert a multi-parameter problem to single-parameter, concatenate the parameter vectors 3; € R? into
a single vector 8 € R*?, and lift contexts x! into kd dimensions with zeros in all irrelevant kd — d coordinates.



chosen by an adversary and perturbed, then with high probability greedy obtains regret
0 (\{Ti?k) Moreover, this warm start is necessary: we give lower bounds showing that if

the greedy algorithm is not initialized with a number of examples n that grows polynomially
with both 1/0 and with 1/ min; ||5;]], then there are simple fixed instances that force the
algorithm to have regret growing linearly with 7', with constant probability. (See Section [6]
for a formal statement of the lower bounds.)

Our results extend beyond this particular perturbed adversary: we give general conditions on the
distribution over contexts which imply our regret bounds. All missing proofs can be found in the full
version.

1.2 Related Work

The most closely related piece of work (from which we take direct inspiration) is|Bastani et al.|[2017]],
who, in a stochastic setting, give conditions on the sampling distribution over contexts that causes
the greedy algorithm to have diminishing regret in a closely related but incomparable version of
the two-armed linear contextual bandits problenﬂ The conditions on the context distribution given
in that work are restrictive, however. They imply, for example, that every linear policy (and in
particular the optimal policy) will choose each action with constant probability bounded away from
zero. When translated to our perturbed adversarial setting, the distributional conditions of |Bastani
et al.[[2017] do not imply regret bounds that are sub-exponential in either the perturbation magnitude
o or the dimension d of the problem. There is also strong empirical evidence that exploration free
algorithms perform well on real datasets: [Bietti et al.,[2018]]. Our work can be viewed as providing
an explanation of this phenomenon. Finally, building on our work, [Raghavan et al., 2018 use the
same diversity condition that we introduce in this paper to show a stronger result in a more restrictive
setting. They show that in the single parameter setting, when one further assumes that 1) the linear
parameter is drawn from a Bayesian prior that is not too concentrated, 2) the contexts are drawn
i.i.d. from a fixed distribution and then perturbed, and 3) that the algorithm is allowed to make its
decisions in “batches” of polylog(d,t)/c? many rounds, then the greedy algorithm is essentially
instance optimal in terms of Bayesian regret, and moreover, that its regret grows at a rate of O(Tl/ 3)
in the worst case. In contrast, we make substantially weaker assumptions (the parameter vector and
contexts can be worst case, we need not be in the single parameter setting, and we don’t need batches),
but prove a worse regret bound of O(Tl/ 2), without a guarantee of instance optimality.

A large literature focuses on designing no-regret algorithms for contextual bandit problems (e.g.
Li et al. [2010], /Agarwal et al.|[2014], |Li et al. [2011]]), particularly for linear contextual bandits
(e.g. [Chu et al}|2011] |Abbasi-Yadkori et al.,|2011]]). Some of these (e.g. [Syrgkanis et al.|[2016])
use “follow the perturbed leader” style algorithms, which invite a natural comparison to our setting.
However, the phenomenon we are exploiting is quite different. It is very important in our setting that
the perturbations are added by nature, and if the perturbations were instead added by our algorithm
(against worst-case contexts), the regret guarantee would cease to hold. To see this, note that against
worst-case adversaries, the single parameter and multiple parameter settings are equivalent to one
another — but in our smoothed setting, we prove a qualitative separation.

We defer further related work, including work on smoothed analysis and algorithmic fairness, to the
full version.

2 Model and Preliminaries

We now introduce the notation and definitions we use for this work. For a vector z, ||z|| represents its
Euclidean norm. We consider two variants of the k-arm linear contextual bandits problem. The first
setting has a single d-dimensional parameter vector /3 which governs rewards for all contexts z € R%;
the second has k distinct parameter vectors 3; € R¢ governing the rewards for different arms.

3Bastani et al.|[2017]] assume a single context at each round, shared between two actions. We consider each
action as parameterized by its own context, and k can be arbitrary.



In rounds ¢, contexts xﬁ, R a:’,i), are presented, where xf € R% is treated as a row vector unless
otherwise noted. The learner chooses an arm i’ € {1, ..., k}, and obtains s?-subgaussian’|reward
r* whose mean satisfies E [r'] = 3 - 2!, in the single parameter setting and IE [r'] = ;¢ - 2, in the
multi-parameter setting. The regret of a sequence of actions and contexts of length 7" is (again, in the

single parameter setting all 3; = f3):
T

Regret = Regret(z!,it, ... 27, iT) = Z (mlaxﬁi xt— B xi) .

t=1
We next formalize the history or transcript of an algorithm on a sequence of contexts. A history entry
is amember of H = (R?)" x {1,...,k} x R. A history is a list of history entries, i.c. a member of
H*. Given a history H € H”, entry ¢ is denoted h' = (21, ..., 2k, ", 7).

Formally, an adaptive adversary A is a (possibly randomized) algorithm that maps a history to k

contexts: A4 : H* — (Rd) *. We denote the output of the adversary by (u1, po, .. ., ukWe assume
that ||| < 1 always. Next we define the notion of a perturbed adversary, which encompasses both
stages of the context-generation process.

Definition 1 (Perturbed Adversary). For any adversary A, the o-perturbed adversary A, is defined
by the following process. In round ¢:

1. Given history H'=t € H'=  let pf, ..., b = A(H'™Y).
2. Perturbations ef, . .., el are drawn independently from A/ (0, o%1).
3. Output the list of contexts (z4,...,z%) = (uf +el, ..., ul +eb).

We define a perturbed adversary to be R-bounded if with probability 1, ||zf| < R for all ¢ and ¢ and
all histories. We call perturbations (r, §)-centrally bounded if, for each history, and fixed unit vectors
wi, ..., wy (possibly all equal), we have with probability 1 — § that max;—1,__x w; - €} < r.

We can interpret the output of a perturbed adversary as being a mild perturbation of the (unperturbed)
adaptive adversary when the magnitude of the perturbations is smaller than the magnitude of the
original context choices u; themselves. Said another way, we can think of the perturbations as
being mild when they do not substantially increase the norms of the contexts with probability at
least 1 — §. This will be the case throughout the run of the algorithm (via a union bound over T")
when o < O(1/+/d). We refer to this case as the “low perturbation regime”. We view it as the
most interesting case because otherwise, the perturbations tend to be large enough to overwhelm the
adversarial choices and the problem becomes easier. Here we focus on presenting results for the low
perturbation regime, leaving the rest to the full version.

3 Proof Approach and Key Conditions

Our goal will be to show that the greedy algorithm achieves no regret against any perturbed adversary
in both the single-parameter and multiple-parameter settings. The key idea is to show that the
distribution on contexts generated by perturbed adversaries satisfy certain conditions which suffice to
prove a regret bound. The conditions we work with are related to (but substantially weaker than) the
conditions shown to be sufficient for a no regret guarantee by Bastani et al.| [2017].

The first key condition, diversity of contexts, considers the positive semidefinite d x d matrix E [2Tx]
for a context x, and asks for a lower bound on its minimum eigenvalue. This implies the distribution
over z has non-trivial variance in all directions, which is necessary for the least squares estimator
to converge to the underlying parameter (3. It implies that observations of /3 - = convey information
about (3 in all directions.

However, we only observe the rewards for contexts x conditioned on Greedy selecting them: we
see a biased (conditional) distribution on x. Thus we need the diversity condition to hold on these
conditional distributions.

Condition 1 (Diversity). Let e ~ D on R and let v, \g > 0. We call D (r, \o)-diverse if for all B,
all pwith ||u]] <1, and all b < r||B|], forx = p+e:

A random variable Y with mean p is s2-subgaussian if E [et(y_“)] < et*<*/2 for all t.

>The notation is chosen since p; will be the mean around which the perturbed context is drawn.
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In the single parameter setting, diversity will imply a regret guarantee: when any arm is pulled, the
context-reward pair gives useful information about all components of the (single) parameter /3. In the
multiple parameter setting, diversity will suffice to guarantee that the learner’s estimate of arm ¢’s
parameter vector converges to 3; as a function of the number of times arm ¢ is pulled; but alone it
does not cause arm ¢ to be pulled sufficiently often (even in rounds where ¢ is the best alternative,
when failing to pull it will cause our algorithm to suffer regret).

Thus the multiple parameter setting will require a second key condition, margins. Margins will imply
that conditioned on an arm being optimal on a given round, there is a non-trivial probability (over the

randomness in the contexts) that Greedy perceives it to be optimal based on current estimates { Bf},
so long as the current estimates achieve at least some constant baseline accuracy. A small initial
training set can guarantee that initial estimates achieve constant error, and so the margin condition
implies that Greedy will continue to explore arms with a frequency that is proportional to the number
of rounds for which they are optimal; then diversity implies that estimates of those arms’ parameters
will improve quickly (without promising anything about arms that are rarely optimal — and hence
inconsequential for regret).

Condition 2 (Conditional Margins). Let e ~ D and let r,c,~y > 0. We say D has (r, v, y) margins
ifforall $ #0andb <r| 8

>

P[8-e>b+alB]|B-e>b>7.

So, on rounds for which arm ¢ has largest expected reward, with probability at least -y its expected

reward is largest by at least some margin (cv||3]|). If Greedy has sufficiently accurate estimates {/3!},
this implies that Greedy will pull arm ¢. We say a perturbed adversary satisfies the diversity and
margin conditions if the distributions of e’ are independent and satisfy these conditions for all 4, ¢.

We will show the diversity condition implies no-regret in single-parameter settings, and the diver-
sity and margin conditions imply no-regret in multi-parameter settings. We further show that the
perturbation distribution A/(0, 21) satisfies these conditions. We note that our choice of Gaussian
perturbations was convenient and natural but not necessary (other perturbation distributions also
satisfy our conditions, implying similar results for those perturbations).

Complications: extreme perturbation realizations. When the realizations of the Gaussian per-
turbations have extremely large magnitude, the diversity and margin conditions will not holcﬂ This
is potentially problematic, because the probabilistic conditioning in both conditions increases the
likelihood that the perturbations will be large. This is the role of the parameter 7 in both conditions:
to provide a reasonable upper bound on the threshold that a perturbation variable should not exceed.
exceed. In the succeeding sections, we will use conditions we call “good” to formalize the intuition
that this is unlikely to happen often, when the perturbations satisfy a centrally-bounded condition.

4 Single Parameter Setting

We define the “Greedy Algorithm™ as the algorithm which myopically pulls the “best” arm at each
round according to the predictions of the classic least-squares estimator. Let Xt denote the (t —1) x d

. . . . . . ’ .
design matrix at time ¢, in which each row ¢’ is some observed context fft/ where arm ¢ was

selected at round ¢’ < t. The corresponding vector of rewards is denoted y = (7"1,11, e ,7";; L ). The

transposes of a matrix Z and vector z are denoted ZT and 27. At each round ¢, Greedy first computes
the least-squares estimator based on the historical contexts and rewards: 3° € arg ming || X3 —y"||3,

and then greedily selects the arm with the highest estimated reward: i* = arg max; 3' - zf. We defer
the formal description of the algorithm to the full version.

“Reasonable” rounds. As discussed in Section [2} the diversity condition will only hold when an
arm’s perturbations e} are not too large; we formalize these “good” situations here. Fix a round ¢,

SE.g. for margins, consider the one-dimensional case: a lower truncated Gaussian tightly concentrates on its
minimal support value.



the current Greedy hypothesis 3, and any choices of the adversary p, ..., u} conditioned on the
entire history up to round ¢. Now each value 3'z! = 'yl + el is a random variable, and Greedy
selects the arm corresponding to the largest realized value. In particular, we define the “threshold”
for Greedy to pull ¢ as follows.

Definition 2. Fix a round ¢, Greedy’s hypothesis 3%, and the adversary’s choices i}, . .., uk. We
define & := max;; 3 - =t. We say a realization of ¢t is r-good if & < Bt -t + r| 3.

The “hat” on good corresponds to those on ¢ and Bt. In the multiple parameter setting we will use
analogous conditions without the hats. Notice that ¢! is a random variable that depends on all the

perturbations e, for j # i, and Greedy pulls i if and only if Bta! > ét. The event that ¢! is r-good is

determined by the perturbations e!, of all arms i’ # i. Intuitively, if ¢ is r-good, then e! need not be
too large for arm ¢ to be selected.

4.1 Regret framework for perturbed adversaries

We first observe an upper-bound on Greedy’s regret as a function of the distance between Bt and
the true model 3. This allows us to focus on the diversity condition, which will guarantee that this
distance shrinks. Let i*(t) = arg max; (3 - z¢, the optimal arm at time ¢.

Lemma 4.1. Suppose for all i,t that |zt|| < R. In the single-parameter setting, for any tyin € [T,
we have: T
Regret(z',i', ... 7 ,i") < 2Rty + 2R Z Hﬂ — BtH .

t=%tmin

To apply Lemma we need to show that estimates 3 — S quickly. The key idea is that if the
input contexts are “diverse” enough (captured formally by Definition [T)), we will be able to infer
B. Lemma shows 3! approaches 3 at a rate governed by the minimum eigenvalue of the design
matrix.

Lemma 4.2. Fix a round t and let Z = (X*)" X*. Suppose all contexts satisfy || zt| < R and recall
that rewards are s*-subgaussian. Then with probability 1 — § over the randomness in rewards, we

have
5 2tdRs? In(td/0)
_ At <
16 -6 < o (Z1)

Observe that the matrix Z" = 3", , (z!)" 2! . The next step is to show that Ay (Z!) grows at a
rate of ©(t) with high probability, which will imply via Lemma [4.2| that || 3 — 3| < O(1/+/%),
fixing all other parameters. This is proven in the following key result, Lemma4.3] The proof uses a
concentration result for the minimum eigenvalue to show that A, (Z*) grows at a rate O () with high
probability. This relies crucially on the (7, Ag) diversity condition, which intuitively lower-bounds the

expected increase in Apyin(Z?) at each round. The details are more complicated, as this increase only
holds when Greedy’s choice of i has an r-good ¢¢; we show this happens with constant probability
for an (r, 1/2)-centrally bounded adversary.

Lemma 4.3. For Greedy in the single parameter setting with an R-bounded, (r,1/2)-
centrally bounded, (r,\o)-diverse adversary, we have with probability 1 — § that for all t >

2 2
max{0, 2(;}03 ln(i?ﬁé)}, we have \pin(Z1) > 0.

Combining these results gives a bound on the regret of Greedy against general perturbed adversaries.

The Gaussian, o-perturbed adversary. We need to show that our o-perturbed adversary satisfies
the diversity condition (and another technical condition that we defer to the supplementary materials).
For the diversity condition, we show that the diversity parameter A can be lower bounded by the
variance of a single-dimensional truncated Gaussian, then analyze this variance using tight Gaussian
tail bounds. Our proof makes use of the careful choice of truncations of A/ using a different
orthonormal change of basis each round, which maintains the perturbation’s Gaussian distribution
but allows the form of the conditioning to be much simplified. Finally, we arrive at the main result
for this section:



Theorem 4.1. In the single parameter setting against the o-perturbed adversary A, fix any choice
of parameters such that 0 < ————— (the low perturbation regime) and d < O’ T) With
24/2dIn(Tkd/5)

probability at least 1 — §, Greedy has

Regret < O (

where d is the dimension of contexts, k is the number of arms, rewards are 52-subgaussian, and in all
cases O(+) hides an absolute constant.

Tds? In(Td/5) In(k) )

S Multiple Parameter Setting

In the multi-parameter setting, we cannot hope for the greedy algorithm to achieve vanishing regret
without any initial information, as it never learns about parameters of arms it does not pull (formalized
in a lower bound in Section @ If, however, Greedy receives a small amount of initial information in
the form of a constant number of n samples (x;, ;) for each arm ¢, perturbations will imply vanishing
regret. We refer to this as an n-sample “warm start” to Greedy. (See the full version for a formal
description of the algorithm.)

For this setting, we show that the diversity and margin conditions together on a generic bounded
adversary imply low regret. We then leverage this to give regret bounds for the Gaussian adversary
Ag. As discussed in Section[3] the key idea is as follows. Analogous to the single parameter setting,
the diversity condition implies that additional datapoints we collect for an arm improve the accuracy

of its estimate Bf Meanwhile, the margin condition implies that for sufficiently accurate estimates,
when an arm is optimal (3;z! is largest), the perturbations have a good chance of causing Greedy to

pull that arm (fof is largest). Thus, the initial data sample kickstarts Greedy with reasonably accurate
estimates, causing it to regularly pull optimal arms and accrue more data points, thus becoming more
accurate.

Notation and preliminaries. Recall that i* is the arm pulled by Greedy at round ¢, i.e. it =

argmax; 3¢ - xt. Similarly let i*(t) be the optimal arm at round ¢, i.e. i*(t) = arg max; 3; - xt. Let
n;(t) be the number of times arm 4 is pulled prior to round ¢, including the warm start (so n;(1) will
be nonzero). Let S; = {t : i* =i} and let S} = {t : i*(t) = i}, the rounds where i is pulled and is
optimal respectively.

Recall that ¢! is a threshold that « must exceed to be pulled by Greedy, and the r—g/oad condition
captures cases where this can happen without the perturbation e! being too large. We now define this
condition formally for the multiple parameter case. We also need a similar threshold ¢! that i must
exceed to be the optimal arm, and an analogous 7-good condition.

Definition 3. Fix a round ¢, the current Greedy hypotheses B{, ce B,i, and choices of an adversary
i, ..., p. Define & := max;; 85 - 2%, a random variable depending on {€} : j # i}. Say an
outcome of ¢ is r-good if ¢t < B¢ - ut + r||Bt||. Similarly, define ¢! := max;4; 3; - % and say an
outcome of ¢! is r-good if ¢t < ;- ut +7(|B:]-

5.1 Regret framework for perturbed adversaries

Similarly to Lemma here the regret of Greedy shrinks as each Bf — B;. The proof is essentially
identical, but in this case, we prove this for each arm ¢ € [k].

Lemma 5.1. In the multiple parameter setting, the regret of Greedy is bounded by Zle Regret,(T)

with
Regret,(T) = R <Z ‘ ) +R Z ‘
teS; teS;

As in the single parameter setting, the diversity condition implies that with enough observations n; ()
. o At < 1 . . .
for arm 4, we have ||3; — 5! < O( m) We omit the details as they are analogous to the single

parameter case, and move on to the margin condition.

Bi — Bt ferycia




We wish to capture the benefits of the margin condition, i.e. that arms which are often optimal are also
actually pulled often by Greedy. The first step is to leverage the margin condition to argue that when
arm 7 is optimal (and c! is r-good), it is optimal by a significant margin («/||3;||) with a significant
probability (). Combining this with accurate initial estimates implies that it will actually be pulled
by Greedy.

Lemma 5.2. Suppose the perturbed adversary is R-bounded and has (r, ., ~y) margins for some
r < R. Consider any round t where for all j we have ||3; — ,6A’§H < %}W Then

P [it =3 | i*(t) =i,clis r-good] > .

Recall that S;, S} are respectively the set of rounds in which i* = 4 (Greedy pulls arm ) and i*(t) = i
(arm ¢ is optimal), respectively. The following key result leverages the margin condition to argue that,
if ¢ is optimal for a significant number of rounds, then it is pulled by Greedy. This is vital to a good
regret bound because it shows that n;(t), the number of samples from arm ¢, is steadily increasing in
t if 7 is often optimal, which we know from the diversity condition implies that the estimate Bf is
converging.

Lemma 5.3. Consider an R-bounded perturbed adversary with (r,«,y) margins and assume
1B; — B < F==54teil ml;-}éuﬁj” for all i and t. With probability at least 1 — b, we have for all natural
numbers N, |{t € SF : n;(t) = N}| < %ln 2. That is, arm i can be optimal at most % In 2 times
before being pulled by Greedy.

The Gaussian, o-perturbed adversary At a high level, all that remains to complete our analysis
is to prove that our perturbed adversary A, produces distributions that satisfy our margin condition.
There are some complications that make the details of this argument slightly circuitous, that we defer
to the full version in the supplement (we first prove this result for an adversary that uses a truncated
Gaussian distribution, and hence always produces bounded contexts, and then use this to argue that
our actual adversary also has the properties that we need). Once this is proven, we obtain the main
result of the multiple parameter setting. In particular, in the small-perturbation regime, a constant-size
warm start (i.e. independent of 7', as long as ¢ is small) suffices to initialize Greedy such that, with

high probability, it can obtain O(v/T') regret.

Theorem 5.1. In the multiple parameter setting, against the o-perturbed adversary A, with a warm
start of size

29 (—_dks®
ds” (57 i, 5,77

o min, [ 3]

n >0

)

. 1 . . .. _
for any setting of parameters such that o < AT’ Greedy satisfies with probability 1 — §
VTkds?(In Thd )3/ 2)

o2

Regret < O (

where d is the dimension of the contexts, k is the number of arms, rewards are s*-subgaussian, and
in all cases O(-), §)(+) hide absolute constants.

6 Lower Bounds for the Multi-Parameter Setting

Finally, in this section, we show that our results for the multi-parameter setting are qualitatively tight.
Namely, Greedy can be forced to suffer linear regret in the multi-parameter setting unless it is given
a “warm start” that scales polynomially with %, the perturbation parameter, and 1/ min; ||3||;, the
norm of the smallest parameter vector. This shows the polynomial dependencies on these parameters
in our upper bound cannot be removed, and in particular, prove a qualitative separation between the
multi-parameter setting and the single parameter setting (in which a warm start is not required). Both
of our lower bounds are in the fully stochastic setting — i.e. they are based on instances in which
contexts are drawn from a fixed distribution, and do not require that we make use of an adaptive
adversary. First, we focus on the perturbation parameter o.
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setting. Then, there exists an instance for which Greedy incurs regret Q(ﬁ) with constant probability

Theorem 6.1. Suppose greedy is given a warm start of size n < ( ) in the o-perturbed

in its first p rounds.
Remark 1. Theoremimplies for T < exp(=), either

1
o n=1_ (poly (%)), or
o Greedy suffers linear regret.

The lower bound instance is simple: one-dimensional, with two arms and model parameters 3; =

B2 = 1. In each round (including the warm start) the unperturbed contexts are p; = 1 and

ty = 1—1/4/n, and so the perturbed contexts =% and z% are drawn independently from the Gaussian

distributions A'(1,02) and V(1 — %, 02), ford =  [———,. We show the estimators after
n 100n In 755

100
the warm start have additive error () (ﬁ) with a constant probability, and when this is true, with

constant probability, arm 1 will only be pulled O (n2/ 3) rounds. So, with constant probability greedy
will pull arm 2 nearly every round, even though arm 1 will be better in a constant fraction of rounds.

We now turn our attention to showing that the warm start must also grow with 1/ min, ||3;||. Infor-
mally, the instance we use to show this lower bound has unperturbed contexts ! = 1 for both arms
and all rounds, and 3; = 8¢, B2 = 10e. We show again that the warm start of size n yields, with
constant probability, estimators with error =, causing Greedy to choose arm 2 rather than arm 1 for
a large number of rounds. When 2 is not pulled too many times, with constant probability its estimate
remains small and continues to be passed over in favor of a/rm 1.
. 1/3 . .
Theorem 6.2. Let ¢ = min; |3;], 0 < L = and % < 2™ . Suppose Greedy is given a warm start
In =
5

of sizen < i Then, some instances cause Greedy to incur regret

R(T) = <e <6181<72 n§)> .

Remark 2. Observe again that this implies that Greedy can be forced to incur linear regret if its warm
start size does not grow with 1/ min; ||5;|| for exponentially many rounds.
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