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Abstract

[ This paper introduces Wasserstein variational inference, a new form of approxi-
mate Bayesian inference based on optimal transport theory. Wasserstein variational
inference uses a new family of divergences that includes both f-divergences and the
Wasserstein distance as special cases. The gradients of the Wasserstein variational
loss are obtained by backpropagating through the Sinkhorn iterations. This tech-
nique results in a very stable likelihood-free training method that can be used with
implicit distributions and probabilistic programs. Using the Wasserstein variational
inference framework, we introduce several new forms of autoencoders and test their
robustness and performance against existing variational autoencoding techniques.

1 Introduction

Variational Bayesian inference is gaining a central role in machine learning. Modern stochastic
variational techniques can be easily implemented using differentiable programming frameworks
[1H3]. As a consequence, complex Bayesian inference is becoming almost as user friendly as deep
learning [4}5]. This is in sharp contrast with old-school variational methods that required model-
specific mathematical derivations and imposed strong constraints on the possible family of models
and variational distributions. Given the rapidness of this transition it is not surprising that modern
variational inference research is still influenced by some legacy effects from the days when analytical
tractability was the main concern. One of the most salient examples of this is the central role of
the (reverse) KL divergence [6l[7]. While several other divergence measures have been suggested
[8H12], the reverse KL divergence still dominates both research and applications. Recently, optimal
transport divergences such as the Wasserstein distance [13| [14] have gained substantial popularity
in the generative modeling literature as they can be shown to be well-behaved in several situations
where the KL divergence is either infinite or undefined [15H18]]. For example, the distribution of
natural images is thought to span a sub-manifold of the original pixel space [[15]. In these situations
Wasserstein distances are considered to be particularly appropriate because they can be used for
fitting degenerate distributions that cannot be expressed in terms of densities [[15].

In this paper we introduce the use of optimal transport methods in variational Bayesian inference. To
this end, we define the new c-Wasserstein family of divergences, which includes both Wasserstein

*These authors contributed equally to this paper.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



metrics and all f-divergences (which have both forward and reverse KL) as special cases. Using this
family of divergences we introduce the new framework of Wasserstein variational inference, which
exploits the celebrated Sinkhorn iterations [[19} 20] and automatic differentiation. Wasserstein varia-
tional inference provides a stable gradient-based black-box method for solving Bayesian inference
problems even when the likelihood is intractable and the variational distribution is implicit [21} 22].
Importantly, as opposed to most other implicit variational inference methods [2124], our approach
does not rely on potentially unstable adversarial training [25].

1.1 Background on joint-contrastive variational inference

We start by briefly reviewing the framework of joint-contrastive variational inference [23} 21} |9].
For notational convenience we will express distributions in terms of their densities. Note however
that those densities could be degenerate. For example, the density of a discrete distribution can be
expressed in terms of delta functions. The posterior distribution of the latent variable z given the
observed data z is p(z|x) = p(z, x)/p(x). While the joint probability p(z, ) is usually tractable, the
evaluation of p(z) often involves an intractable integral or summation. The central idea of variational
Bayesian inference is to minimize a divergence functional between the intractable posterior p(z|z)
and a tractable parametrized family of variational distributions. This form of variational inference
is sometimes referred to as posterior-contrastive. Conversely, in joint-contrastive inference the
divergence to minimize is defined between two structured joint distributions. For example, using the
reverse KL we have the following cost functional:
q(z, 2)}
)

Dicap(e. 2ol ) = By f10g 457
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where ¢(x,z) = q(z|z)k(z) is the product between the variational posterior and the sampling
distribution of the data. Usually k(z) is approximated as the re-sampling distribution of a finite
training set, as in the case of variational autoencoders (VAE) [26]]. The advantage of this joint-
contrastive formulation is that it does not require the evaluation of the intractable distribution p(z|z).
Joint-contrastive variational inference can be seen as a generalization of amortized inference [21]].

1.2 Background on optimal transport

Intuitively speaking, optimal transport divergences quantify the distance between two probability
distributions as the cost of transporting probability mass from one to the other. Let T'[p, ] be the
set of all bivariate probability measures on the product space X x X whose marginals are p and ¢
respectively. An optimal transport divergence is defined by the following optimization:

Wolp,q)= inf / (1, 22) dy(an, 22) @)
Y€l [p,q]

where ¢(z1, z2) is the cost of transporting probability mass from x; to 2. When the cost is a metric
function the resulting divergence is a proper distance and it is usually referred to as the Wasserstein
distance. We will denote the Wasserstein distance as W (p, q).

The computation of the optimization problem in Eq. 2] suffers from a super-cubic complexity. Recent
work showed that this complexity can be greatly reduced by adopting entropic regularization [20].
We begin by defining a new set of joint distributions:

Uclp, gl = {7 € Tlp,q] | Dx(v(z, ) |Ip(x)q(y)) < e '} . 3)
These distributions are characterized by having the mutual information between the two variables
bounded by the regularization parameter e . Using this family of distributions we can define the
entropy regularized optimal transport divergence:

Woilpg) = inf / (1, 22) du(zy, 22) . 4
’ u€U[p,q]

This regularization turns the optimal transport into a strictly convex problem. When p and q are
discrete distributions the regularized optimal transport cost can be efficiently obtained using the
Sinkhorn iterations [[19,20]. The e-regularized optimal transport divergence is then given by:

Wee(p,q) = lim Sflp,q,d] , 5

where the function S§[p, g, ¢] gives the output of the ¢-th Sinkhorn iteration. The pseudocode of
the Sinkhorn iterations is given in Algorithm [T} Note that all the operations in this algorithm are
differentiable.



Algorithm 1 Sinkhorn Iterations. C: Cost matrix, ¢: Number of iterations, e: Regularization strength

1: procedure SINKHORN(C, ¢, €)

2: K = exp(—C/e), n,m = shape(C)

r =ones(n,1)/n, ¢=ones(m,1)/m, ug=7r, 7=0

while 7 < ¢ do
a=KTu, > Juxtaposition denotes matrix product
b=c/a > "/" denotes entrywise division
ury1 =m/(Kb), T=7+1

v=c/(KTu), Sf = sum(u; x (K * C)v) > "*" denotes entrywise product
8: return 57
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2 Wasserstein variational inference

We can now introduce the new framework of Wasserstein variational inference for general-purpose
approximate Bayesian inference. We begin by introducing a new family of divergences that includes
both optimal transport divergences and f-divergences as special cases. Subsequently, we develop a
black-box and likelihood-free variational algorithm based on automatic differentiation through the
Sinkhorn iterations.

2.1 c-Wasserstein divergences

Traditional divergence measures such as the KL divergence depend explicitly on the distributions
p and q. Conversely, optimal transport divergences depend on p and q only through the constraints
of an optimization problem. We will now introduce the family of c-Wasserstein divergences that
generalize both forms of dependencies. A c-Wasserstein divergence has the following form:

We(p.g) = inf /m%%umwmum ©)
Y€l [p,q]

where the real-valued functional C?-% (1, x5) depends both on the two scalars 1 and 2 and on the
two distributions p and q. Note that we are writing this dependency in terms of the densities only for
notational convenience and that this dependency should be interpreted in terms of distributions. The
cost functional C?*9(x1, x2) is assumed to respect the following requirements:

1. CPP(x1,29) > 0,Vx1, 22 € supp(p)
2. CPP(x,z) = 0,Vx € supp(p)
3. E,[CP9(z1,22)] = 0,y € Tlp, gl ,
where supp(p) denotes the support of the distribution p. From these requirements we can derive the

following theorem:

Theorem 1. The functional W (p, q) is a (pseudo-)divergence, meaning that We(p, q) > 0 for all
p and q and We(p, p) = 0 for all p.

Proof. From property 1 and property 2 it follows that, when p is equal to ¢, CP?(z1, z2) is a non-
negative function of x and y that vanishes when 2 = y. In this case, the optimization in Eq. [0]is
optimized by the diagonal transport y(x1, 22) = p(z1)d(z1 — x2). In fact:

vwmmzfm%%mmmwm—mmmmz

= /C’p’p(xl,xl)p(xl)dxl =0. 7

This is a global minimum since property 3 implies that W (p, ¢) is always non-negative. O
All optimal transport divergences are part of the c-Wasserstein family, where C?9(z, y) reduces to a
non-negative valued function ¢(z1, z2) independent from p and q.

Proving property 3 for an arbitrary cost functional can be a challenging task. The following theorem
provides a criterion that is often easier to verify:



Theorem 2. Let f : R — R be a convex function such that (1) = 0. The cost functional
CPi(z,y) = f(g(x,y)) respects property 3 when B [g(x,y)] = 1 for all v € T'[p, ql.

Proof. The result follows directly from Jensen’s inequality. O

2.2 Stochastic Wasserstein variational inference

We can now introduce the general framework of Wasserstein variational inference. The loss functional
is a c-Wasserstein divergence between p(z, z) and ¢(z, 2):

£C[p7 q] = WC(]D(Z,(L‘),(](Z,QE)) = ’yEil"n[f) al Cp,q(mlazl;x%ZQ) d'y(xluzl;mhzl) . (8)

From Theorem [I]it follows that this variational loss is always minimized when p is equal to g. Note
that we are allowing members of the c-Wasserstein divergence family to be pseudo-divergences,
meaning that £ [p, q] could be 0 even if p # ¢. It is sometimes convenient to work with pseudo-
divergences when some features of the data are not deemed to be relevant.

We can now derive a black-box Monte Carlo estimate of the gradient of Eq.[8]that can be used together
with gradient-based stochastic optimization methods [27]. A Monte Carlo estimator of Eq|[8]can be
obtained by computing the discrete c-Wasserstein divergence between two empirical distributions:

Lelpn ga) =inf 3P 2, 0 4, 7, 0, 4Y) ©)
gk

where (:rgj), zij)) and (xék), zék)) are sampled from p(z, z) and ¢(z, z) respectively. In the case of
the Wasserstein distance, we can show that this estimator is asymptotically unbiased:

Theorem 3. Let W (p,,, gn) be the Wasserstein distance between two empirical distributions p,, and
qn. For n tending to infinity, there is a positive number s such that

Epg[W (Prs qn)] S W(p,q) +n 5. (10)

Proof. Using the triangle inequality and the linearity of the expectation we obtain:

Epg (W (Pns an)] < Ep[W (pn, p)] + W(p, q) + Eg[W(a, qn)] - (11)

In [28] it was proven that for any distribution u:
Eu[W (un,u)] < n=tee (12)
when s,, is larger than the upper Wasserstein dimension (see definition 4 in [28]]). The result follows

with s = max(s,, sq). O

Unfortunately the Monte Carlo estimator is biased for finite values of n. In order to eliminate the bias
when p is equal to g, we use the following modified loss:

Ec[pn’qn] = EC[pnaqn] - (£C[pn7pn] + ﬁc[qnaqn])/2 : (13)

It is easy to see that the expectation of this new loss is zero when p is equal to ¢g. Furthermore:
lim Lc[pn, a] = Lelp,q) - (14)
n—oo

As we discussed in Section[[.2] the entropy-regularized version of the optimal transport cost in Eq. 9]
can be approximated by truncating the Sinkhorn iterations. Importantly, the Sinkhorn iterations are
differentiable and consequently we can compute the gradient of the loss using automatic differentiation
[17]. The approximated gradient of the e-regularized loss can be written as

VﬁC[Pan] = VS:[PnanCp,q] P (15)

where the function Sf[py, ¢n, Cp 4] is the output of ¢ steps of the Sinkhorn algorithm with regular-
ization € and cost function C, ;. Note that the cost is a functional of p and ¢ and consequently the
gradient contains the term VC,, ,. Also note that this approximation converges to the real gradient of
Eq.[8|for n — oo and € — 0 (however the Sinkhorn algorithm becomes unstable when e — 0).



3 Examples of c-Wasserstein divergences

We will now introduce two classes of c-Wasserstein divergences that are suitable for deep Bayesian
variational inference. Moreover, we will show that the KL divergence and all f-divergences are part
of the c-Wasserstein family.

3.1 A metric divergence for latent spaces

In order to apply optimal transport divergences to a Bayesian variational problem we need to assign a
metric, or more generally a transport cost, to the latent space of the Bayesian model. The geometry of
the latent space should depend on the geometry of the observable space since differences in the latent
space are only meaningful as far as they correspond to differences in the observables. The simplest
way to assign a geometric transport cost to the latent space is to pull back a metric function from the

observable space:
C;—)’B(ZDZQ) = dz(gp(zl)vgp('z?)) ) (16)

where dg(x1, z2) is a metric function in the observable space and g, (z) is a deterministic function
that maps z to the expected value of p(x|z). In our notation the subscript p in g, denotes the fact
that the distribution p(z|z) and the function g,, depend on a common set of parameters which are
optimized during variational inference. The resulting pullback cost function is a proper metric if g, is
a diffeomorphism (i.e. a differentiable map with differentiable inverse) [29].

3.2 Autoencoder divergences

Another interesting special case of c-Wasserstein divergence can be obtained by considering the
distribution of the residuals of an autoencoder. Consider the case where the expected value of g(z|z)
is given by the deterministic function h,(z). We can define the latent autoencoder cost functional as
the transport cost between the latent residuals of the two models:

CLalz1, 2152, 22) = d(z1 — hg(21), 22 = hg(2)) , (17)
where d is a distance function. It is easy to check that this cost functional defines a proper c-
Wasserstein divergence since it is non-negative valued and it is equal to zero when p is equal to ¢
and x1, z; are equal to 9, zo. Similarly, we can define the observable autoencoder cost functional as
follows:

Ch a(x1, 2152, 22) = d(x1 — gp(21), T2 — gp(22)) , (18)
where again g, (z) gives the expected value of the generator. In the case of a deterministic generator,
this expression reduces to

CgA(xlvzl;x%ZQ) :d(ova _gp(z2)) . (19)

Note that the transport optimization is trivial in this special case since the cost does not depend on x1
and z;. In this case, the resulting divergence is just the average reconstruction error:

inf /d((),xg —gp(z2))dy = Ey(z,z) [d(0,z — gp(2))] - (20)
~Y€ET[p]

As expected, this is a proper (pseudo-)divergence since it is non-negative valued and x — g,,(2) is
always equal to zero when x and z are sampled from p(z, z).

3.3 f-divergences

We can now show that all f-divergences are part of the c-Wasserstein family. Consider the following
cost functional:

e = (220).

where f is a convex function such that f(0) = 1. From Theoremit follows that this cost functional
defines a valid c-Wasserstein divergence. We can now show that the c-Wasserstein divergence defined
by this functional is the f-divergence defined by f. In fact

B 1) P

since g(x5) is the marginal of all v(x1,x2) in T'[p, g].




4 Wasserstein variational autoencoders

We will now use the concepts developed in the previous sections in order to define a new form of
autoencoder. VAEs are generative deep amortized Bayesian models where the parameters of both the
probabilistic model and the variational model are learned by minimizing a joint-contrastive divergence
(26} 30, 31]]. Let D, and D, be parametrized probability distributions and g,,(z) and h, () be the
outputs of deep networks determining the parameters of these distributions. The probabilistic model
(decoder) of a VAE has the following form:

p(z,2) = Dy(zlg,(2)) p(2) , (23)
The variational model (encoder) is given by:
q(z, @) = Dy(2[hy(2)) k(z) - 24

We can define a large family of objective functions of VAEs by combining the cost functionals defined
in the previous section. The general form is given by the following total autoencoder cost functional:

Cﬁ;?f (171, 21522, 22) = ’wldx(,rl, IQ) + ’LUQC;;B(Zl, 22) + wngA(xl, 21,2, 22) (25)
+wiCh o (w1, 215 T2, 22) + w5 CF (21, 215 22, 22)

where w is a vector of non-negative valued weights, d.(x1, z2) is a metric on the observable space
and f is a convex function.

5 Connections with related methods

In the previous sections we showed that variational inference based on f-divergences is a special
case of Wasserstein variational inference. We will discuss several theoretical links with some recent
variational methods.

5.1 Operator variational inference

Wasserstein variational inference can be shown to be a special case of a generalized version of
operator variational inference [10]. The (amortized) operator variational objective is defined as
follows:

Lop = sup ((Ey(,-)[O7f]) (20
fes

where § is a set of test functions and ((+) is a positive valued function. The dual representation of the
optimization problem in the c-Wasserstein loss (Eq.[6) is given by the following expression:

Wc(p» (]) = fseull/:) [Ep(x,z)[f(xv Z)] - ]Eq(r,z)[f(wv Z)]] ) (27)

where
Lelp, gl =A{f: X = R| f(w1,21) — f(w2,22) < OV (21, 21579, 22)} - (28)

Converting the expectation over p to an expectation over ¢ using importance sampling, we obtain the
following expression:

We(p.q) = sup }[Eq@,z)[(p(x’z)—l) f(:c,z)H , (29)

feLelpa q(z, 2)

which has the same form as the operator variational loss in Eq.26|with ¢(z) = z and OP4 = p/q — 1.
Note that the fact that {(+) is not positive valued is irrelevant since the optimum of Eq.|27|is always
non-negative. This is a generalized form of operator variational loss where the functional family can
now depend on p and ¢. In the case of optimal transport divergences, where CP9(x1, 21; T2, 22) =
c(x1, 215 2, 22), the resulting loss is a special case of the regular operator variational loss.



5.2 Wasserstein autoencoders

The recently introduced Wasserstein autoencoder (WAE) uses a regularized optimal transport diver-
gence between p(x) and k(x) in order to train a generative model [32]. The regularized loss has the
following form:

where ¢,, does not depend on p and g and D(p(z)||q(2)) is an arbitrary divergence. This loss was
not derived from a variational Bayesian inference problem. Instead, the WAE loss is derived as a
relaxation of an optimal transport loss between p(z) and k(x):

When D(p(z)|lq(2)) is a c-Wasserstein divergence, we can show that the Ly 4 is a Wasserstein
variational inference loss and consequently that Wasserstein autoencoders are approximate Bayesian
methods. In fact:

o o)lea(®, 9o (@) +AWe. (p(2),4(2)) = nf / [ca (22, 9p(22)) + ACL (21, 22)] dy . (32)
In the original paper the regularization term D(p(z)]|q(2)) is either the Jensen-Shannon divergence
(optimized using adversarial training) or the maximum mean discrepancy (optimized using a repro-
ducing kernel Hilbert space estimator). Our reformulation suggests another way of training the latent
space using a metric optimal transport divergence and the Sinkhorn iterations.

6 Experimental evaluation

We will now demonstrate experimentally the effectiveness and robustness of Wasserstein variational
inference. We focused our analysis on variational autoecoding problems on the MNIST dataset. We
decided to use simple deep architectures and to avoid any form of structural and hyper-parameter
optimization for three main reasons. First and foremost, our main aim is to show that Wasserstein
variational inference works off-the-shelf without user tuning. Second, it allows us to run a large
number of analyses and consequently to systematically investigate the performance of several variants
of the Wasserstein autoencoder on several datasets. Finally, it minimizes the risk of inducing a bias
that disfavors the baselines. In our first experiment, we assessed the performance of our Wasserstein
variation autoencoder against VAE, ALI and WAE. We used the same neural architecture for all
models. The generative models were parametrized by three-layered fully connected networks (100-
300-500-1568) with Relu nonlinearities in the hidden layers. Similarly, the variational models
were parametrized by three-layered ReLu networks (784-500-300-100). The cost functional of our
Wasserstein variational autoencoder (see Eq. @ had the weights w;, wo, w3 and w, different from
zero. Conversely, in this experiment ws was set to zero, meaning that we did not use a f-divergence
component. We refer to this model as 1111. We trained 1111 using ¢ = 20 Sinkhorn iterations. We
evaluated three performance metrics: 1) mean squared reconstruction error in the latent space, 2)
pixelwise mean squared reconstruction error in the image space and 3) sample quality estimated as the
smallest Euclidean distance with an image in the validation set. Variational autoencoders are known
to be sensitive to the fine tuning of the parameter regulating the relative contribution of the latent and
the observable component of the loss. For each method, we optimized this parameter on the validation
set. VAE, ALI and WAE losses have a single independent parameter «: the relative contribution
of the two components of the loss (VAE-loss/WAE-loss = a*latent-loss + (1 - a)*observable-loss,
ALI-loss = a*generator-loss + (1 - a)*discriminator-loss for ALI). In the case of our 1111 model
we reduced the optimization to a single parameter by giving equal weights to the two latent and the
two observable losses (loss = a*latent-loss + (1 -«)*observable-loss). We estimated the errors of
all methods with respect to all metrics with alpha ranging from 0.1 to 0.9 in steps of 0.1. For each
model we selected an optimal value of o by minimizing the sum of the three error metrics in the
validation set (individually re-scaled by z-scoring). Fig. [T| shows the test set square errors both in
the latent and in the observable space for the optimized models. Our model has better performance
than both VAE and ALI with respect to all error metrics. WAE has lower observable error but higher
sample error and slightly higher latent error. All differences are statistically significant (p<0.001,
paired t-test).

In our second experiment we tested several other forms of Wasserstein variational autoencoders
on three different datasets. We denote different versions of our autoencoder with a binary string
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Figure 1: Comparison between Wasserstein variational inference, VAE, ALI and WAE.

Table 1: Detailed analysis on MNIST, fashion MNIST and Quick Sketches.

MNIST Fashion-MNIST Quick Sketch
Latent Observable Sample Latent Observable Sample Latent Observable Sample
ALI 1.0604 0.1419 0.0631 1.0179 0.1210 0.0564 1.0337 0.3477 0.1157
VAE 1.1807 0.0406 0.1766  1.7671 0.0214 0.0567 0.9445 0.0758 0.0687
1001  0.9256 0.0710 0.0448  0.9453 0.0687 0.0277 09777 0.1471 0.0654
0110 1.0052 0.0227 0.0513  1.4886 0.0244 0.0385  0.8894 0.0568 0.0743
0011 1.0030 0.0273 0.0740  1.0033 0.0196 0.0447  1.0016 0.0656 0.1204
1100 1.0145 0.0268 0.0483  1.3748 0.0246 0.0291  1.0364 0.0554 0.0736
1111 0.8991 0.0293 0.0441  0.9053 0.0258 0.0297  0.8822 0.0642 0.0699
h-ALI  0.8865 0.0289 0.0462  0.9026 0.0260 0.0300 0.8961 0.0674 0.0682
h-VAE  0.9007 0.0292 0.0442  0.9072 0.0227 0.0306  0.8983 0.0638 0.0677

denoting which weight was set to either zero or one. For example, we denote the purely metric
version without autoencoder divergences as 1100. We also included two hybrid models obtained by
combining our loss (1111) with the VAE and the ALI losses. These methods are special cases of
Wasserstein variational autoencoders with non-zero ws weight and where the f function is chosen to
give either the reverse KL divergence or the Jensen-Shannon divergence respectively. Note that this
fifth component of the loss was not obtained from the Sinkhorn iterations. As can be seen in Table [T]
most versions of the Wasserstein variational autoencoder perform better than both VAE and ALI on
all datasets. The 0011 has good reconstruction errors but significantly lower sample quality as it does
not explicitly train the marginal distribution of z. Interestingly, the purely metric 1100 version has a
small reconstruction error even if the cost functional is solely defined in terms of the marginals over x
and z. Also interestingly, the hybrid methods h-VAE and h-ALI have high performances. This result
is promising as it suggests that the Sinkhorn loss can be used for stabilizing adversarial methods.

A
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ALl 7799999977997 99799999799997997979

VAE | 04 | 93G906690 | 54 9665487490\
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B
ALl
VAE
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Figure 2: Observable reconstructions (A) and samples (B).



7 Conclusions

In this paper we showed that Wasserstein variational inference offers an effective and robust method
for black-box (amortized) variational Bayesian inference. Importantly, Wasserstein variational infer-
ence is a likelihood-free method and can be used together with implicit variational distributions and
differentiable variational programs [22} 21]]. These features make Wasserstein variational inference
particularly suitable for probabilistic programming, where the aim is to combine declarative general
purpose programming and automatic probabilistic inference.
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