
A Nonconvex Functions

A.1 Modification of MCP and SCAD

For the minimax concave penalty (MCP) [39]:

φ(|α|) =

{
|α| − α2

2θ |α| ≤ θ
1
2θ |α| > θ

.

MCP does not meet Assumption 1 as φ is not strictly increasing when |α| > θ. To avoid this problem,
we can modify its φ as φ̃(|α|) = φ(|α|) + δ|α|, where δ > 0 is a small constant (Figure 1(d)).
The smoothly clipped absolute deviation (SCAD) penalty [13] can be modified in the same way
(Figure 1(e)).

A.2 Definitions

Table 5 shows the nonconvex functions that can be used by RMFML.

Table 5: Example nonconvex regularizers (θ > 2 for SCAD and θ > 0 for others is a constant). Here,
δ > 0 is a small constant to ensure that the φ’s for MCP and SCAD are strictly increasing.

φ(|α|)
Geman penalty |α|

θ+|α|

Laplace penalty 1− exp
(
− |α|θ

)
log-sum-penalty (LSP) log

(
1 + |α|

θ

)
minimax concave penalty (MCP)

{
(1 + δ)|α| − α2

2θ α ≤ θ
1
2θ

2 + δ|α| α > θ

smoothly clipped absolute deviation (SCAD) penalty


(1 + δ)|α| |α| ≤ 1
−α2+2θ|α|−1

2(θ−1) + δ|α| 1 < |α| ≤ θ
(1+θ)

2 + δ|α| |α| > θ

B Details of the APG Algorithm

B.1 Computing the Gradient

The complete procedure for computing the gradient is shown in Algorithm 2.

Algorithm 2 Computing ∇Dk(x) by exploiting sparsity.
1: set Xitjt = xt for all (it, jt) ∈ Ω; // i.e., X = HΩ(x)
2: Qk = Akr (XV k)− λ(AkrU

k);
3: obtain ĝk ∈ Rnnz(W ) with ĝkt =

∑r
q=1Q

k
itq
V kjtq;

4: P k = Akc (X>Uk)− λ(AkcV
k);

5: obtain ğk ∈ Rnnz(W ) with ğkt =
∑r
q=1 U

k
itq
P kjtq; // i.e., ğk = H−1

Ω (Uk(P k)>)

6: return ĝk + ğk −H−1
Ω (M).

B.2 Computing the Objective

By the definition ofHΩ(x), we construct a sparse matrixX = HΩ(x). We then compute the first term
in (5) as 1

2‖P
k
√
Akr‖2F where P k = XV k − λUk. Note that X is sparse with O(nnz(W )) nonzero

elements and Akr is a diagonal, the computation of the first term in (5) takes O(nnz(W )r + mr)
time, where r is the number of columns in Uk. Let y = H−1

Ω (M). The second term in (5) can
then be computed as

∑nnz(W )
i=1 xiyi, which takes O(nnz(W )) time. For the last term in (5), it can

be computed similarly as the first term in O(nnz(W )r + nr) time. Moreover, we can see that only
O(nnz(W ) + (m+ n)r) space is needed.
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The whole procedure for computing the objective is shown in Algorithm 3. It takes a total of
O(nnz(W ) + (m+ n)r) space and O(nnz(W )r + (m+ n)r) time.

Algorithm 3 Computing Dk(x) by exploiting sparsity.
1: set Xitjt = xt for all (it, jt) ∈ Ω;
2: a1 = 1

2‖
√
AkrP

k‖2F where P k = XV k − λUk;
3: a2 = 1

2‖
√
AkcQ

k‖2F where Qk = X>Uk − λV k;
4: a3 =

∑nnz(W )
i=1 xiyi where y = H−1

Ω (M);
5: return a1 + a2 + a3.

B.3 Computing the Proximal Step

For the proximal step with (5), a closed-form solution can be obtained by the following Lemma.

Lemma B.1 ([4]). For any given z, x∗ = arg minx∈Wk
1
2‖x− z‖

2
F = [sign (zi) min(|zi|, (ẇki )−1)].

C Clarke Subdifferential

We first introduce two definitions from [10].

Definition C.1 (Clarke subdifferential). Let f : Rm×n → R be a locally Lipschitz function.2 The
Clarke generalized directional derivative of f at X in the direction of V is:

f◦(X,V ) ≡ lim sup
Y→X,λ→0

1

λ
[f(Y + λV )− f(Y )].

The Clarke subdifferential of f at X is

∂◦f(X) ≡ {ξ : f◦(X,V ) ≥ tr(ξ>V ),∀V ∈ Rm×n}.

Note that f in Definition C.1 can be neither convex nor smooth.

Definition C.2 (Critical point). A point X is a critical point of f if it satisfies 0 ∈ ∂◦f(X).

D Proofs

D.1 Preliminaries

In the section, we first introduce some Lemmas that will be used later in the proof.

The critical points for problem (4) are defined in the following Lemma.

Lemma D.1. Let C = M −UV >. (U, V ) is a critical point of (4) if 0 ∈ (W �S)V + λU and 0 ∈
(W�S)>U+λV , where Sij = sign (Cij)φ

′(|Cij |) ifCij 6= 0, and Sij ∈ [−φ′(0), φ′(0)] otherwise.

Proof. For a nonconvex penalty function φ satisfying Assumption 1, from Proposition 5 in [15], its
Clark subdifferential is {

∂◦φ(|α|) = sign (α) · φ′(|α|) if α 6= 0

∂◦φ(|α|) ∈ [−φ′(0), φ′(0)] otherwise
. (7)

By Definition C.2, if (U, V ) is a critical point of (4), it satisfies

(0, 0) ∈ ∂◦Ḣ(U, V ). (8)

Combining (7) and (8), we obtain the Lemma.

2A function is called locally Lipschitz continuous if for every X in its domain there exists a neighborhood U
of X such that f restricted to U is Lipschitz continuous.
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Lemma D.2. Define the row sum sum(Ẇ k
(i,:)) =

∑n
j=1 Ẇ

k
ij , and the column sum sum(Ẇ k

(:,j)) =∑m
i=1 Ẇ

k
ij . Then, ‖Ẇ k � (Ū V̄ >)‖1 ≤ 1

2‖Λ
k
r Ū‖2F + 1

2‖Λ
k
c V̄ ‖2F , where

Λkr = Diag(
√

sum(Ẇ k
(1,:)), . . . ,

√
sum(Ẇ k

(m,:))),

and

Λkc = Diag(
√

sum(Ẇ k
(:,1)), . . . ,

√
sum(Ẇ k

(:,n))).

Equality holds iff (Ū , V̄ ) = (0, 0).

Proof. First, we have

‖Ẇ k � (Ū V̄ >)‖1 =

∥∥∥∥∥∥Ẇ k �

u>1 v1 · · ·u>1 vn
· · ·

u>mv1 · · ·u>mvn

∥∥∥∥∥∥
1

=

m∑
i=1

n∑
i=1

Ẇ k
ij

∣∣u>i vj∣∣ , (9)

where ui is the ith row in Ū (similar, for vj in V̄ ). From the Cauchy inequality, we have∣∣u>i vj∣∣ ≤ ‖ui‖2‖vj‖2 ≤ 1

2

(
‖ui‖22 + ‖vj‖22

)
.

Together with (9), we have

‖Ẇ k � (Ū V̄ >)‖1 ≤
1

2

m∑
i=1

n∑
j=1

Ẇ k
ij

(
‖ui‖22 + ‖vj‖22

)
=

1

2
‖ΛrŪ‖2F +

1

2
‖ΛcV̄ ‖2F ,

and the equality holds only when (Ū , V̄ ) = (0,0).

D.2 Proposition 3.1

Proof. Note that φ(x) is concave on x ≥ 0. For any y ≥ 0, we have
φ(y) ≤ φ(x) + (y − x)φ′(x).

Let y = |β| and x = |α|. We obtain
φ(|β|) ≤ φ(|α|) + (|β| − |α|)φ′(|α|).

As φ is concave and strictly increasing on R+, equality holds iff β = ±α.

D.3 Corollary 3.2

Proof. This Corollary can be easily obtained (i) using Proposition 3.1 on the nonconvex loss in (4);
and (ii) U = Uk + Ū and V = V k + V̄ .

D.4 Proposition 3.3

Proof. From the Cauchy inequality, we have

‖Ẇ k � (M − (Uk + Ū)
(
V k + V̄

)>
)‖1 (10)

≤ ‖Ẇ k � (M − Uk(V k)> − Ū(V k)> − UkV̄ >)‖1 + ‖Ẇ k � (Ū V̄ >)‖1.
For the last term, using Lemma D.2, we have

‖Ẇ k � (Ū V̄ >)‖1 ≤
1

2

(
‖Λkr Ū‖2F + ‖Λkc V̄ ‖2F

)
. (11)

Combining (10) and (11), we have
m∑
i=1

n∑
j=1

Ẇ k
ijφ
(∣∣Mij − [UV >]ij

∣∣) ≤‖Ẇ k � (M − (Uk + Ū)(V k + V̄ )>)‖1

+
1

2

(
‖Λkr Ū‖2F + ‖Λkc V̄ ‖2F

)
+ bk. (12)

Adding λ
2 ‖U

k + Ū‖2F + λ
2 ‖V

k + V̄ ‖2F to both side of (12), we obtain the Proposition.

Besides, from Lemma D.2, the equality in the Proposition holds only when (Ū , V̄ ) = (0, 0).

13



D.5 Proposition 3.4

Proof. Using the fact that ‖X‖1 = max‖Y ‖∞≤1 tr(X>Y ) [4], where ‖Y ‖∞ = maxi,j |Yij | is the
`∞-norm, Dk(x) can be rewritten as

max
x∈Wk

min
Ū,V̄
P(x, Ū , V̄ ),

where

P(x, Ū , V̄ ) ≡ tr(HΩ(x)>(M − Ū(V k)> − UkV̄ >)) (13)

+
λ

2
‖Uk + Ū‖2F +

1

2
‖Λkr Ū‖2F +

λ

2
‖V k + V̄ ‖2F +

1

2
‖Λkc V̄ ‖2F .

As (13) is an unconstrained, smooth and convex problem on Ū , the optimal solution is obtained when
∇ŪP(X, Ū , V̄ ) = 0. Then,

Ū = Akr (HΩ(x)V k − λUk). (14)

Similarly, we obtain

V̄ = Akc (HΩ(x)>Uk − λV k). (15)

Substituting (14) and (15) back into (13), we obtain Dk(X) in the Proposition.

D.6 Proposition 3.5

First, Proposition 3.5 can be written as follows.
Proposition D.3. For Algorithm 1,

(i). {(Uk, V k)} is bounded.

(ii). {(Uk, V k)} has a sufficient decrease on Ḣ , i.e., Ḣ(Uk, V k) − Ḣ(Uk+1, V k+1) ≥
γ‖Uk+1 − Uk‖2F + γ‖V k+1 − V k‖2F , where γ > 0 is a constant; and

(iii). limk→∞(Uk+1 − Uk) = 0 and limk→∞(V k+1 − V k) = 0.

Proof. First note that

inf
U,V

H(U, V ) ≥ 0, lim
‖U‖F→∞
‖V ‖F→∞

H(U, V ) =∞. (16)

Then, the sequence {Uk} and {V k} is bounded, and we obtain the result in part (i).

Thus, there exists a positive constant c such that

c1 ≥ |[Uk(V k)>]ij |, ∀i, j, k.
From Assumption 1, φ is a strictly increasing function, thus φ′ > 0. Then, there exists a positive
constant c2 such that

φ′
(
|[Uk(V k)>]ij |

)
≥ c2 ≡ φ′(c1).

From Assumption 2, each row and column in W has at least one nonzero element. By the definition
of Λkr in Proposition 3.3, its diagonal elements are given by

[
Λkr
]
ii
≥

√√√√ n∑
j=1

Wijc2.

The same holds for Λkc . Thus, there exists a constant α > 0 such that all diagonal elements in Λkr and
Λkc are not smaller than α.

As
(
Ūk, V̄ k

)
is the optimal solution of min Ḟ k, then

(0, 0) ∈ ∂Ḟ k
(
Ūk, V̄ k

)
. (17)

14



Define

J̇k(Ū , V̄ ) ≡ ‖Ẇ k � (M−Uk(V k)>−Ū(V k)>−UkV̄ >)‖1+
λ

2
‖Uk+Ū‖2F +

λ

2
‖V k+V̄ ‖2F +bk.

Recall the definition of Ḟ k. From (17), we have

(GŪk , GV̄ k) ∈ ∂J̄k(Ūk, V̄ k).

Thus,

(0, 0) = (GŪk , GV̄ k) +
(
(Λkr )2Ū , (Λkc )2V̄

)
. (18)

Multiplying (Ūk, V̄ k) on both side of (18), we have

0 = tr(G>Ūk Ū
k) + tr(G>V̄ k V̄

k) + ‖(Λkr )2Ū‖2F + ‖(Λkc )2V̄ ‖2F . (19)

As J̇k is a convex function, by the definition of the subgradient, we have

J̇k(0, 0) ≥ J̇k(Ūk, V̄ k)− tr(G>Ūk Ū
k)− tr(G>V̄ k V̄

k). (20)

Combining (19) and (20), we obtain

J̇k(0, 0) ≥ J̇k(Ūk, V̄ k) + ‖(Λkr )2Ū‖2F + ‖(Λkc )2V̄ ‖2F

≥ Ḣk(Ūk, V̄ k)+
1

2
‖(Λkr )2Ū‖2F +

1

2
‖(Λkc )2V̄ ‖2F . (21)

Note that

J̇k(0,0) = H(Uk, V k),

Ḣk(Ūk, V̄ k) = H(Uk+1, V k+1),

and using (21), we have

H(Uk, V k)−H(Uk+1, V k+1) ≥ 1

2
‖Λkr Ūk‖2F +

1

2
‖(Λkc )2V̄ k‖2F ≥

α

2

(
‖Ūk‖2F + ‖V̄ k‖2F

)
. (22)

Thus, we obtain the result in part (ii) in Proposition 3.5 (with γ = α/2).

Summing all inequalities in (22) from k = 1 to K, we have

H(U1, V 1)−H(UK+1, V K+1) ≥
K∑
k=1

α

2
‖Ūk‖2F +

α

2
‖V̄ k‖2F .

From (16), we have
∞∑
k=1

‖Ūk‖2F <∞,
∞∑
k=1

‖V̄ k‖2F <∞, (23)

which indicates that

lim
k→∞

‖Ūk‖2F = lim
k→∞

‖(Uk − Uk+1)‖2F = 0,

lim
k→∞

‖V̄ k‖2F = lim
k→∞

‖(V k − V k+1)‖2F = 0.

Then, we have the result in part (iii).

D.7 Proposition D.4

The following connects the subgradient of surrogate Ḟ k to the Clarke subdifferential of Ḣ .

Proposition D.4. (i) ∂Ḟ k(0, 0) = ∂◦Ḣk(0, 0); (ii) If 0 ∈ ∂◦Ḣk(0, 0), then (Uk, V k) is a critical
point of (4).

Proof. Part (i). We prove this by the Clark subdifferential of Ḣk and subgradient of Ḟ k.
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• Clark subdifferential of Ḣk: Let CH = M − UV >. By the definition of Clark differential,
we have

∂◦U Ḣ
k(Ū , V̄ ) = (W � SH)(V k + V̄ ) + λ(Uk + Ū), (24)

∂◦V Ḣ
k(Ū , V̄ ) = (W � SH)>(Uk + Ū) + λ(V k + V̄ ), (25)

where SHij = sign
(
CHij
)
· φ′
(∣∣CHij ∣∣) if CHij 6= 0, and SHij ∈ [−φ′(0), φ′(0)] otherwise.

• Subgradient of Ḟ k: Let CF = M −Uk(V k)> − Ūk(V k)> −Uk(V̄ k)>. For Ḟ k, we have

∂U Ḟ
k(Ū , V̄ ) = (Ẇ k � SF )(V k + V̄ k) + λ(Uk + Ū) + (Λkr )2Ū , (26)

∂V Ḟ
k(Ū , V̄ ) = (Ẇ k � SF )>(Uk + Ūk) + λ(V k + V̄ ) + (Λkc )2V̄ , (27)

where SFij = sign
(
CFij
)

if CFij 6= 0, and SFij ∈ [−1, 1] otherwise.

Note that when Ū = 0 and V̄ = 0, we have CH = CF . By the definition of Ẇ k = Ak �W ,
we also have W � SH = Ẇ k � SF . Finally, the last term in (26) vanishes to zero as Ū = 0.
Thus, (24) is exactly the same as (26). Similarly (25) is also the same as (27). As a result, we have
∂◦Ḟ k(0,0) = ∂◦Ḣk(0, 0).

Part (ii). From the definition of Ḣ in (4) and Ḣk in Proposition 3.3, we have

Ḣk(Ū , V̄ ) = Ḣ(Uk + Ū , V k + V̄ ).

Thus, if (0,0) ∈ ∂◦Ḣk(0,0), we have

(0, 0) ∈ ∂◦Ḣ(Uk, V k),

which shows that (Uk, V k) is a critical point.

D.8 Theorem 3.6

Proof. From Proposition 3.5, we know that there is at least one limit point for the sequence{(
Uk, V k

)}
. Let

{(
Ukj , V kj

)}
be one of its subsequences, and

U∗ = lim
kj→∞

Ukj , V ∗ = lim
kj→∞

V kj ,

where (U∗, V ∗) is a limit point. Using Proposition D.4, we have

lim
kj→∞

∂◦Ḟ kj
(
Ūkj , V̄kj

)
= lim
kj→∞

∂◦Ḟ kj (0, 0) = lim
kj→∞

∂◦Ḣkj (0, 0) = ∂◦Ḣ (U∗, V ∗) .

Thus, (0, 0) ∈ ∂◦Ḣ (U∗, V ∗), which shows that (U∗, V ∗) is a critical point (Lemma D.1).

E Additional Materials for the Experiments

E.1 Statistics of MovieLens.

The statistics of MovieLens data sets are in following Table 6.

Table 6: MovieLens data sets used.
number of users number of movies number of ratings % nonzero elements

MovieLens-100K 943 1,682 100,000 6.30
MovieLens-1M 6,040 3,449 999,714 4.80

MovieLens-10M 69,878 10,677 10,000,054 1.34
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